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Abstract. Geometric complexity theory is an approach towards proving lower

bounds in algebraic complexity theory via methods from algebraic geometry and

representation theory. It was introduced by Mulmuley and Sohoni and has gained

significant momentum over the last few years. Since deep methods from several

different areas of mathematics are involved, geometric complexity theory has a steep

learning curve. There are great survey articles on geometric complexity theory, but

those require a significant level of mathematical background or often only sketch

many of the proofs, see, e. g., Regan (Bull. EATCS 2002), Mulmuley (J. ACM 2011),

Bürgisser, Landsberg, Manivel, Weyman (SIAM J. Comput. 2011), Grochow (PhD

thesis, U. of Chicago 2012), Ikenmeyer (PhD thesis, Paderborn U., 2012), Landsberg

(Ann. U. di Ferrara, 2015). This survey tries to be a gentle introduction for graduate

students and even advanced undergraduate students in computer science that

requires almost no background knowledge except for the usual knowledge in linear

algebra and some basic knowledge in analysis. All the necessary concepts from

algebraic geometry and representation theory are introduced and almost all proofs

are given. We focus on two questions, the permanent versus determinant problem

and the border rank problem for matrix multiplication. There have been many more
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results in the past few years, which we cannot cover, however, this survey should give

the reader the neccessary background to understand them. The survey culminates

in two recent results, a negative one for the permanent versus determinant question

and a positive one for the matrix multiplication problem. We present the proof that

occurrence obstructions essentially cannot resolve the permanent versus determinant

question. However, occurence obstructions are only the most basic tool of geometric

complexity theory and it might be well possible that the more general concept of

multiplicity obstructions will resolve the problem. On the other hand, as a proof of

concept, we show that occurrence obstructions indeed can give lower bounds for the

border rank of matrix multiplication.
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MARKUS BLÄSER AND CHRISTIAN IKENMEYER

14.5 Permutations of matrix multiplication tensors . . . . . . . . . . . . . . . . . . . . . 84

14.6 Products of matrix multiplication tensors . . . . . . . . . . . . . . . . . . . . . . . 85

15 Border rank 86
15.1 Approximate computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

15.2 Properties of border rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

15.3 From approximate to exact computations . . . . . . . . . . . . . . . . . . . . . . . 89

15.4 Degeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

16 Symmetric and alternating tensors 91
16.1 (2+ and Λ2+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

16.2 Symmetric tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

16.3 Alternating tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

17 Construction of the irreducible representations of GL= 95
17.1 Young tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

17.2 Construction as a quotient space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

17.3 A more explicit quotient space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

17.4 Sylvester’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

17.5 An explicit basis of the Schur module . . . . . . . . . . . . . . . . . . . . . . . . . 99

17.6 Highest weight vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

18 The algebraic Peter–Weyl theorem 102
18.1 Regular functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

18.2 Invariants under the stabilizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

18.3 Algebraic Peter–Weyl theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

18.4 The determinant and rectangular Kronecker coefficients . . . . . . . . . . . . . . . 106

19 Explicit HWV constructions via Schur–Weyl duality 106
19.1 Specht modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

19.2 Explicit Schur–Weyl duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

19.3 Polynomials as symmetric tensors: Plethysms . . . . . . . . . . . . . . . . . . . . . 109

20 Tensor contraction 116
20.1 Contracting highest weight vectors in plethyms with rank one tensors . . . . . . 116

20.2 Applications: Waring rank and a proof of Weintraub’s conjecture . . . . . . . . . 118

20.3 Application: Obstructions require long first rows . . . . . . . . . . . . . . . . . . . 120

21 Good occurrence obstructions for det vs per do not exist 121
21.1 The degree lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

21.2 No occurrence obstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

22 Occurrence obstructions for matrix multiplication 134
22.1 Highest weight vectors in the tensor setting . . . . . . . . . . . . . . . . . . . . . . 135

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 10 (2025), pp. 1–166 4

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


INTRODUCTION TO GEOMETRIC COMPLEXITY THEORY

22.2 Vanishing at low-rank points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

22.3 Nonvanishing at the matrix multiplication tensor . . . . . . . . . . . . . . . . . . . 144

22.4 The coordinate ring of the unit tensor orbit . . . . . . . . . . . . . . . . . . . . . . 151

A Some basic algebraic vocabulary 158

Acknowledgement. This survey is based on lecture notes of courses on geometric complexity

theory given by the authors at Saarland University during the summer term 2017, winter term

2017/18, and summer term 2018. We thank all the participants, in particular, Julian Dörfler, Nick

Fischer, Lennart Haas, Thomas Haslbauer, Umangathan Kandasamy, Felix Rech, Igor Schlegel,

Julian Rosemann, and Philip Wellnitz.

1 Boolean circuits and arithmetic circuits

1.1 Introduction

Computational complexity theory is concerned with the study of the inherent complexity

of computational problems. Its flagship conjecture is the famous P ≠ NP conjecture, which

is one of the seven Millenium Problems of the Clay Mathematics Institute [27], ranking this

conjecture as themost important one at the intersection of mathematics and theoretical computer

science. To this day several thousand computational problems are classified as NP-complete,

i. e., they have a polynomial time algorithm iff P = NP1. The practical importance of the

P ≠ NP conjecture is at least twofold: First of all, many NP-complete problems are of high

practical relevance and have to be solved every day in commercial and scientific applications,

for example the traveling salesperson problem, integer programming, facility location, subset

sum, knapsack, longest path, multiprocessor scheduling, tensor rank. Secondly, all current

security notions in cryptography heavily rely on P ≠ NP. Indeed, P = NP would break all

existing cryptographic ciphers. A lot of effort by many researchers has been put into resolving

the P ≠ NP conjecture, but progress has been slow; see for example [34] for a survey, and [1] for

a more recent survey that includes geometric complexity theory, in particular its recent revision

[2]. Complexity questions in algebraic models date back at least to [67]. Valiant [80] argued that

algebraic complexity is at the heart of our issues with Boolean complexity, introduced algebraic

complexity classes, and highlighted the importance of the determinant for understanding

efficient computation. Mulmuley and Sohoni [63, 64] realized that it is natural to use algebraic

geometry and representation theory to study Valiant’s questions. Some of these geometric

ideas date back to Strassen [76] who discovered them in his study of the rank of the matrix

multiplication tensor. Mulmuley and Sohoni’s approach is now called geometric complexity theory.
Geometric complexity theory is an approach towards computational complexity lower

bound questions via methods from algebraic geometry and representation theory. It has gained

significant momentum over the last few years, but it has a steep learning curve which is a result

of the many different areas of mathematics involved. This course tries to be a gentle introduction

that requires almost no background knowledge. There are great survey articles on geometric

1 We use the standard shorthand notation “iff” for “if and only if”
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complexity theory, but those require a significant level of mathematical maturity and often only

sketch many of the proofs, see, e. g., [68, 62, 24, 40, 46, 53].

1.2 The non-uniform P ≠ NP question: NP * P/poly

To make our lives easier we will not directly discuss the P vs NP question, but its so-called

non-uniform analogue, i. e., its circuit complexity version. If the non-uniform analogue is true, then

also P ≠ NP.

We start with the basic definition of a circuit.

Definition 1.1 (Circuit). Fix a set F (in our case F will be F2 = {0, 1} or the set ℂ of complex

numbers) and a set ( = {B8} of functions B8 of arbitrary arity 08 , i. e., B8 maps from F 08 to F ,

where each 08 ∈ ℕ≥1. (For example, for Boolean circuits, choose F = F2 and ( = {and, or, not}).
A circuit � is a directed graph (abbreviated digraph) that contains no directed cycle such that the

following properties hold (see Figure 1):

• A subset of the vertices with indegree 0 is labeled by indeterminates. These vertices are

called the input gates. The other vertices with indegree 0 are labeled with elements of F

and are called constant gates. All other vertices are called computation gates. A computation

gate with outdegree 0 is called an output gate.

• Each computation gate , is labeled with a function B8 ∈ ( with arity 08 coinciding with the

indegree of ,.

- . /

and or

not

and

Figure 1: A circuit of size 7 computing the function {0, 1}3 → {0, 1} given by

(- and .) and not(. or /). Here F = F2 and ( = {and, or, not}. The circuit has 3 input

gates, no constant gate, 4 computation gates, one of which is an output gate.

Let < be the number of input gates of a circuit �. Since by definition circuits contain no

directed cycle, for each gate , we can define a function �, : F< → F in the natural way by

induction over the structure of the digraph as follows: For each input gate , labeled with a

constant  we define �, to be the constant function . For each input gate , labeled with a

variable -9 we define �,(G1 , . . . , G<) = G 9 . For a computation gate , with label B and parents

,1 , . . . , ,0 we define �,(G1 , . . . , G<) = B(�,1(G1 , . . . , G<), . . . , �,0 (G1 , . . . , G<)).
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We say that the functions �, on the output gates , of � are computed by �. We call a circuit

a single-output circuit, if it has only one output gate and in this case � : F< → F denotes the

function of the output gate. The size |� | of a circuit � is defined to be the number of its vertices.

The depth of a circuit is defined as the largest number of edges from an input gate to an output

gate.

Definition 1.2. The circuit complexity 2F ,((ℎ) of a function ℎ : F< → F is the minimal size of a

circuit � computing ℎ.

Remark 1.3. In the literature, sometimes the number of edges or the number of computation

gates is used as the definition of circuit complexity. In most contexts this does not make a

significant difference.

A Boolean circuit is defined to be a circuit with F = F2 and ( = {and, or, not}. When we

speak of a univariate polynomial, we mean a polynomial in one variable with real coefficients.

The polynomials which we discuss in later chapters will be multivariate and will have complex
coefficients. Those serve a completely different purpose and need to be distinguished from their

univariate namesakes.

Definition 1.4. A sequence (=<)<∈ℕ of natural numbers is called polynomially bounded if there
exists a univariate polynomial @ such that for all < ∈ ℕ we have =< ≤ @(<).

For a sequence of functions (ℎ<)we obtain a sequence of natural numbers 2F ,((ℎ<). Formally

a family of objects is the same as a sequence of objects. We use the word family when we are

interested in the sequence of complexity values.

Definition 1.5. Fix F B F2 and ( = {and, or, not}. The class P/poly consists of all function

families (ℎ<) with ℎ< : F< → F whose complexity sequence 2F ,((ℎ<) is polynomially bounded.

Example 1.6. Let ℎ< : {0, 1}< → {0, 1} denote the palindrome function: ℎ<(F) = 1 iff

F8 = F<+1−8 for all 1 ≤ 8 ≤ <. It is easy to construct a Boolean circuit that computes ℎ< whose

size is polynomially bounded in <.

More generally, for computer scientists, take any language ! ⊆ {0, 1}∗ in P. Then define

the function ℎ< : {0, 1}< → {0, 1} to be the indicator function of ! restricted to input words of

length exactly <. Then (ℎ<) ∈ P/poly. In other words P ⊆ P/poly. This result is a bit technical

and we will not discuss it any further.

1.2.1 SAT and NP

Wedonot define the classNPhere, butwedefine theNP * P/poly conjecture via the satisfiability

function. The technical details in this subsection are only used locally.

A Boolean formula is a finite character string consisting of variables G(1), G(2), G(3), . . . and
parantheses symbols (, ), as well as the classical logical junctors and, or, not. For example:

(G(1) and not G(3)) or not(G(1) or G(4)) or G(2)

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 10 (2025), pp. 1–166 7

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs
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is a Boolean formula. A Boolean formula is called satisfiable if we can replace every variable

G(8) by either true or false such that the resulting statement is true. In our example, one of these

assignments would be G(1)= true, G(2)= true, G(3)= true, G(4)= false, and hence the Boolean

formula is satisfiable. We fix any reasonable way of encoding Boolean formulas as finite bit

strings, so, for example, we could choose 0000 = 0, 0001 = 1, 0010 = 2, . . ., 1001 = 9, 1010 = G,
1011 = (, 1100 = ), 1101 = and, 1110 = or, 1111 = not. For example the Boolean formula

G(2) and G(3) is represented by 101010110010110011011010101100111100. Using this encoding

we can interpret the set of satisfiable Boolean formulas as a subset of the set of finite length

bit strings. Now we are ready to define the satisfiability problem. Let (ℎ<) be the sequence of
functions ℎ< : {0, 1}< → {0, 1} defined by the property

ℎ<(F) = 1 iff F ∈ {0, 1}< encodes a satisfiable Boolean formula.

The NP * P/poly conjecture can be stated as (ℎ<) ∉ P/poly, or equivalently as

the sequence of Boolean circuit complexities 2F2 ,((ℎ<) is not polynomially bounded.

Remark 1.7. One would usually choose the name SAT< for the function ℎ< . ℎ< stands for a

hard function, i. e., a function for which we want to prove complexity lower bounds. We will

encouter this usage of ℎ< more often in the following chapters

1.3 From Boolean circuits to arithmetic circuits

If we interpret the set F2 = {0, 1} as the set of cosets modulo 2, then we see that besides the

Boolean operations the set F2 is also a ring (even a field) and hence has an addition and a

multiplication operation. The operation tables look as follows:

+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

The following rephrased version of Definition 1.5 has a more algebraic flavor.

Proposition 1.8 (Arithmetic characterization of P/poly). Let F B F2 and let ( B {+,×}, where “+”
and “×” have arity 2 and represent addition and multiplication. The class P/poly consists of all families
(ℎ<) of functions ℎ< : F< → F whose circuit complexity sequence 2F ,((ℎ<) is polynomially bounded.

Proof. For F = F2, a circuit using ( = {and, or, not} can be converted into a circuit using

( = {+,×} and vice versa by replacing gates with subcircuits of constant size, as follows:

• - and . = - × .

• not - = - + 1

• - or . = - × . + - + .

• - + . = - xor . = (- or .) and not(- and .) �
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Circuits where F is a field and ( is the set {+,×} of arithmetic operations are called arithmetic
circuits over F . Computation gates labeled with + are called addition gates and computation gates

labeled with × are called multiplication gates.
Given the characterization from Proposition 1.8, it is straightforward to work over other

rings than F2. Infinite fields for example have a big advantage, as we will see in Lemma 1.9. For a

fixed ring F , single-output arithmetic circuits with < input gates not only naturally compute a

function F< → F , but they also compute a polynomial in the polynomial ring F [-1 , . . . , -<] in <
variables by induction on the circuit structure, see Figure 2. Two polynomials are consirered to

−1 . -

×

+

+

×

×

Figure 2: A circuit computing the polynomial -3 +-2. −-.2 −.3
. Here F = ℂ and ( = {×,+}.

The circuit has 2 input gates, one constant gate, 5 computation gates, and 1 output gate.

be equal if for eachmonomial their corresponding coefficients coincide. Single-output arithmetic

circuits over F2 that compute different polynomials can compute the same function, as the

following small example shows: Let ℎ1(-,.) = -2. and ℎ2(-,.) = -.2
. Clearly ℎ1 and ℎ2 are

different polynomials, but as functions they coincide:

∀G ∈ (F2)2 : ℎ1(G) = ℎ2(G).

This is a cumbersome subtlety which does not arise over infinite fields.

Lemma 1.9. Let F be an infinite field. Then for two polynomials ℎ1 , ℎ2 ∈ F [-1 , -2 , . . . , -<] we have

ℎ1 = ℎ2 as polynomials iff for all G ∈ F< we have ℎ1(G) = ℎ2(G).

Proof. We show by induction that a polynomial that vanishes on the whole F< is the zero

polynomial. For < = 1 the result follows easily from successive polynomial division by linear

factors: A nonzero degree 3 polynomial cannot have more than 3 zeros. For < > 1 we can

decompose every ℎ that vanishes on F< as ℎ =
∑deg ℎ

8=0
,8- 8

< ∈ F [-1 , . . . , -<−1][-<]. Fix a point

(G1 , . . . , G<−1) ∈ F<−1
. Define ?(H) B ℎ(G1 , . . . , G<−1 , H) =

∑deg ℎ

8=0
,8(G1 , . . . , G<−1)H 8 ∈ F [H].

Note that ?(H) vanishes on F and hence ? is the zero polynomial. But the coefficients of ? are the

,8(G1 , . . . , G<−1). Thus equating coefficients of ? yields that for all 8 we have ,8(G1 , . . . , G<−1) = 0.

Since the point (G1 , . . . , G<−1) was chosen arbitrarily, all ,8 vanish on the whole F<−1
. By the

induction hypothesis each ,8 is the zero polynomial. Therefore ℎ is the zero polynomial. �
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In the light of Lemma 1.9 we see that if we are working over an infinite field we can focus on

the polynomials computed by arithmetic circuits instead of the functions computed by them.

Our field of choice will be the complex numbers ℂ from now on.

Definition 1.10. The arithmetic complexity !(ℎ) of a polynomial ℎ is the size of the smallest

single-output arithmetic circuit computing ℎ.

The notation !(ℎ) stands for the length of a straight-line program computing ℎ, which is the

same as the arithmetic circuit complexity.

Example 1.11. !(∏<
8=1
-8) = O(<).

Example 1.12. !(∑<
8=1
(-8)<) = O(< log

2
(<)) using the repeated squaring algorithm.

Let S< denote the symmetric group on < letters, i. e., the group of bĳective maps

{1, . . . , <} → {1, . . . , <}. We define the permanent polynomial as follows:

per< B
∑
�∈S<

<∏
8=1

-8 ,�(8) ∈ ℂ[-1,1 , -1,2 , . . . , -<,<]

Notice the striking similarity to the determinant:

det< B
∑
�∈S<

sgn(�)
<∏
8=1

-8 ,�(8) ∈ ℂ[-1,1 , -1,2 , . . . , -<,<],

where sgn(�) ∈ {−1, 1} denotes the sign of the permutation �.
Computing the permanent of a matrix is NP-hard [81], while determinants of matrices can

be efficiently computed using Gaussian elimination. We postpone the definition of the Valiant’s

complexity classes VP and VNP, but Valiant’s famous VP ≠ VNP conjecture can be stated as

the sequence !(per<) is not polynomially bounded.

Remark 1.13. It is known [5] that !(∑=
8=1
-=
8
.=
8
) = Ω(= log =), which is the best known lower

bound for !.

A simplification via algebra

Proving circuit complexity lower bounds for Boolean functions is difficult. Replacing

the base field F2 with ℂ lets us study polynomials instead. Valiant’s famous conjecture,

a conjecture similar to P ≠ NP, says that !(per<) is not polynomially bounded.

This is a first step towards a rich set of algebraic tools that will become available in

later chapters.
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2 Waring rank and border Waring rank

2.1 Waring rank

We start our study of arithmetic circuits with a very special case of circuits. For this we use a

new gate in our arithmetic circuits: raising a polynomial to some fixed power 3. We call these

gates degree 3 powering gates. A circuit is layered if we can assign to each gate a natural number

(its layer) so that edges from gates in layer 8 only go to gates in layer 8 + 1. Also for our addition

gates we allow arbitrarily high arities.

Definition 2.1. A layered arithmetic circuit � is called a ΣΛ3Σhom
-circuit if � is a tree of depth 3

(not counting leaf vertices) whose leaves are variables and constants, the next layer consists of

multiplication gates whose parents are exactly one variable and one constant, the next layer

consists of addition gates with arbitrary arity, the next layer consists of degree 3 powering gates,

the last layer consists of a single summation gate of arbitrary arity. The size of � is defined as

the number of powering gates.

A polynomial in many variables is called multivariate. To each monomial we assign a degree,
which is the sum of its exponents. For example deg(-.2) = 3 and deg(-2.3/) = 6. If all

monomials of a polynomial ℎ have the same degree 3, then we say that ℎ is homogeneous of degree
3. For example, -. + 3-2

is homogeneous (of degree 2), but -. + - + 1 is not homogeneous.

Constants are homogeneous of degree 0. The zero polynomial is homogeneous of all degrees.

The permanent per< is homogeneous of degree <.

Homogeneous polynomials of degree 3 are sometimes called forms. In particular homoge-

neous degree-1 polynomials are called linear forms, but it is less ambiguous to say homogeneous
linear form.

For any fixed set of variables, the set of homogeneous degree 3 polynomials forms a vector

space that we denote by ℂ[-1 , . . . , -# ]3. Moreover, the degree function makes the polynomial

ring ℂ[-1 , . . . , -# ] a graded algebra (see Appendix A).2 We observe that each ΣΛ3Σhom
-circuit

computes a homogeneous degree 3 polynomial.

Claim 2.2. Equivalently, we can allow the leaves of the circuits in Definition 2.1 to be labeled with
homogeneous linear forms, followed by degree 3 powering gates and then a single addition gate. Explicitly
writing these linear forms as sums of scalar multiples of variables does not change the size of the circuit.

Proof. The complexity is defined as the number of powering gates, which does not change when

replacing the computation of the homogeneous linear forms with just a leaf whose label is the

homogeneous linear form or vice versa. �

Definition 2.3. For a homogeneous degree 3 polynomial ℎ, the Waring rank is defined as

the smallest size of a ΣΛ3Σhom
-circuit computing ℎ. Alternatively, the Waring rank of ℎ is

2 A graded algebra basically means that we have a well-defined notion of a degree of an element. The polynomial

ring is our main example of a graded algebra. Another important example is the quotient ring of a polynomial ring

divided by an ideal generated by homogeneous polynomials. In the non-homogeneous case however, the situation is

different. For example, in the ring ℂ[-
1
]/(-2

1
− -

1
)we have -3

1
= -2

1
, therefore ℂ[-

1
]/(-2

1
− -

1
) does not inherit

the degree function from ℂ[-
1
].
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the smallest number of summands such that ℎ can be expressed as a sum of 3-th powers of

homogeneous linear forms.

TheWaring rank is an important quantity in classical algebraic geometry, also called symmetric
rank.

Example 2.4. -. = (-
2
+ .

2
)2 + (8 -

2
− 8.

2
)2, therefore the Waring rank of -. is at most 2.

Example 2.5 (taken from a presentation by Luke Oeding in 2017). Let ℎ B -2. ∈ ℂ[-,.]3.
Then

6ℎ = (- + .)3 + (−- + .)3 + ( 3

√
−2.)3.

A direct calculation can show that there is no better way: The Waring rank of 6ℎ is 3. The

following lemma shows that indeed the Waring rank of ℎ is 3.

Remark 2.6. Over fields that are not algebraically closed the Waring rank is usually defined as

the smallest number of nonzero coefficients in a linear combination of powers.

Lemma 2.7. Waring rank is invariant under nonzero rescaling: ℎ and ℎ have the same Waring rank
for  ≠ 0.

Proof. Let ℎ be of degree 3 with Waring rank = and let � be the smallest ΣΛΣhom
-circuit

computing ℎ. Let 0 ≠  ∈ ℂ. We rescale all the homogeneous linear forms at the leafs with
3
√


to obtain a circuit of the same size computing ℎ. For the other direction we apply the same

argument, but we rescale by

3
√
−1

. �

Here we see again how convenient the choice of ℂ as a base field is: 3th roots of numbers

are guaranteed to exist.

Proposition 2.8. Waring rank is always finite.

Proof. We can apply Fischer’s formula [33] to each monomial separately:

�=-1-2 · · ·-= =
∑

18∈{−1,1}
2≤8≤=

(∏=
ℓ=2
1ℓ )(-1 + 12-2 + 13-3 + · · · + 1=-=)= , (2.1)

where �= B =! · 2=−1
. �

2.2 The discriminant

How canwe prove aWaring rank complexity lower bound for specific ℎ? We study homogeneous

degree 2 polynomials in two variables - and .. The set of these polynomials is denoted by

ℂ[-,.]2. Every ℎ ∈ ℂ[-,.]2 can be written as

ℎ = 0-2 + 1-. + 2.2.

Recall the case when . = 1: The polynomial 0-2 + 1- + 2 has a double root iff 12 − 402 = 0.

Note that 0-2 + 1- + 2 has a double root  iff 0-2 + 1- + 2 = (- − )2. The same holds here:
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There exist scalars , � ∈ ℂwith 0-2 + 1-. + 2.2 = (- + �.)2 iff 12 − 402 = 0.

Thus to prove that the Waring rank of ℎ is at least 2, we simply can verify that 12 − 402 ≠ 0. This

is a first example of a general method to prove complexity lower bounds.

For instance, expressing -. = 0-2 + 1-. + 2.2
we obtain 0 = 2 = 0 and 1 = 1, so

that 12 − 402 = 1 ≠ 0. Therefore the Waring rank of -. is at least 2. This means that the

ΣΛΣhom
-circuit in Example 2.4 is optimal.

Proving lower bounds means that we have a set of polynomials, (the “easy” functions,

here the set of polynomials of Waring rank 1) and we want to prove that some polynomial ℎ is

not in, (a “hard” polynomial). One approach is to find a function 5—defined on the space of

polynomials that we consider—that vanishes on, but 5 (ℎ) ≠ 0. Such 5 are called separating
functions or obstructions against ℎ ∈, . Obstructions are a very general concept and we will see

specialized types of obstructions based on representation theory in Sections 10, 11, and 12. In

Sections 2.3 and 2.4 we discuss the case where the separating functions are continuous.

2.3 Border Waring rank

As in Example 2.5, let ℎ B -2. ∈ ℂ[-,.]3. The Waring rank of ℎ is 3, but:

lim

�→0

(
1

3�
-3 + 1

3�
(�. − -)3

)
= lim

�→0

(
-2. − �-.2 + 1

3

�2.3

)
= -2.. (2.2)

So there is a curve of polynomials of Waring rank ≤ 2 that converges to ℎ.

Let us formally definewhat thismeans. LetA B ℂ[-1 , . . . , -# ]= . This is a finite dimensional

vector space with dimA =
(#+=−1

=

)
. Every element ℎ ∈ A can be written as

ℎ =
∑

�∈ℕ# ,|�|==
�-

�1

1
· · ·-�#

#
(2.3)

for some constants �. We define the norm or length of a polynomial ℎ

|ℎ | B
∑

�∈ℕ# ,|�|==
|� |. (2.4)

It is easy to check that this satisfies the axioms of a norm (|ℎ | ≥ 0, |ℎ | = 0 iff ℎ = 0, |ℎ | = | | · |ℎ |,
|ℎ1 + ℎ2 | ≤ |ℎ1 | + |ℎ2 |).

The distance between ℎ1 ∈ A and ℎ2 ∈ A is defined as dist(ℎ1 , ℎ2) B |ℎ1 − ℎ2 |. This satisfies
the axioms of a metric.

In particular, the triangle inequality holds:

dist(ℎ1 , ℎ3) ≤ dist(ℎ1 , ℎ2) + dist(ℎ2 , ℎ3). (2.5)

For example,

dist(2-2

1
, 2-2

1
+ 1

100

-1-2) = |2 − 2| + |0 − 1

100

| = 1

100

.
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Definition 2.9. Let A be a finite dimensional complex vector space and let ℎ ∈ A. We say that a

sequence (ℎ8)8 with all ℎ8 ∈ A converges to ℎ ∈ A, if

∀� ∈ ℝ>0 ∃80 ∈ ℕ ∀8 > 80 : dist(ℎ − ℎ8) < �.

In this case we write lim8→∞ ℎ8 = ℎ and say that ℎ is the limit of the sequence (ℎ8)8 . A sequence

for which a limit exists is called convergent.

(2.2) is an example of a convergent sequence if we set � B 1

8 . It is easy to see that every

convergent sequence has a unique limit.

Remark 2.10. Choosing different norms in (2.4) has no effect on the convergence behaviour of

sequences. The limits stay the same.

Definition 2.11. For a homogeneous degree 3 polynomial ℎ the border Waring rank is defined as

the smallest = such that ℎ is the limit of a sequence of polynomials of Waring rank ≤ =.

In Example 2.3 we see that the border Waring rank of -2. is at most 2. Clearly, the border

Waring rank of ℎ cannot exceed the Waring rank of ℎ, because for all ℎ the constant sequence

(ℎ, ℎ, . . .) converges to ℎ.

2.4 Closures and continuous separating functions

We want to show complexity lower bounds by using the nonvanishing of separating functions

such as the discriminant. But in this section we see that continuous functions cannot distinguish
between Waring rank and border Waring rank. On the other hand we discover that if we search

for functions that prove lower bounds on border Waring rank, then we can restrict our search to

continuous functions only. We will see later that we can restrict our search space significantly

further using algebraic geometry and representation theory.

We will use a very simple definition of continuity:

Definition 2.12. A function 5 : A→ A′ between two finite dimensional metric spaces spaces is

called continuous if for every convergent sequence (ℎ8)8 in A, the sequence 5 (ℎ8) converges in A′

to 5 (lim8→∞ ℎ8).

Claim 2.13. Functions defined by multivariate polynomials are continuous. (“Multivariate polynomials
are continuous”).

Proof sketch. It is easy to see that for all 1 ≤ : ≤ # the coordinate function 5: : ℂ# → ℂ,

()1 , . . . , )# ) ↦→ ): is continuous. Moreover, it is not hard to derive the facts that finite products

andfinite sumsof continuous functions are continuous (here theproof for products is only slightly

more involved). It follows by induction that all multivariate polynomials 5 ∈ ℂ[)1 , . . . , )# ] are
continuous. �

Example 2.14. Claim 2.13 implies that the discriminant 12 − 402 is continuous.
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We will now see that if we use continuous functions to prove Waring rank lower bounds,

then we actually prove border Waring rank lower bounds. Moreover, if we want to prove border

Waring rank lower bounds, then we can restrict our search for separating functions to continuous

functions. As a first step we reformulate border Waring rank in the language of ℂ-closures.

Definition 2.15. Given a (not necessarily linear) subset, ⊆ A, the ℂ-closure, in A is defined

as the set of the limits of all convergent sequences whose elements are taken from, .

Example 2.16. Consider ℂ \ {0} ⊆ ℂ. Then ℂ \ {0} = ℂ.

Clearly, , ⊆ , , because for all ℎ ∈ , , the constant sequence (ℎ, ℎ, . . .) converges to ℎ.
Moreover, if + ⊆ , , then + ⊆ , , because every sequence with elements from + is also a

sequence with elements from , . Using the definition above, we see that the set of border

Waring rank ≤ = polynomials is the ℂ-closure of the set of Waring rank ≤ = polynomials, that is,

{ℎ ∈ ℂ[-1 , . . . , -"]< | border Waring rank(ℎ) ≤ =}
= {ℎ ∈ ℂ[-1 , . . . , -"]< | Waring rank(ℎ) ≤ =} .

Definition 2.17. A subset , ⊆ A is called ℂ-closed in A, if , = , , i. e., the limit of every

convergent sequence (ℎ8)8 with ℎ8 ∈, is contained in, .

Lemma 2.18. Let, ⊆ A be any subset. After taking the ℂ-closure in A once, taking the ℂ-closure
in A again has no additional effect: , =, . In particular, ℂ-closures in A are ℂ-closed in A.

Proof. Clearly, ⊆ , . Let ℎ ∈, be arbitrary and let (ℎ8)8 denote a sequence converging to ℎ

with ℎ8 ∈, , i. e., for each 8 there exists a sequence (ℎ8 , 9)9 such that lim9→∞ ℎ8 , 9 = ℎ8 and the ℎ8 , 9
are elements of, . Let ℎ8(�) denote the first entry in (ℎ8 , 9)9 such that the distance between ℎ8 , 9
and ℎ8 is less than �. Taking � = 1

8 , it follows that the sequence (ℎ8(18 ))8 converges to ℎ and all

elements ℎ8(18 ) are taken from, . Therefore ℎ ∈, . �

The next Proposition 2.19 shows that continuous functions cannot distinguish between a

set and its ℂ-closure. We will see in Lemma 2.20 that continuous functions are exactly those

functions that can be used to distinguish points from ℂ-closed sets. Note that this is exactly

what we need for proving border Waring rank lower bounds.

Proposition 2.19. A continuous function 5 : A→ ℂ vanishes on a set, ⊆ A iff 5 vanishes on the
ℂ-closure, .

Proof. Since, ⊆ , , one direction is clear. Let ℎ ∈ , \, . Let ℎ8 be a sequence in, with

lim8→∞ ℎ8 = ℎ. Then 5 (ℎ8) = 0 and since 5 is continuous we have 5 (lim8→∞ ℎ8) = lim8→∞ 5 (ℎ8) =
lim8→∞ 0 = 0. �

Lemma 2.20. Let, ⊆ A be a ℂ-closed set. Then there exists a continuous function 5 : A→ ℂ that
vanishes on, and nowhere else.
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Remark 2.21. Note that the statement of Lemma 2.20 is trivial if we drop the requirement of 5

being continuous. However, it is also absolutely useless then.

Proof. For the easy direction, we see that the existence of an 5 that vanishes on, with 5 (ℎ) ≠ 0

clearly implies ℎ ∉ , . For the other direction we need to construct a separating function 5

vanishing on, but not on ℎ. Intuitively 5 is the distance function to, . We define the distance

5 of ℎ to, to be the infimum

5 (ℎ) B inf{dist(ℎ, ℎ1) | ℎ1 ∈,},

which is the largest  ∈ ℝ such that for all ℎ1 ∈ , we have dist(ℎ, ℎ1) ≥ . Clearly if ℎ ∈ , ,

then 5 (ℎ) = 0. Therefore if 5 (ℎ) ≠ 0 we have ℎ ∉, . For the other direction we have to show that

every ℎ with 5 (ℎ) = 0 lies in, . Let ℎ satisfy 5 (ℎ) = 0. This means that there exists a sequence

(ℎ8) of elements of , such that the distance sequence dist(ℎ, ℎ8) converges to 0. Therefore

lim8→∞ ℎ8 = ℎ, but since, is ℂ-closed in A it follows that ℎ ∈, .

It remains to show that 5 is continuous. It is sufficient to show that for all ℎ and ℎ1, we have

| 5 (ℎ) − 5 (ℎ1)| ≤ dist(ℎ, ℎ1),

because for a sequence ℎ8 converging to ℎ this implies lim8→∞ 5 (ℎ8) = 5 (ℎ).
Let ℎ2 ∈ , be arbitrary. Then by (2.5) we have dist(ℎ, ℎ2) ≤ dist(ℎ, ℎ1) + dist(ℎ1 , ℎ2) and

therefore 5 (ℎ) ≤ dist(ℎ, ℎ1) + dist(ℎ1 , ℎ2) or in other words dist(ℎ, ℎ1) ≥ 5 (ℎ) − dist(ℎ1 , ℎ2).
Since ℎ2 was arbitrary we obtain dist(ℎ, ℎ1) ≥ 5 (ℎ) − 5 (ℎ1). Note that we here used the fact

that if a non-strict inequality holds for a subset of the real numbers, then it also holds for its

infimum. Reversing the roles of ℎ and ℎ1 we obtain dist(ℎ, ℎ1) ≥ 5 (ℎ1) − 5 (ℎ) and therefore

dist(ℎ, ℎ1) ≥ | 5 (ℎ) − 5 (ℎ1)|. �

If we want to prove border Waring rank lower bounds, then we can restrict our search for

separating functions to continuous functions. The proofs did not involve anything specific about

Waring rank, so this holds in far higher generality. Using some algebraic geometry we will

see later that we can restrict our search further to homogeneous polynomials (for example the

discriminant is a homogeneous polynomial). Using some representation theory we will restrict

the search space even further to homogeneous polynomials in irreducible representations.

A general approach to lower bounds

Proving lower bounds means that we have a set of functions, (the “easy” functions)

and we want to prove that some function ℎ is not in , (a “hard” function). One

approach is to find a function 5—defined on the space of functions that we consider—

that vanishes on, but 5 (ℎ) ≠ 0. While finding any such 5 is as hard as showing that

ℎ ∉, , we can restrict our search to “nice” functions 5 . Here “nice” means continuous.

You should be aware that with this approach, we can only prove that ℎ ∉, . If we are

unlucky, ℎ ∈, \, and we will never be able to prove this with this approach.
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Example: Waring rank

The Waring rank of a homogeneous polynomial ℎ of degree 3 is the smallest number

of summands such that ℎ can be expressed as a sum of 3-th powers of homogeneous

linear forms.

The smallest A such that ℎ is the limit of a sequence of polynomials of Waring rank ≤ A
is the border Waring rank.

The discriminant 12 − 402 is a polynomial that vanishes on all polynomials 0-2 +
1-. + 2.2 ∈ ℂ[-,.]2 of border Waring rank 1.

3 Actions, orbits, and orbit closures

Complexity lower bounds are about separating points ℎ from ℂ-closures, by using functions

5 that vanish on, but not on ℎ. In the previous chapter we saw that since, is ℂ-closed, we

can restrict our search to continuous functions 5 only. In this chapter we find more properties

of, that will help to reduce the search space for 5 even further: Our sets, are group orbit
closures. As our main example we consider the Waring rank problem: We express the Waring

rank problem as a monoid orbit problem and the border Waring rank problem as an orbit

closure problem.

3.1 Monoid actions

For a set+ , let+ → + denote the set of maps from+ to+ . If+ is a vector space, then let End(+)
denote itsmonoid of endomorphisms, i. e., themonoid of linearmaps+ → + (recall AppendixA).

For + = ℂ#
we can identify End(+) = ℂ#×#

, i. e., the space of # × # complex matrices. We use

the shorthand End# B End(ℂ# ). Here, we are interested in + = ℂ[-1 , . . . , -=]3, the space of
homogeneous polynomials of degree 3, as we will see in Section 3.2.

Definition 3.1. Let � be a monoid and + be a set.

1. An action of � on + is a monoid homomorphism * : �→ (+ → +).

2. If + is a vector space, then a linear action of � on + defined as a monoid homomorphism

* : �→ End(+).
We say that � acts on + and we write ,E as a shorthand for (*(,))(E), , ∈ �, E ∈ + .

Recall that the axiom for a monoid homomorphism in this case is *(, · ,̃) = *(,) ◦*(,̃), where

“·” is the monoid operation and “◦” is the composition of maps. You can think of the monoid

elements moving the points of + around. The identity element fixes all points.

Caveat: The monoids that we are mainly interested in are also endomorphism spaces, so

� = End= for some =. This might be a source of confusion.

Example 3.2. Let � = End= , let + = ℂ=
, and let *(,) = ,. In this case ,E can be interpreted as

the usual matrix-vector product.
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A more interesting example is obtained by lifting the action to the function space, as we

explain in the following section.

3.2 Lifting the action to the function space

Using this action we define the action of End= on + = ℂ[-1 , . . . , -=]3. For a polynomial

ℎ ∈ ℂ[-1 , . . . , -=]3, , ∈ End= , G ∈ ℂ=
, define

(,ℎ)(G) B ℎ(,)G), (3.1)

where ,) is the transpose and ,)G is the monoid action of End= on G ∈ ℂ=
, i. e., the matrix-vector

multiplication (see Example 3.2). You can also think of End= acting on + by replacing the

variables -1 , . . . , -= by homogeneous linear forms in -1 , . . . , -= .

We verify that the definition in (3.1) satisfies (,,̃)ℎ = ,(,̃ℎ) as follows:

(,(,̃ · ℎ))(G) (3.1)

= (,̃ · ℎ)(,)G) (3.1)= ℎ(,̃)(,)G))
3.2
= ℎ((,̃) · ,)) · G) = ℎ((, · ,̃)) · G) (3.1)= ((, · ,̃)ℎ)(G).

Note that we take the transpose since � acts “from the left” on + and transposing reverses

the order of the two monoid elements. Another way to define this action is to use ,−1
instead of

,) , but that only works if � is a group. On the other hand, if � is an arbitrary group and , ∈ �,
then it is unclear what ,) means. In all the cases we encounter it is just a matter of taste which

definition to use.

Example 3.3. We have ©«

1 1 · · · 1

0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

ª®®®®®®¬︸                ︷︷                ︸
=:,

(-1-2 · · ·-=) = -=
1
.

The following calculation may seem unnecessary, as , sends each -8 to -1, so it sends

-1 · · ·-= to -=
1
. However, we go through it carefully to illustrate the importance of the transpose

in the definition (, · 5 )(G) = 5 (,)G).
Calculation: Let ℎ B -1 · · ·-= . Then (, · ℎ)(G) = ℎ(,)G). For G = (G1 , . . . , G=), we have

,)G = (G1 , G1 , . . . , G1), so then ℎ(,)G) = ℎ(G1 , G1 , ..., G1) = G=
1
. Since (, · ℎ)(G) agrees with the

polynomial -=
1
at all points G, the two must be equal. Note that if we had written ℎ(,G) instead,

we would have that ,G = (G1 + G2 + · · · + G= , 0, 0, . . . , 0), and then ℎ(,G) = 0, clearly not what we

wanted. �

Example 3.4. Let , ∈ ℂ=×=
and let ℓ = (ℓ1 , . . . , ℓ=) ∈ ℂ=

be the first column of ,.

,(-3
1
) = (ℓ1-1 + ℓ2-2 + · · · + ℓ=-=)3 .
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Calculation: Let G B 141 + · · · + =4= . We have (,(-3
1
))(G) B (-3

1
)(,)G). But

,)G = (ℓ11 + ℓ22 + · · · + ℓ==)41 + �242 + · · · + �=4=

for some �2 , . . . , �= ∈ ℂ. Thus,

(-3
1
)(,)G) = (ℓ11 + ℓ22 + · · · + ℓ==)3 = ((ℓ1-1 + ℓ2-2 + · · · + ℓ=-=)3)(G). �

More generally, Example 3.4 shows that

,(-3
8 ) = (ℓ

′
1
-1 + ℓ ′

2
-2 + · · · + ℓ ′=-=)3 , (3.2)

where (ℓ ′
1
, . . . , ℓ ′=) is the 8th column of ,.

We will combine these insights with the following two structural properties. This lifted

action is linear and an algebra homomorphism, as the following two lemmas show. Let A = ℂ#

and define ℂ[A] B ℂ[-1 , . . . , -# ].

Lemma 3.5. Let ℎ, ℎ′ ∈ ℂ[A] and let , ∈ �. For all complex numbers , ′ we have

,(ℎ + ′ℎ′) = (,ℎ) + ′(,ℎ′).

Proof. Let G ∈ A be arbitrary. We calculate

(,(ℎ + ′ℎ′))(G) (3.1)

= (ℎ + ′ℎ′)(,)G) (∗)= ℎ(,)G) + ′ℎ′(,)G)
(3.1)

= ((,ℎ)(G)) + ′((,ℎ′)(G))
(∗)
= ((,ℎ) + ′(,ℎ′))(G),

where (∗) uses the fact that ℂ[A] is a vector space. �

More generally, Lemma 3.5 holds by induction for arbitrary finite linear combinations of

functions in ℂ[A].

Lemma 3.6. Let ℎ, ℎ′ ∈ ℂ[A] and let , ∈ �. Then

,(ℎ · ℎ′) = (,ℎ) · (,ℎ′).

Proof. Let G ∈ A be arbitrary. We calculate

(,(ℎ · ℎ′))(G) (3.1)

= (ℎ · ℎ′)(,)G) (∗)= ℎ(,)G) · ℎ′(,)G)
(3.1)

= (,ℎ)(G) · (,ℎ′)(G)
(∗)
= ((,ℎ) · (,ℎ′))(G),

where (∗) follows from the definition of the product of two functions. �
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Note that Lemma 3.5 and Lemma 3.6 imply that ,ℎ can be calculated by taking products

and linear combinations of ,-8 , but ,-8 is just the homogeneous linear form given by the 8th

column of ,. For example(
1 2

1 0

)
(-1-2 + -2

1
) = (-1 + -2)(2-1) + (-1 + -2)2

= 2-2

1
+ 2-1-2 + -2

1
+ 2-1-2 + -2

2
= 3-2

1
+ 4-1-2 + -2

2
,

where the action replaces -1 by the linear form -1 + -2 given by the first matrix column, and

the action replaces -2 by 2-1 given by the second matrix column.

Corollary 3.7. Let , ∈ ℂ=×= and let ℓ 8 ∈ ℂ= be the 8th column of ,. Let !8 B ℓ 8
1
-1 + · · · + ℓ 8=-= ∈

ℂ[-1 , . . . , -=]1.
,(-3

1
+ · · · + -3

= ) = !31 + · · · + !
3
= .

Proof. Combine (3.2) with Lemma 3.5. �

Example 3.8. We can rewrite Example (2.2) as

lim

�→0

(
1

3�

(
1 −1

0 �

)
(-3 + .3)

)
= -2..

3.3 Orbits

In this section we express the Waring rank problem as a problem on orbits of monoids. We’ll

see later that borderWaring rank is a corresponding problem on orbit closures.

Definition 3.9. For a monoid � acting on a set + define �ℎ B {,ℎ | , ∈ �} for ℎ ∈ + . We call

�ℎ the orbit of ℎ.

Example 3.10. For � = ℂ#×#
the orbit �-3

1
⊆ ℂ[-1 , . . . , -# ]3 is the set of Waring rank 1

homogeneous degree 3 polynomials in # variables.

Proof. For , ∈ � let ℓ B ,1,1-1 + ,2,1-2 + · · · + ,#,1-# . Then ,-3
1
= ℓ 3 by Example 3.4.

For the other direction, let ℓ 3 have Waring rank 1, ℓ ∈ ℂ#
. Let , ∈ ℂ#×#

with first column ℓ .

Then by Example 3.4 we have ,-3
1
= ℓ 3. �

We can now phrase the Waring rank problem in the language of monoid orbits as follows.

For = ≤ # we embed ℂ[-1 , . . . , -=]3 ⊆ ℂ[-1 , . . . , -# ]3 in the natural way.

Proposition 3.11. Let # ≥ = and # ≥ <. Let � B End# .

{ℎ ∈ ℂ[-1 , . . . , -<]3 | Waring rank of ℎ is at most =} = �(-3
1
+ · · · + -3

= ) ∩ℂ[-1 , . . . , -<]3 .
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Proof. If ℎ = ,(-3
1
+ · · · + -3

= ) for some , ∈ ℂ#×#
, then ℎ = (,1,1-1 + ,2,1-2 + · · · + ,#,1-# )3 +

· · · + (,1,=-1 + ,2,=-2 + · · · + ,#,=-# )3 by Cor. 3.7 and thus the Waring rank of ℎ is at most =.

(Note that we could also have set all ,8 , 9 to zero for which 9 > = or 8 > <.)

Conversely, if the Waring rank of ℎ ∈ ℂ[-1 , . . . , -<] is at most =, then

ℎ = (,1,1-1 + ,2,1-2 + · · · + ,<,1-<)3 + · · · + (,1,=-1 + ,2,=-2 + · · · + ,<,=-=)3 .

Since # ≥ = and # ≥ <, we can construct a matrix , ∈ ℂ#×#
by filling the remaining cells with

zeros. Then ℎ = ,(-3
1
+ · · · + -3

= ) by Cor. 3.7. �

In theproposition above,wehave to intersect theorbit on the right-hand sidebyℂ[-1 , . . . , -<]3,
since the �-action can introduce variables with index > <, which cannot occur on the left-hand

side.

We now want to go one step further and look at the inclusion of monoid orbits than of just

point membership. In this way we could use properties of the point ℎ to show ℎ ∉, .

Lemma 3.12. The orbit �ℎ is the smallest set that contains ℎ and is closed under the monoid action.

Proof. If a set contains ℎ and is closed under the monoid action, then it contains all ,ℎ with

, ∈ �, so by definition it contains �ℎ.

Moreover, �ℎ is closed under the monoid action: Let , ∈ � be arbitrary and let ℎ′ ∈ �ℎ be

arbitrary. By definition there exist ,′ ∈ � such that ℎ′ = ,′ℎ. Thus ,ℎ′ = ,(,′ℎ) (∗)= (,,′)ℎ ∈ �ℎ,
where (∗) follows from the axioms of a monoid action. �

Corollary 3.13. Let # ≥ = and # ≥ <. Let � B End# . Let ℎ ∈ ℂ[-1 , . . . , -<]3. The Waring rank
of ℎ is at most = iff �ℎ ⊆ �(-3

1
+ · · · + -3

= ).

Proof. ℎ ∈ �(-3
1
+ · · · + -3

= ) iff �ℎ ⊆ �(-3
1
+ · · · + -3

= ) by Lemma 3.12. Prop. 3.11 says that the

Waring rank of ℎ is at most = iff ℎ ∈ �(-3
1
+ · · · + -3

= ), which finishes the proof. �

3.4 Orbit closures

In this section we express the border Waring rank problem as a problem on monoid orbit

closures.

The vector space End# = ℂ#×#
is endowed with the standard metric

dist(, , ,′) =
#∑
8 , 9=1

|,8 , 9 − ,′8 , 9 |,

, , ,′ ∈ End# .
Consider the metric space End# × ℂ[-1 , . . . , -<]3 via dist((, , ℎ), (,′, ℎ′)) B dist(, , ,′) +

dist(ℎ, ℎ′). We postpone the proof of the following simple technical lemma to Section 3.6.

Lemma 3.14. The map End# ×ℂ[-1 , . . . , -<]3 → ℂ[-1 , . . . , -# ]3, (, , ℎ) ↦→ ,ℎ given by the action
in Section 3.2 is continuous.
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Corollary 3.15.

1. For a fixed ℎ ∈ ℂ[-1 , . . . , -<]3 the map End# → ℂ[-1 , . . . , -# ]3, , ↦→ ,ℎ is continuous.

2. For a fixed , ∈ End# the map ℂ[-1 , . . . , -<]3 → ℂ[-1 , . . . , -# ]3, ℎ ↦→ ,ℎ is continuous.

Proof. Both maps are restrictions of the continuous map in Lemma 3.14. �

Lemma 3.16. The monoid orbit closure �ℎ is the smallest set that contains ℎ, is closed under the monoid
action, and ℂ-closed.

Proof. Let - be a set that contains ℎ, is closed under the monoid action, and is ℂ-closed. We

have

ℎ ∈ - ⇔ �ℎ ⊆ - ⇔ �ℎ ⊆ -.

For the last equivalence we used that if � ⊆ �, then � ⊆ � and that � = � for ℂ-closed sets �.

One subtlety remains: A priori it is unclear that �ℎ is closed under the monoid action.

We prove this as follows. Let ℎ′ ∈ �ℎ, ℎ′ = lim8→∞ ,8ℎ with ,8 ∈ �. Let , ∈ � be arbitrary.

Then ,ℎ′ = , lim8→∞ ,8ℎ = lim8→∞ ,(,8ℎ) = lim8→∞(,,8)ℎ ∈ �ℎ, because the map ℎ ↦→ ,ℎ is

continuous for every , ∈ � (Cor. 3.15). �

Corollary 3.17. Let # ≥ = and # ≥ <. Let � B End# . Let ℎ ∈ ℂ[-1 , . . . , -<]3. The border Waring
rank of ℎ is at most = iff �ℎ ⊆ �(-3

1
+ · · · + -3

= ).

Proof. UsingProp. 3.11we see that theborderWaring rankof ℎ is atmost = iff ℎ ∈ �(-3
1
+ · · · + -3

= ).
But since �(-3

1
+ · · · + -3

= ) is ℂ-closed and closed under the action of �, from Lemma 3.16 it

follows that ℎ ∈ �(-3
1
+ · · · + -3

= ) iff �ℎ ⊆ �(-3
1
+ · · · + -3

= ). �

3.5 Group orbit closures

It is more common to talk about group orbit closures instead of monoid orbit closures. The

reason is that we can replace End# in Cor. 3.17 by the general linear group GL# B {, ∈ End# |
det(,) ≠ 0}.

Lemma 3.18 (Density of GL# ⊆ End# ). For every , ∈ End# there exists a sequence (,8) with each
,8 ∈ GL# such that lim8→∞ ,8 = ,.

Proof. Consider det(, + �Id# ), which is a nonzero univariate polynomial in � of degree ≤ # .

Thus it has at most # zeros. From the sequence (,8), ,8 B , + 1

8 Id# we remove those ,8 with

zero determinant (these are at most # many). Then (,8) converges to , with all ,8 ∈ GL# . �

Proposition 3.19. Let # ≥ = and # ≥ <. Let � B GL# . Let ℎ ∈ ℂ[-1 , . . . , -<]3. The border
Waring rank of ℎ is at most = iff �ℎ ⊆ �(-3

1
+ · · · + -3

= ).
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Proof. We prove that in general, GL# ℎ = End# ℎ. According to Cor. 3.15 the map ! : , ↦→ ,ℎ

is continuous. In general, for any continuous map ! and any set � we have !(�) ⊆ !(�).
The proof of this fact is short: let , ∈ � with , = lim8→∞ ,8 . Then !(,) = !(lim8→∞ ,8) =
lim8→∞ !(,8) ∈ !(�).

Using !(�) ⊆ !(�), we take closures on both sides: !(�) ⊆ !(�) (Lemma 2.18). Since

clearly !(�) ⊆ !(�), we have !(�) = !(�). Setting � = GL# and using that � = End# by

Lemma 3.18, the statement follows. �

Remark 3.20. Although End# = GL# , we often have the strict inclusion End# ℎ $ GL# ℎ. For
example, the set End2-

3 + .3
is the set of all Waring rank ≤ 2 polynomials in ℂ[-,.]3 (see

Corollary 3.13), whereas GL2-3 + .3
is the set of all border Waring rank ≤ 2 polynomials in

ℂ[-,.]3. The example in (2.2) shows that the former is strictly contained in the latter. A more

complicated example is discussed in [45]: End9det3 is strictly contained in GL9det3.

3.6 The orbit map

In this section we prove Lemma 3.14. Indeed, we prove the following more general statement.

Proposition 3.21. Let ! : End# × ℂ[-1 , . . . , -# ]3 → ℂ[-1 , . . . , -# ]3, !(, , ℎ) = ,ℎ. Let � B
dimℂ[-1 , . . . , -# ]3 =

(#+3−1

3

)
. For 1 ≤ 8 ≤ � define !8 to be the 8th coordinate function of !. Then

each !8 is given by a polynomial in the #2 + � coordinate variables of End# ×ℂ[-1 , . . . , -# ]3.

Since polynomials are continuous and combining continuous coordinate functions gives a

continuous function, Proposition 3.21 implies Lemma 3.14.

Proof of Prop. 3.21. Let the entry in row 8 and column 9 of , be denoted by , 8
9
.

For a list (81 , 82 , . . . , 83) of numbers let ((81 , 82 , . . . , 83) denote the set of all lists that have the
same entries as (81 , 82 , . . . , 83), but where the positions are permuted. Let B 8

1 ,82 ,...,83

81 ,82 ,...,83
denote the

sum

B 8
1 ,82 ,...,83

81 ,82 ,...,83
B

∑
(91 ,..., 93)∈((81 ,82 ,...,83)

,
91

81
,
92

82
· · · , 9

3

83
.

For 1 ≤ 81 ≤ 82 ≤ · · · ≤ 83 ≤ # we have

,(-81 · · ·-83 ) = (,1

81
-1 + · · · + ,#81 -# ) · · · (,

1

83
-1 + · · · + ,#83-# )

=
∑

1≤81≤82≤···≤83≤#
B 8

1 ,82 ,...,83

81 ,82 ,...,83
-81 · -82 · · ·-83
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and thus

,

( ∑
1≤81≤82≤···≤83≤#

81 ,...,83-81 · · ·-83

)
=

∑
1≤81≤82≤···≤83≤#

( ∑
1≤81≤82≤···≤83≤#

81 ,...,83 B
81 ,82 ,...,83

81 ,82 ,...,83

)
-81 · -82 · · ·-83 .

The term in parantheses is homogeneous of degree 3 + 1 in the � variables 81 ,...,83 and the #2

variables , 8
9
. �

Orbits and orbit closures

Recall from the previous section that we want to prove that a particular polynomial ℎ is

not contained in a set of polynomials, . The monoid � = End= acts on ℂ[-1 , . . . , -=]
or ℂ[-1 , . . . , -=]3 by replacing the variables by homogeneous linear forms. Instead of

showing that ℎ ∉, , we try to prove that ℎ is not contained in a certain �-orbit.

In the case of Waring rank, this works particularly well, since the set of all polynomials

of Waring ≤ = has a complete polynomial, namely -3
1
+ · · · + -3

= .

If we want to prove that ℎ ∉, , then we replace the orbit by the corresponding orbit

closure. This has the nice effect that we can replace End= by GL= , which is a group

(and very well understood).

4 First algebraic geometry

We explain the crucial link of our observations so far to algebraic geometry, namely that our

orbit closures are actually Zariski-closed, so that we can restrict our search for obstructions 5

to separating polynomials 5 , which we call polynomial obstructions. This is formally stated in

Definition 4.16. The proof of this insight requires a good amount of algebraic geometry and thus

we only provide the necessary definitions and examples to understand the referenced theorem

statements.

4.1 Zariski-closure

Recall Lemma 2.20: If a set, isℂ-closed, then there is a continuous function vanishing precisely

on, . Moreover, in the other direction Prop. 2.19 shows that if a continuous function vanishes

precisely on, , then, is ℂ-closed. It follows that we could define ℂ-closed sets to be exactly

those sets which can be separated from arbitrary points by continuous functions vanishing

on the sets. In Definition 4.1 we use exactly this approach to define what a Zariski-closed set

is: Those are the sets that can be separated from arbitrary points by multivariate polynomials

vanishing on the sets.
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Let A = ℂ[-1 , . . . , -<]3 with dimA = � and let )1 , . . . , )� be the variables corresponding

to the coefficients of the monomials in A. For example, in the discriminant setting we have

)1(0-2 + 1-. + 2.2) = 0.
In the following, we will have two polynomials 2, ℎ ∈ A. (2 is not the variable appearing in

the discriminant above!) ℎ is the polynomial for which we search complexity lower bounds,

for example, we want to prove a lower bound on its border Waring rank (the name “ℎ” stands

for hard, as it is the polynomial we want to show is hard, i. e., not in,). The variable name “2”

stands for complexity or complete polynomial. In the case of the Waring rank, think of 2 being the

power sum 2 = -3
1
+ · · · + -3

< .

Definition 4.1. A subset, ⊆ A (think of, = �2) is called Zariski-closed in A iff there exists a

natural number A ∈ ℕ and polynomials 51 , . . . , 5A ∈ ℂ[)1 , . . . , )�] such that

ℎ ∈, ⇔ 51(ℎ) = 52(ℎ) = · · · = 5A(ℎ) = 0.

We say that the polynomials 51 , . . . , 5A cut out, or define, .

Example 4.2. Let A = ℂ[-,.]2, so every element ℎ can be written as 0-2 + 1-. + 2.2
. Then

ℎ ↦→ 12 − 402 cuts out the (border) Waring rank 1 polynomials.

Example 4.3. ConsiderA = ℂ2
and let the Zariski-closed set, ⊆ A be cut out by the polynomial

()1)2 + ()2)2 − 1. Those points in, that have real coordinates form a circle with radius 1 in

ℝ2 ⊆ ℂ2
.

Example 4.4. If A = ℂ=×=
, then the set GL= of singular = × = matrices (i. e., matrices with

determinant zero) is Zariski-closed. It is cut out by the determinant polynomial.

Example 4.5. If A = ℂ=×=
, then the set of = × = matrices that have rank at most = − 2 is

Zariski-closed. It is cut out by the determinants of all (= − 1) × (= − 1) submatrices.

In order to prove complexity lower bounds we would like to know a set of polynomials

cutting out the set �2, but unfortunately this kind of analysis is only feasible for some very

small cases.

From now on we use the short notation

ℂ[A] B ℂ[)1 , . . . , )�]

and call ℂ[A] the coordinate ring of the ambient space. Note that this replaces the clumsy

ℂ[A] = ℂ[ ℂ[-1 , . . . , -<]3 ].
We will see in Theorem 4.15 that our orbit closures �2 are Zariski-closed. This is perfect

for our purposes, because for Zariski-closed sets non-membership of a point is equivalent to

nonvanishing of a single polynomial 5 as the following straightforward lemma highlights. This

is much stronger than separation by merely continuous functions.

Lemma 4.6. Let, be Zariski-closed in A. For ℎ ∈ A we have ℎ ∉ , iff there exists a polynomial
5 ∈ ℂ[A] such that 5 vanishes on, and 5 (ℎ) ≠ 0.
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Proof. Let , be cut out by 51 , . . . , 5A , i. e., ℎ ∈ , ⇔ 51(ℎ) = · · · = 5A(ℎ) = 0. Then ℎ ∉ , iff

∃1 ≤ 8 ≤ A : 58(ℎ) ≠ 0. �

The following lemma shows a first property of Zariski-closed sets, namely that they are

ℂ-closed.

Lemma 4.7. If, ⊆ A is Zariski-closed in A, then, is ℂ-closed in A.

Proof. Let, be cut out by the polynomials 51 , . . . , 5A . Let (ℎ8)8 be a sequence in, that converges

to some ℎ ∈ A. Then 59(ℎ8) = 0 for all 8 , 9. Since the 59 are continuous, it follows that 59(ℎ) = 0.

Therefore ℎ ∈, . We conclude that, is ℂ-closed. �

4.2 Algebraic geometry of orbit closures

In this section we write � B GL# . Lemma 4.7 says that Zariski-closed sets are ℂ-closed. The

crucial point is that in our case the converse of Lemma 4.7 holds: Orbit closures �2 are not only

ℂ-closed but also Zariski-closed.

Definition 4.8. Amap ℂ0 → ℂ1
is called a polynomial map if all its 1 coordinate functions are

multivariate polynomials in the 0 standard basis vectors.

Example 4.9. Using Prop. 3.21 we see that for a fixed 2 ∈ A, the map � → A, , ↦→ ,2 is a
polynomial map. Its image is the orbit �2.

Definition 4.10. We use the following definitions with respect to the Zariski topology.

1. A subset, ⊆ A to be open if its complement A \, is closed.

2. A subset, ⊆ A is called locally closed if, is an intersection of an open and a closed set.

Equivalently (for those who know a little bit of topology), is locally closed iff, is open

in its closure.

3. A subset , ⊆ A is called constructible if , is a finite union of locally closed sets.

(Equivalently, the collection of constructible sets is the smallest collection that contains all

closed sets and is closed under taking complements and finite unions.)

Example 4.11. The set {� ∈ End# | det(�) = 0} is Zariski-closed in End# . Thus � ⊆ End# is

open and hence locally closed (and hence constructible).

We state the following theorem without proof.

Theorem 4.12 (Chevalley’s Theorem, see e.g [51, AI.3.3 Folgerung 2] or [79, Prop. 15.4.3]). The
image of a constructible set under a polynomial map is again constructible.

Corollary 4.13. For any 2 ∈ A the orbit �2 is constructible.

Proof. Combine Example 4.9 and Example 4.11. �
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Remark 4.14. One can even prove that �2 is locally closed, see, e. g. [51, II.2.2 c].

We state the following result without proof.

Theorem 4.15 ([51, AI.7.2 Folgerung] or [65, Thm. 2.33]). For constructible sets, Zariski closure and
ℂ-closure coincide.

We can use Theorem 4.15 and Lemma 4.6 to draw the following immediate crucial conclusion

that states that polynomials can always be used to separate points inA from �2 ⊆ A. This greatly

reduces the search space for obstructions and is one of the key ideas in geometric complexity

theory. In fact, this insight dates back all the way to Strassen, see [76, the 2nd paragraph on

p. 132].

Definition 4.16 (Polynomial Obstruction). We call the polynomials 5 that separate ℎ from �2 by

satisfying 5 (�2) = {0} and 5 (ℎ) ≠ 0 polynomial obstructions.

From our previous discussions we see that polynomial obstructions are guaranteed to exist if
ℎ ∉ �2. The hard task is to find them.

4.3 Cones

In this section we write � B GL# . We will now use the additional structure of �2 being a cone
to restrict our search for obstructions to homogeneous polynomials only.

Proposition 4.17. For 5 ∈ ℂ[A], if 5 (�2) = {0} and 5 (ℎ) ≠ 0, then there exists a homogeneous
polynomial 5hom ∈ ℂ[A] such that 5hom(�2) = {0} and 5hom(ℎ) ≠ 0.

Note that for example the discriminant 12 − 402 is homogeneous.

The rest of this section is devoted to formalizing the necessary background in order to prove

this result.

Definition 4.18. Recall that A = ℂ�
is a complex vector space and hence is endowed with a

scalar multiplication. For a vector 2 ∈ A and  ∈ ℂ let 2 denote the scalar multiple of 2. A

subset, ⊆ A is called a cone if it is closed under scalar multiplication, i. e.,

∀ ∈ ℂ, 2 ∈, : 2 ∈,.

Lemma 4.19. For any polynomial 2 ∈ ℂ[-1 , . . . , -# ]3 the orbit closure �2 is a cone.

Proof. Let ℎ ∈ �2 and let  ∈ ℂ be arbitrary. Let (ℎ8)8 be a sequence in �2 that converges to ℎ.
Let ,8 ∈ � such that ℎ8 = ,82. Choose � ∈ ℂ such that �3 =  and let �,8 denote the product

of the scalar � and the matrix ,8 , i. e., the matrix ,8 in which all entries are scaled with �. We

observe that (�,8)2 = (,82). Since scaling with  is continuous, the sequence ((�,8)2)8 converges
to ℎ and hence ℎ ∈ �2. �

Remark 4.20. Usually in algebraic geometry one makes the transition to projective geometry

whenever cones are encountered, but here, it is not necessary to do so.
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Proposition 4.21. Let , ⊆ A be a cone. If a polynomial 5 ∈ ℂ[A] vanishes on , , then all its
homogeneous parts vanish on, .
Proof. The statement is clear for, = ∅. Let ℎ ∈, be arbitrary. Let 58 be the 8th homogeneous

part of 5 , i. e., 58(ℎ) = 8 58(ℎ). We interpret 5 (ℎ) as a univariate polynomial 5̃ in . We have

5̃ () = 5 (ℎ) =
3∑
8=0

58(ℎ) =
8∑
8=0

8 58(ℎ).

The coefficient of the monomial 8 in 5̃ is 58(ℎ) ∈ ℂ. Since 5 vanishes on, and, is a cone we

have that 5̃ vanishes everywhere on ℂ, so 5̃ = 0. Therefore all coefficients 58(ℎ) of 5̃ are zero.
Since ℎ ∈, was arbitrary, we get that 58 vanishes on, . �

Proof of Prop. 4.17. Let ( ⊆ ℕ≥0 denote the finite set of degrees 8 such that the homogeneous

degree 8 part of 5 is nonzero. Since 5 (ℎ) ≠ 0 we have that 5 ≠ 0 and therefore ( ≠ ∅. Decompose

5 into its nonzero homogeneous parts 5 =
∑
8∈( 58 . Since �2 is a cone and 5 (�2) = {0}, using

Proposition 4.21 we see that all 58 vanish on �2. Since 0 ≠ 5 (ℎ) = ∑
8∈( 58(ℎ), it follows that there

exists 8 ∈ ( such that 58(ℎ) ≠ 0. Choose 5hom to be such an 58 . �

For a subset, ⊆ A let

�(,) B { 5 ∈ ℂ[A] | 5 (F) = 0 ∀F ∈,}
denote the vanishing ideal of , . This is clearly a complex vector space and is closed under

multiplicationwith arbitrary polynomials, thus �(,) is an ideal in the ringℂ[A]. Proposition 4.21

implies that if, is a cone, then �(,) is a gradedℂ-algebra, i. e., every element can be decomposed

into a unique sum of homogeneous parts, where each part is in �(,). We denote by �(,)8 the
8th homogeneous part of �(,). We have �(,)8 · �(,)9 ⊆ �(,)8+9 . (This is the crucial property of

a graded algebra.)

Search space reduction via algebraic geometry

• For orbit closures Zariski closure equals ℂ-closure.

Consequence: If ℎ ∉ �2, then it is separated by polynomial (instead of simply a

continuous function).

• Orbit closures are cones

Consequence: If ℎ ∉ �2, then it is even separated by a homogenous polynomial.

5 Algebraic complexity classes

While the Waring rank is a very instructive and important example, we also want to define

complexity measures that are more powerful and closer to actual computations. These are the

so-called Valiant’s classes.3 This chapter, Chapter 6, and Chapter 7 introduce classical results

3 They are usually all called Valiant’s classes, although the more recent ones like VPws were not defined by Valiant.
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about algebraic complexity classes that lead to questions about group orbit closures in Chapter 8.

Our observations in this and some following chapters work over other fields F than the complex

numbers. We will go back to the complex numbers when rephrasing Valiant’s classes in terms

of orbit closures in Chapter 8.

We denoted by 5 a separating function and by , a group element, but traditionally in the field

of algebraic complexity theory both 5 and , denote polynomials. We stick with this classical

notation.

5.1 VP

Let - = (-1 , -2 , . . . ) be an infinite family of indeterminates over some field F .

Definition 5.1. A sequence of polynomials ( 5=) ∈ F [-] is called a p-family4 if for all =,

1. 5= ∈ F [-1 , . . . , -?(=)] for some polynomially bounded function ? and

2. deg 5= ≤ @(=) for some polynomially bounded function @.

Recall Definition 1.10.

Definition 5.2. The class VP consists of all p-families ( 5=) such that !( 5=) is polynomially

bounded.

Example 5.3. Let 5= = -=
1
+ -=

2
+ · · · + -=

= . It is easy to see that !( 5=) ≤ =2
and hence ( 5=) ∈ VP.

Example 5.4. Let det= =
∑

�∈S=
sgn(�)-

1,�(1) . . . -=,�(=). We will see soon that det= has

polynomial-sized arithmetic circuits. Therefore, (det=) ∈ VP.

In the above example, the indeterminates have two indices instead of one. Of course we

could write det= as a polynomial in -1 , -2 , . . . by using a bĳection between ℕ2
and ℕ. However,

we prefer the natural naming of the variables (and will do so with other polynomials).

Let 5 ∈ F [-] be a polynomial and B : - → F [-] be a mapping that maps indeterminates to

polynomials. B can be extended in a unique way to an algebra endomorphism F [-] → F [-].
We call B a substitution. (Think of the variables replaced by polynomials.)

Definition 5.5. 1. Let 5 , , ∈ F [-]. 5 is called a projection of , if there is a substitution

A : - → - ∪ F such that 5 = A(,). We write 5 ≤? , in this case. (Since , is a polynomial, it

only depends on a finite number of indeterminates. Therefore, we only need to specify a

finite part of A.)

2. Let ( 5=) and (,=) be p-families. ( 5=) is a p-projection of (,=) if there is a polynomially

bounded function @ : ℕ→ ℕ such that 5= ≤? ,@(=). We write ( 5=) ≤? (,=).
4 This is a problematic naming, because it contains the singled out letter p, which can easily be mistaken as a

variable. Unfortunately, the name is completely standard in the literature. “poly-family” would have been a much

better name.
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Remark 5.6. Definition 5.5 captures Valiant’s original notion of projection. Many authors

nowadays allow variables to be replaced by arbitrary linear combinations of variables and

constants. This rarely makes a difference.

Projections are very simple reductions. Therefore, we can also use them to define hardness

for “small” complexity classes like VP. Projections fulfill the usual requirements of a reductions:

Lemma 5.7. (1) If ( 5=) ≤? (,=) and (,=) ∈ VP, then ( 5=) ∈ VP.

(2) ≤? is a transitive relation.

Proof. 1. Let @ be a polynomially bounded function and B= be a projection such that 5= =

B=(,@(=)) for all =. Let �< be a circuit computing ,< . We get a circuit computing 5= by

replacing every variable -8 in �@(=) by B=(-8). This circuit has the same size as �@(=).

2. The composition of two polynomially bounded functions is polynomially bounded and

the composition of two substitutions is a substitution again.

�

Definition 5.8. 1. A p-family ( 5=) is called VP-hard (under p-projections) if (,=) ≤? ( 5=) for
all (,=) ∈ VP.

2. It is called VP-complete if in addition ( 5=) ∈ VP.

Lemma 5.9. If ( 5=) is VP-hard and ( 5=) ≤? (,=), then (,=) is VP-hard, too.

Proof. Let (ℎ=) ∈ VP be arbitrary. Since ( 5=) is VP-hard, (ℎ=) ≤? ( 5=). By transitivity, (ℎ=) ≤? (,=).
Since (ℎ=)was arbitrary, the VP-hardness of (,=) follows. �

Example 5.10. Let -(ℓ )
8 , 9
, 1 ≤ 8 , 9 , ℓ ≤ =, be indeterminates and let"ℓ = (-(ℓ )8 , 9 )1≤8 , 9≤= for 1 ≤ ℓ ≤ =.

The polynomial imm= is a polynomial in =3
variables and is the (1, 1) entry of the matrix product

"1 · · ·"= . The p-family imm = (imm=) is the called iterated matrix multiplication.

By using the trivial algorithm for matrix multiplication, it is easy to see that imm ∈ VP.

We will see in the next chapter that imm and det are equivalent under p-projections. We

do not know whether the determinant (or the iterated matrix multiplication polynomial) is

VP-complete. However, there are generic problems that are VP-complete. But also more natural

complete problems are known, see [31, 59, 25].

Question 5.11. Is det VP-complete?

Remark 5.12. When we replace polynomial upper bounds by quasipolynomial upper bounds

(of the form $(=log
2(=)) for constant 2) in the definition of VP and p-projections, then the

determinant is complete for this class usually called VQP, see [17] and [9] for more complete

families. Here, “QP” stands for “quasi-polynomial”.
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5.2 VP4
We call an arithmetic circuit a formula if the underlying graph structure is a tree. In this case,

every computation gate has fanout one, that is, there is only one edge leaving every node and

therefore, every intermediate result can only be used once.

Definition 5.13. A p-family ( 5=) is contained in the class VP4 if there is a family of formulas (�=)
such that �= has polynomial size in = and computes 5= .

The “4” in the subscript stands for expression, another word for formula. Since every formula

is a circuit, we have VP4 ⊆ VP. It is not known whether this inclusion is strict, but many

researchers believe it is.

Question 5.14. Is VP4 a strict subset of VP?

Corollary 5.15. If there exists a VP-complete function in VP4 , then VP4 = VP.

Proof. This follows from the transitivity of ≤? (Lemma 5.7(2)) and the the fact that if (,=) ∈ VP4
and ( 5=) ≤? (,=), then ( 5=) ∈ VP4 , analogously to Lemma 5.7(1). �

Definition 5.16. 1. A p-family ( 5=) is in the class VNC8 if there is a family of circuits (�=)
computing 5= such that the size of �= is polynomially bounded in = and the depth of �=
is bounded by $(log

8 =).5

2. VNC B
⋃
8∈ℕ VNC8 .

It turns out that VP4 = VNC1, that is, every p-family that is computable by formulas of

polynomial size has efficient parallel algorithms, and that VP = VNC2 (see [82]). We will now

prove the first of these two statements.

Theorem 5.17. VP4 = VNC1.

This theorem is a direct consequence of a depth-reduction theorem of Brent’s (see Theo-

rem 5.19). We will first prove a lemma that helps balancing binary trees.

Lemma 5.18. Let ) be a rooted binary tree with = nodes. Then there is an edge 4 in ) such that removing
4 separates ) into two trees both having between =/3 and 2=/3 nodes.

Proof. We construct a path D1 , . . . , D< starting from the root as follows: We set D1 to be the root

of the tree. Let D8 be the current end node of the path and let D8+1 be the child of D8 that is

the root of the larger subtree (if the two subtrees rooted at the children of D8 are of equal size,

we may let D8+1 be either child). We stop when the size of the subtree with root D8 is < 2/3=
and set < = 8. The edge 4 is the edge (D<−1 , D<). The subtree with root D< has size < 2/3= by

construction. The subtree with root D<−1 has size ≥ 2/3=. Since D< is the root of the larger

subtree, the subtree with root D< has size at least =/3. The size of the remaining tree is between

= − 2/3= = =/3 and = − =/3 = 2=/3. �

5 Here log
8 = denotes the 8th power of log = and not the iterated logarithm.
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Figure 3: The formula � with the edge (D<−1 , D<), the two formulas � and �, and the new

formula computing 5

Theorem 5.19 (Brent [14]). Let � be a formula of size B. Then there is a formula �′ of size poly(B) and
depth $(log B) computing the same polynomial as �.

Proof. By Lemma 5.18, there is an edge in � such that when removing 4, we get two parts, each

of size between B/3 and 2B/3. The part not containing the output gate of � is again a formula,

which we call �. The part containing the output gate is not a formula, since one of the gates has

fanin one after removal of 4. We add a new child to this gate, which is labeled with a new input

variable .. Call the resulting formula �. � computes a linear form 0. + 1, since . appears

only once in �. (0 and 1 are polynomials in the original input variables.) If we substitute

the polynomial ℎ computed by � for ., then we get the polynomial 5 computed by �. If we

substitute 1 for ., then we get 0 + 1, and if we substitute 0 for ., then we get 1. Therefore, there

are formulas of size ≤ 2B/3 computing 0 + 1, 1 and ℎ. With these formulas, we can proceed

recursively. We get formulas �′
1
, �′

0
, and �′ computing 0 + 1, 1, and ℎ, respectively. We can

combine them to a formula computing 0ℎ + 1 = 5 as depicted in Figure 3: For the size �(B) of
this new formula, we get the recursion

�(B) = 4 · �(2B/3) + 3

and for the depth 3(B), we get the recursion

3(B) = 3(2B/3) + 3.

It is a routine check that �(B) = poly(B) and 3(B) = $(log B). �

5.3 Constant size iterated matrix multiplication

For some 2 ∈ ℕ, we define the family (imm
(2)
= ) like the family (imm=), except that every

polynomial is an iterated matrix product of 2 × 2-matrices (instead of = × =-matrices), so imm
(2)
=

is a polynomial in 22= variables.

Theorem 5.20 (Ben-Or & Cleve [6]). Let � be a formula of depth 3 computing a polynomial 5 , then 5
is a projection of imm

(3)
4
3 .
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Proof. We will prove by induction on 3 that we can find 4
3
many 3 × 3-matrices whose entries

are either indeterminates or constants such that the product of these matrices is

©«
1 5 0

0 1 0

0 0 1

ª®¬ .
Note that 5 is not in position (1, 1). But we can move it into the (1, 1)-entry at the end by

applying appropriate permutation matrices. The statement above is obviously true for depth

zero formulas, since these formulas compute constants or single variables.

If the depth 3 is larger than zero, we either have 5 = , + ℎ or 5 = ,ℎ and , and ℎ are both

computed by formulas of depth ≤ 3 − 1. By the induction hypothesis, there are two sets of 4
3−1

3 × 3-matrices each such that their products are

©«
1 , 0

0 1 0

0 0 1

ª®¬ and

©«
1 ℎ 0

0 1 0

0 0 1

ª®¬ ,
respectively. In the case of an addition gate we have

©«
1 , 0

0 1 0

0 0 1

ª®¬ ©«
1 ℎ 0

0 1 0

0 0 1

ª®¬ = ©«
1 , + ℎ 0

0 1 0

0 0 1

ª®¬
Therefore we can write 5 as a projection of a 3 × 3-iterated matrix multiplication of length

2 · 43−1 ≤ 4
3
.

In the case of a multiplication gate, we have

©«
1 , 0

0 1 0

0 0 1

ª®¬ ©«
1 0 0

0 1 ℎ

0 0 1

ª®¬ = ©«
1 , ,ℎ
0 1 ℎ

0 0 1

ª®¬ .
Note that ℎ is standing in the “wrong” position. But we can easily fix this by applying

permutation matrices from the left and the right. This just corresponds to exchanging the rows

or columns of the first and last matrix of the corresponding matrix product, respectively. We

proceed with ©«
1 0 0

0 1 −ℎ
0 0 1

ª®¬ ©«
1 , ,ℎ
0 1 ℎ

0 0 1

ª®¬ ©«
1 −, 0

0 1 0

0 0 1

ª®¬ = ©«
1 0 ,ℎ
0 1 0

0 0 1

ª®¬
Note that we now have a −, and −ℎ instead of a , and ℎ. But this can be easily fixed by

multiplying the second row and column by −1, which can be achieved by adjusting the first

and last matrix of the 4
3−1

matrices. Altogether, we get that 5 is a projection of a product of

4 · 43−1 = 4
3
matrices. �

Corollary 5.21. imm
(3) is VP4-complete.
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Proof. Let 5 = ( 5=) ∈ VP4 . Let �= be a formula of polynomial size computing 5= . By Theorem 5.19,

there is an equivalent formula of polynomial size and depth $(log =). By Theorem 5.20, 5= is a

projection of imm
(3)
poly(=). This proves the hardness.

To construct a formula of polynomial size for imm
(3)
= , we recursively construct formulas for

the nine entries of the product "1 · · ·"= . W.l.o.g. we can assume that = is a power of 2. To this

aim, we divide the product into two products "1 · · ·"=/2 and "=/2+1
· · ·"= of size =/2 each.

We need two recursive calls of half the size to compute these products. From these two results,

we can compute the product"1 · · ·"= by a constant size formula, a single matrix multiplication.

Since each entry of the two resulting matrices is used three times, we need three distinct copies

of the formulas for each entry. Therefore, we get the following recursion for the overall size B(=)
of the formulas:

B(=) = 6B(=/2) + $(1).

Therefore, B(=) = poly(=). �

Obviously, imm
(2)

is VP4-complete for any 2 ≥ 3. On the other hand, imm
(1)

is not, since

it only computes a single monomial. Allender and Wang [4] prove that imm
(2)

is also not

VP4-complete by exhibiting a polynomial that is not the projection of imm
(2)
= for any =! When

we consider approximate computations, however, then imm
(2)
= is complete [15] (analogous to

border Waring rank, see Chapter 2. Also see Chapter 8).

5.4 Orbit problems

Historically, p-projections have been the reduction of choice in algebraic complexity theory,

because they are very simple reductions yet sufficiently powerful to prove hardness results (as

we will see in the next two chapters).

Let ( 5=) be a p-family. Then there is a polynomially bounded function ? such that 5= ∈
F [-1 , . . . , -?(=)]. We saw how to let End< act on F [-1 , . . . , -<]. We let endomorphisms act on

the sequence ( 5=) by letting End?(=) act on 5= . An element , ∈ End?(=) replaces each variable by a

homogeneous linear combination of the variables. In particular, it preserves the degree, that is,

deg , 5= = deg 5= . P-projections, on the other hand, do not preserve the degree. We can use the

following “trick” called padding. We only need it for homogeneous polynomials, since all our

polynomials under consideration will be homogeneous, but it also works for non-homogeneous

polynomials in the obvious way. Assume that 0 ≤? 1 for two homogeneous polynomials 0 and

1 and let B be the corresponding substitution. We define a new substitution B̂ that whenever

B(-8) is a constant , then we set B̂(-8) = ) for some new indeterminate ) instead. When B(-8)
is a variable, then B̂(-8) = B(-8). We have B̂(1) = )deg 1−deg 0 · 0. Note that B̂ is a very special

endomorphism, replacing every variable by a scalar multiple of some other variable. Assume

1 ∈ F [-1 , . . . , -=], then we will now consider it as a polynomial in F [), -1 , . . . , -=] and let

End=+1 act on it. Since ) does not appear in 1, we can restrict ourselves to endomorphisms that

leave ) fixed.
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Definition 5.22. Let ( 5=) and (ℎ=) be homogeneous p-families. Let ?(<) be minimal such that

that ℎ< ∈ F [-1 , . . . , -?(<)]. We write ( 5=) ≤end (ℎ=) if there is a polynomially bounded function

@ such that

)deg ℎ@(=)−deg 5= · 5= ∈ End?(@(=))+1
ℎ@(=).

Note that since ? is minimal, it is polynomially bounded by the definition of ?-family. We

have chosen a fresh variable ) for padding. In the literature, -1 or -?(@(=)) has frequently been

used for padding (but also arbitrary linear forms have been used). Taking a new variable turns

out to be simpler, in particular, ≤end will be transitive. We will see below that in our situation, it

actually does not matter which variable we will take.

Lemma 5.23. Let ( 5=) and (ℎ=) be homogeneous p-families.

1. If ( 5=) ≤? (ℎ=), then ( 5=) ≤end (ℎ=).

2. If ( 5=) ≤end (ℎ=) and (ℎ=) ∈ VP, then ( 5=) ∈ VP. The same statement is true if VP is replaced by
VP4 .

3. ≤end is transitive.

Proof. Let ? and @ be defined as in Definition 5.22.

1. Let B= be the substitution mapping 5= to ℎ@(=). As above, we define B̂= to be the substi-

tution that whenever B=(-8) = , then B̂=(-8) = ). Then B̂=(ℎ=) = )deg ℎ@(=)−deg 5=
. The

substitution obviously defines an endomorphism.

2. It is very easy to see that for ,= ∈ End= , the sequence (,?(=)+1
ℎ=) is in VP orVP4 , respectively,

since ,?(=)+1
is just a linear transformation of the variables, which can be implemented by

formulas of polynomial size. Therefore, the sequence ()deg ℎ@(=)−deg 5= · 5=) is in VP or VP4 ,

respectively. Since ) does not appear in 5= , we can set ) = 1.

3. Let ( 5=) ≤end (ℎ=) and (ℎ=) ≤end (0=). There is an endomorphism ,?(@(=))+1
such that

)deg ℎ@(=)−deg 5= · 5= = ,?(@(=))+1
ℎ@(=). (5.1)

Furthermore, there are polynomially bounded functions ?′ and @′ such that

)deg 0@′(<)−deg ℎ< · ℎ< ∈ End?′(@′(<))+1
0@′(<).

Thus, there is an endomorphism ,′
?′(@′(<))+1

such that

)deg 0@′(<)−deg ℎ< · ℎ< = ,′
?′(@′(<))+1

0@′(<). (5.2)

We set < = @(=), apply ,?(@(=))+1
to (5.2), and plug in (5.1), where we interpret ,?(@(=))+1

as an endomorphism in End?′(@′(@(=))+1
(setting further variables to zero for instance).

Therefore,

)deg 0@′(@(=))−deg 5= · 5= = ,?(@(=))+1
,′
?′(@′(@(=))+1

0@′(@(=)) ,

since we can assume that ,?(@(=))+1
()) = ).
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�

The rest of this section is rather technical. It can be skipped at a first reading. We deal with the
question under what conditions it does not matter to take a fresh variable or an existing one for padding.
We assume F to be large enough.

The next lemma shows that it does not matter too much, whether we take a fresh variable )

for padding or an existing one. We generalize ideas by Ikenmeyer and Panova [47].

Lemma 5.24. Let 5 , ℎ ∈ F [-1 , . . . , -<] be homogeneous polynomials.

1. If )deg ℎ−deg 5 5 ∈ End<+1ℎ, then -
deg ℎ−deg 5

8
5 ∈ End<ℎ (where we interpret ℎ in the first

equation as a polynomial in F [), -1 , . . . , -<]).

2. If -deg ℎ−deg 5

8
5 ∈ End<ℎ for some 8, then there is a circuit of size polynomial in !(ℎ), deg ℎ, and

< computing 5 .

Proof. 1. Since ) does not appear in ℎ, we can simply replace ) by -8 .

2. Write 5 =
∑deg 5

9=0
-
9

8
59 . As above, there is a circuit of size polynomial in !(ℎ) and <

computing -
deg ℎ−deg 5

8
5 =

∑deg ℎ

9=deg ℎ−deg 5
-
9

8
59 . We now take deg ℎ + 1 copies of this circuit,

and in each of them, we plug in a different value from F for -8 . From the results, we can

obtain the polynomials 50 , . . . , 5deg 5 by interpolation (see, e. g.[19]). Once we have these

polynomials, we can easily compute 5 .

�

Let � be a class of p-families. We call � closed under interpolation if for every ( 5=) ∈ �,
5= =

∑deg 5=
9=0

-
9

1
5=,9 with 5=,9 ∈ F [-2 , -3 , . . . ], the family (∑deg 5=

9=0
.9 5=,9) ∈ �, where .0 , .1 , .2 , . . .

are new variables. So essentially, given 5= and considering it as a univariate polynomial in -1,

we can compute the coefficients of 5= . The new variables .8 are introduced for book-keeping

purposes to have again only one polynomial.

We call the class � closed under substitutions, if for two p-families ( 5=), (ℎ=) ∈ �, the family

obtained by substituting some of the variables -8 in 5= by ℎ 9(8) for some p-bounded function 9 is

again in �.

The next lemma is a strengthening of Lemma 5.24, part (2).

Lemma 5.25. Let � be a class of p-families that is closed under interpolation and substitutions. Let
( 5=), (ℎ=) ∈ � such that

1. -deg ℎ@(=)−deg 5=

8
5= ∈ End?(@(=))ℎ@(=) for some 8 (here ? and @ are as in Definition 5.22),

2. every sequence (<8) of monomials of p-bounded degree is in �, and

3. (ℎ=) is �-hard (under p-projections).

Then there is a polynomially bounded function @′ such that )deg ℎ@′(=)−deg 5= 5= ∈ End?(@′(=))+1
ℎ@′(=).
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Proof. Write -
deg ℎ@(=)−deg 5=

8
5= =

∑deg 5=
9=0

-
deg ℎ@(=)−deg 5=+9
8

5=,9 , where 5=,9 does not depend on -8 .

Since � is closed under interpolation, the family (∑deg ℎ@(=)
9=deg ℎ@(=)−deg 5=

.9 5=,9) ∈ �, too. Renaming

the indices we see that also (∑deg 5=
9=0

.9 5=,9) ∈ �. Now consider the family ()deg ℎ@(=)−deg 5=-
9

8
) and

substitute it for the .-variables into the former family. We get that ()deg ℎ@(=)−deg 5= 5=) ∈ �. Now

since (ℎ=) is �-complete, the statement of the lemma follows. �

Valiant’s classes

Objects: families of polynomials of polynomial degree

Computational model: Arithmetic circuits

Reductions: p-projections

• VP is characterized by circuits of polynomial size.

• VP4 is characterized by formulas of polynomial size.

• imm
(3)

is complete for VP4 .

6 VP and the determinant

Constant size iterated matrix multiplication imm
(3)

is complete for VP4 . For VP, we do not

know a nice complete polynomial, but the first natural families have been found in [31, 59, 25].

For instance, it is not known whether general iterated matrix multpliation or the determinant

are complete for VP. We first prove some normal forms for circuits for VP. Then we look for a

subclass of VP such that the determinant and iterated matrix multiplication are complete for it.

6.1 Homogeneous circuits

Recall that a polynomial is homogeneous if all its monomials have the same total degree. A

circuit is called homogeneous if at every gate it computes a homogeneous polynomial. Of course,

nonhomogeneous polynomials cannot be computed by homogeneous circuits. However, we

have the following result.

Lemma 6.1. If 5 is a polynomial of degree 3 that is computed by a circuit of size B, then there is a
homogeneous circuit of size $(32B) computing the homogeneous parts of 5 . Furthermore, at every gate
we only compute a polynomial of degree at most 3.

Proof. We replace every gate , by 3 + 1 gates. If , computes a polynomial 5 , then the new gates

will compute the homogeneous components of 5 . We do this in a bottom up fashion. If , is

an input gate, then there is nothing to do. We just have to add 3 dummy gates computing the

zero polynomial in every degree other than degree zero or one. Let , be a gate with children ℎ1

and ℎ2 in the original circuit. Assume that ℎ1 and ℎ2 have been replaced by gates ℎ1,0 , . . . , ℎ1,3
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and ℎ2,0 , . . . , ℎ2,3 computing polynomials ?1,0 , . . . , ?1,3 and ?2,0 , . . . , ?2,3, respectively. If , is an

addition gate, then we will introduce new gates ,0 , . . . , ,3 and ,8 computes ?1,8 + ?2,8 . If , is a

multiplication gate, then ,8 computes

∑8
9=0

?1, 9?2,8−9 . We only need to compute the homogeneous

parts of degree 3, since potential higher degree parts in intermediate results will cancel each

other in the end, as 5 has degree 3. �

Corollary 6.2. If 5 is a polynomial of degree 3 that is computed by an arithmetic circuit of size B, then
there is a circuit � of size poly(B, 3) computing 5 such that every node in � computes a polynomial of
degree at most 3. Furthermore, for every multiplication gate, at least one of the inputs is not a constant.

Proof. We homogenize the given circuit as above. This immediately gives the upper bound on

the degree. When two constants are multiplied, then either two degree zero components are

multiplied or one of the higer degree homogeneous parts became zero. In the first case, we can

replace the multiplication gate by an input gate labeled with the product of the two constants.

(Remember that we can use every constant from F .) In the second case, we simply can remove

the gate that outputs 0. (Note that we do not have to construct the circuit, we just need to prove

it existence.) �

6.2 Multiplicatively disjoint circuits

Families in VP are computed by polynomial size circuits. In this section, we show that we can

assume that these circuits have an additional property: they are multiplicatively disjoint [61].

Definition 6.3. An arithmetic circuit is multiplicatively disjoint if for all multiplication gates, the

subcircuits induced by its two children are disjoint.

Multiplicatively disjoint circuits are between circuits and formulas. In a formula, the

subcircuits of addition gates are also disjoint. Note that in a multiplicative disjoint circuit, only

the induced subcircuits are disjoint. Nodes of these subcircuits can be connected to arbitrary

nodes outside these circuits.

Definition 6.4. Let � be an arithmetic circuit. The formal degree of a gate , is defined inductively:

A leaf has formal degree 1 (even if it is labelled with a constant). If , is a multiplication gate,

then its formal degree is the sum of the formal degrees of its two children. If , is an addition

gate, then the formal degree of , is the maximum of the formal degrees of its children. The

formal degree of � is the formal degree of its output gate.

The formal degree of a circuit disregards that the degree at gate might drop when there are

cancellations. Multiplications with constants might also increase the formal degree.

If we have a bound on the formal degree of a circuit, we can turn the circuit into a

multiplicatively disjoint one without increasing the size by too much. The naive approach

would be to work from the inputs towards the output, and whenever a multiplication gate

is encountered that does not have disjoint children, make a separate copy of the subcircuit

rooted at one of the children to force them to be disjoint. In general, the increase in size will be

exponential in the degree. Using depth reduction, one can thus get a multiplicatively disjoint
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circuit of quasi-polynomial size from any poly-size circuit with polynomial degree bound. But

since we have a bound on the formal degree, we can do better using a clever indexing technique.

Lemma 6.5. If a circuit has size B and formal degree 3, then there is a multiplicatively disjoint circuit �′
of size ≤ B3 computing the same polynomial.

Proof. Each gate , of formal degree 4 ≤ 3 will be replaced by 3 + 1 − 4 copies ,1 , . . . , ,3+1−4 . Let
,8 be one of these copies. We call 8 the index of the copy. We will make sure that all gates of the

subcircuit with output ,8 are copies with an index lying between 8 and 8 + 4 − 1. In this way we

ensure that we will get multiplicatively disjoint circuits.

Inductively, we construct a circuit �4 with the following property: For each gate , of formal

degree 5 ≤ 4 in �, there are copies of the gates ,1 , . . . , ,3+1− 5 in �4 computing the same function

as , and all the gates of the subcircuit with root ,8 have indices lying between 8 and 8 + 5 − 1.

The nodes of formal degree one are all input nodes and sums of formal degree one nodes.

�1 consists of 3 copies of the formal degree 1 nodes. Since � is acyclic, we can order the

addition gates in such a way, that whenever we deal with a gate ,, all its predecessors have been
processed. For each addition gate , of formal degree one, we add copies ,1 , . . . , ,3. Let ,′ and
,′′ be the children of , in � with formal degrees one. We connect ,8 with the copy ,′

8
and ,′′

8
.

The restriction on the ranges is fulfilled by construction.

Assume that we constructed �4−1 (induction hypothesis). To obtain �4 , we now add copies

of all gates , of formal degree 4 in �. Let ,′ and ,′′ be the children of such a gate , of formal

degrees 4′ and 4′′, respectively.
We start with the multiplication gates. In this case 4 = 4′ + 4′′ with 4′, 4′′ < 4. This

means that the copies ,′
1
, . . . , ,′

3+1−4′ and ,′′
1
, . . . , ,′′

3+1−4′′ were constructed in a previous step.

We add the copies ,1 , . . . , ,3+1−4 and connect ,8 with ,′
8
and ,′′

8+4′. These copies exist, since

8 ≤ 3 + 1 − 4 ≤ 3 + 1 − 4′ and 8 + 4′ ≤ 3 + 1 − 4 + 4′ = 3 + 1 − 4′′. The indices of the copies of the
subcircuit with root ,′

8
lie between 8 and 8 + 4′ − 1, the indices of the copies in the subcircuit with

root ,′′
8+4′ lie between 8 + 4′ and 8 + 4′ + 4′′ − 1 = 8 + 4 − 1. The two subcircuts of ,8 are disjoint,

because they contain gates with indices from two disjoint intervals. Therefore the condition on

the indices of the subcircuits is fulfilled.

Next come the addition gates of formal degree 4. Note that an addition gate of formal

degree 4 might have a predecessor of formal degree 4. As in the base case, we can order the

addition gates in such a way, that whenever we deal with a gate ,, all its predecessors have been
processed. For each addition gate , of formal degree 4, we add copies ,1 , . . . , ,3+1−4 . Let ,′ and
,′′ be the children of , in � with formal degrees 4′ ≤ 4 and 4′′ ≤ 4, respectively. We connect ,8
with the copy ,′

8
and ,′′

8
. The indices of the copies in these subcircuits lie in the range from 8 to

8 + 4′ − 1 ≤ 8 + 4 − 1 and 8 + 4′′ − 1 ≤ 8 + 4 − 1, respectively.

The circuit �3 is the circuit we are looking for. It contains a copy of the output gate of �.

The circuit is multiplicatively disjoint by the way we chose the indices when connecting the

copies of the children to the multiplication gate. �

Lemma 6.6. Let 5 be a polynomial of degree 3 computed by a circuit � of size B. Then there is a circuit
of size polynomial in 3 and B computing 5 such that its formal degree is bounded by B3 + 1.
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Proof. Let � be the given circuit and �′ be the circuit constructed in Corollary 6.2. Recall that

the circuit �′ is a simulation of the circuit �. Every node is replaced by 3 + 1 nodes, one for each

homogeneneous component. Then every operation in � is simulated by several operations in �′.
Let the depth of a gate in � be the length of a longest path from any leaf to this gate. The depth

of the nodes in �′ that compute the homogeneous components is defined as the depth of their

corresponding node in �. We do not define depth for the other nodes in �′. We will now prove

by induction on the depth that the formal degree of any gate , of �′ of depth � computing a

homogeneous component of degree 8 is bounded by � · 8+1. For the base case note that every leaf

has formal degree 1. Now let , be a gate in �′ of depth � computing a homogeneous component

of degree 8. If 8 = 0, then note that , has formal degree 1 by construction. So we assume that

8 ≥ 1. We first treat the case when , corresponds to an addition gate in �. In �′, , is an addition

gate, its two inputs are gates ,′ and ,′′ both computing homogeneous polynomials of degree 8.

The formal degree of these two gates is bounded by �′ · 8 + 1 and �′′ · 8 + 1 where �′ and �′′ are
the depth of ,′ and ,′′, respectively. The formal degree of , is max{�′ · 8 + 1, �′′ · 8 + 1} ≤ � · 8 + 1.

If , is a multiplication gate, then

, =
8∑
9=0

,′9,
′′
8−9

where ,′
9
and ,′′

8−9 are the homogeneous components of the predecessors of ,. By the induction

hypothesis, the formal degrees of ,′
9
and ,′′

8−9 are bounded by �′ 9+1 and �′′(8− 9)+1, respectively.

The formal degree of ,′
9
,′′
8−9 is bounded by �′ 9 + 1 + �′′(8 − 9) + 1 ≤ �8 + 1, when 0 < 8 < 9.

Note for the upper bound that � > �′, �′′ and 8 ≥ 1. The formal degree of ,′
0
,′′
8
is bounded by

1 + �′′8 + 1 ≤ �8 + 1. The same argument works for ,′
9
,′′

0
. This concludes the inductive step.

From the claim the bound on the formal degree of the new circuit follows immediately. �

Theorem 6.7 (Malod & Portier [61]). A p-family (,=) is in VP if and only if there is a family of
polynomial size multiplicative disjoint circuits (�=) computing (,=).

Proof. If (,=) ∈ VP, then by Lemma 6.6, there is a sequence of circuits (�=) of size poly(=)
computing (,=) such that the formal degree of �= is polynomially bounded. Now we can apply

Lemma 6.5.

For the other direction, note that it can be easily proven by induction that the degree of a

multiplicatively disjoint circuit of size B is bounded by B. �
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Circuits for VP

The following models characterise VP:

• arithmetic circuits of polynomial size (and thedegree of the family is polynomially

bounded)

• multiplicative disjoint circuits of polynomial size

• homogeneous circuits of polynomial size (when the family is homogeneous of

polynomial degree)

6.3 Combinatorial interpretation of the determinant

Interpretation via cycle covers: Let " = (<8 , 9) be an = × = matrix. We can interpret " as

the weighted adjacency matrix of some directed graph over the node set {1, . . . , =}. For every
(8 , 9), there is an edge (8 , 9) of weight <8 , 9 . A cycle cover in a directed graph is a collection of

node-disjoint directed cycles such that every node is contained in exactly one cycle. Permutations

in S= stand in a one-to-one correspondence with cycle covers. Every permutation � yields a

cycle cover consisting of the edges (8 , �(8)). On the other hand, the edges of a cycle cover encode

a permutation of the nodes with the intepretation that an edge (8 , 9)means that 8 is mapped to 9.

Note that this is precisely the cycle decomposition of a permutation. The sign of the permutation

is −1 if the number of even-length cycles is odd, and 1 if it is even. The weight F(�) of a cycle
cover � is the product of the weights of the edges in it. Therefore,

det(") =
∑

cycle covers �

(−1)=+number of cycles in �F(�)

Conceptually, it is often easier to think of an edge of weight zero as not being present in the

graph. Since the weight of a cycle cover is the product of its edge weights, this does not make

any difference in the above equation for det(").

Interpretation via bipartite matchings: Instead of interpreting " as the adjacency matrix of

some directed graph, we can also interpret it as the adjacencymatrix of some bipartite graph. We

have nodes {1, . . . , =} on the lefthand side and “copies” {1′, . . . , =′} on the other side. For every

(8 , 9), there is an edge {8 , 9′} with weight <8 , 9 . A matching # in a graph is a set of edges such that

every node is incident with at most one edge from # . It is called perfect, if every node is incident

with exactly one edge from # . Permutations in S= stand in a one-to-one correspondence with

perfect matchings in bipartite graphs: Every permutation � yields a perfect matching consisting

of the edges {8 , �(8)′}. This construction can be reversed. If we set the sign of a perfect matching

in a bipartite graph to be the sign of the corresponding permutation, we get the following

expression:

det(") =
∑

perfect matchings #

sgn(#)F(#).
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The weight F(#) is the product of the weights of the edges in # .

6.4 Weakly skew circuits and algebraic branching programs

A weakly connected component in a digraph is defined as a connected component in the corre-

sponding undirected graph that is obtained from forgetting the edge directions.

Definition 6.8. A circuit is called weakly skew if every multiplication gate , has at least one

child ,′ such that after removing the edge (,′, ,), the graph consists of two weakly connected

components.

In a formula, this is true for every child of a gate. In a formula, no intermediate result is

reusable, that is, the output of every gate can only be used as the input of exactly one other gate.

In a weakly skew circuit, one child of every gate can be reused, but not both. Weakly skew is

however stronger than multiplicatively disjoint, since in the latter case, while the subcircuits

need to be disjoint, they can be connected to the rest of the circuit.

Definition 6.9. Let F be a field and -1 , . . . , -= be indeterminates.

1. An algebraic branching program � is an acyclic graph with two distinguished nodes B and C

and an edge labeling with labels from F ∪ {-1 , . . . , -=}.6

2. The weight F(%) of a path % from B to C is the product of the labels of the edges in the path.

3. The polynomial computed by � is ∑
B-C path %

F(%).

4. The size of an algebraic branching program is the number of edges in it.

5. � is called layered if for every node E in �, all B-E paths have the same length.

If � is layered, then we can think of the nodes of � being grouped into layers: two nodes

D and E are in the same layer 8 if the lengths of all paths from B to D and from B to E is 8. In a

layered branching program, edges only go from one layer to the next.

Lemma 6.10. Let � be a branching program of size B. Then there is a layered branching program of size
$(B2) computing the same function.

Proof. For a node E in the branching program, let 3(E) be the length of a longest path from B

to E. The node E will be put into layer 3(E). By construction, for every edge {D, E}, we have

3(D) < 3(E). Therefore, we only have edges from layers with smaller index to larger index. If

there is an edge 4 from layer 8 going to layer 9 with 8 + 1 < 9, then we replace this edge by a path

of length 9 − 8 and put the nodes of this path into the layers inbetween. One (arbitrary) edge of

the path gets the weight of 4 and all other edges get the weight 1. �

6 Some authors allow affine linear forms, but this will not make any difference.
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We formalize the notion of being reusable. Intuitively, a gate in a weakly skew circuit is

reusable if it is not in the subcircuit of a multiplication gate that is not connected to the rest of

the circuit.

Definition 6.11. Let � be a weakly skew arithmetic circuit. The set of reuseable gates in � is

inductively defined as follows: Every gate of outdegree zero is reusable. (We consider circuits

with multiple output gates to simplify some proofs in the following.) We remove every gate , of

outdegree zero from � and for each such multiplication gate, we also remove the subcircuit of

that child ,′ that is only connected to the rest of the circuit via the edge (,′, ,). If both children

of , have this property, we only remove one child. (It does not matter which one.) Let �′ be the
resulting circuit. Every gate that is reusable in �′ is reusable in �, too.

Theorem 6.12. Let 5 ∈ F [-1 , . . . , -=] with deg 5 = poly(=). The following statements are equivalent:

1. 5 is computed by a weakly skew circuit of size poly(=).

2. 5 is computed by an algebraic branching program of size poly(=).

3. 5 is a projection of imm?(=) for some polynomially bounded function ?.

4. 5 is a projection of det?(=) for some polynomially bounded function ?.

Proof. (1) ⇒ (2): Assume that 5 is computed by a weakly skew circuit � of size <. We now

prove by induction on < that there is a algebraic branching program computing � of size ≤ 2<

such that for every reusable gate , in � there is a node E, such that the sum of the weights of all

paths from B to E, is the same polynomial as computed at ,. The construction is illustrated in

Figure 4.

Let , be some output node. If , is also an input node, then � consists of a single edge. (This

is the induction basis.)

For the induction hypothesis, assume that , is not an input gate. If , is an addition gate,

then we remove , from �, let �′ be the resulting circuit. By the induction hypothesis, there is

an algebraic branching program �′ such that for every gate ,′ that is reusable in �′, there is a
node E,′ in �

′
such that the sum of the weights of all path from B to E,′ equals the polynomial

computed at ,′. Let ℎ and ℎ′ be the children of ,. They are both reusable. We add a new node

E, and connect the nodes Eℎ and Eℎ′ to it. Both edges get weight one. If ℎ = ℎ′, then we add

only one edge with weight two. By construction, the sum of the weights of all paths from B to E,
is the sum of the polynomials computed at ℎ and ℎ′. The resulting algebraic branching program

has two more edges than �′. For all reusable nodes ,′ of �′, the node E,′ is still present in � and

the sum of the weights of all path from B to E,′ equals the polynomial computed at ,′.
If , is a multiplication gate, then after removal of ,, we get two separate circuits �1 and �2.

Let ,1 and ,2 be the children of ,. Only the gates of one of them, say �2, can be reusable in �.

Let <1 and <2 be the sizes of �1 and �2. From the induction hypotheses, we get corresponding

algebraic branching programs �1 and �2 with sources B1 and B2. In �1, there are vertices B1 and

E,1
such that the sum of the weights of all path from B1 to E,1

equals the polynomial computed

at ,1. We connect the node E,2
in �2 with the node B1 of �1 by an edge of weight 1. Then the
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sum of the weights of all path from B2 to E,1
is the product computed at ,. For all gates ℎ in �2,

the sum of the weights of all paths from B2 to Eℎ paths equals the polynomial computed at ℎ.

The size of the new branching program is 2<1 + 2<2 ≤ 2<.7

(2) ⇒ (3): Let � be an algebraic branching program computing 5 . By Lemma 6.10 we can

assume that � is layered. Let ℓ be the maximum size of a layer and let < be the number of

layers. We order the nodes in each layer arbitrarily. We will inductively construct ℓ × ℓ -matrices

"1 , . . . , "< with entries from F ∪ {-1 , . . . , -=} such that the first row of "1 · · ·"8 are the

polynomials computed at the nodes in the 8th layer, that is, the sum of the weights of all path

from B to each node in this layer. "1 has a 1 in position (1, 1) and zeros everywhere else. This

single 1 corresponds the the source node B. Assume we constructed"1 , . . . , "8 . Let (01 , . . . , 0ℓ )
be the first row of"1 · · ·"8 . A node E in the (8 + 1)th layer receives edges from the nodes of the

8th layer. Let (11 , . . . , 1ℓ ) be the labels of these edges (if an edge is not present, the corresponding

1 9 = 0.) The polynomial computed at E is given by

(01 , . . . , 0ℓ ) ·
©«
11

...

1ℓ

ª®®¬ .
The matrix"8+1 simply consists of the corresponding columns (11 , . . . , 1ℓ )) . If the (8 + 1)th layer

has less than ℓ nodes, we append zero rows to "8+1.

Since we can embed a product of < ℓ × ℓ -matrices into a product of 3 3 × 3-matrices with

3 = max{<, ℓ }, we get that 5 is a projection of imm
poly(=).

(3) ⇒ (4): Note that an iterated matrix product can be easily computed by a layered algebraic

branching program, you just have to “reverse” the construction of the previous step. Therefore

it suffices to prove that every polynomial that is computed by a layered algebraic branching

program � is a projection of a determinant of polynomial size. We modify � as follows: add an

edge of weight one from C to B and add a self loop of weight one to every node except B and

C. Let " be the weighted adjacency matrix of this modified program �′. det(") is the sum

of the weights of all cycle covers in �′. All cycle covers in �′ consist of one big cycle through

B and C and the remaining nodes are covered by self-loops. Since the program is layered, all

cycle covers have the same number of cycles and therefore the same sign. The weight of a cycle

cover equals the weight of the corresponding path from B to C, potentially with an opposite sign

(but this sign is the same for all cycle covers). Therefore, 5 is a projection of a determinant of a

polynomially large matrix.

(4) ⇒ (1): One way to evaluate the determinant by a weakly skew circuit is known as

Csanky’s algorithm [30]. Another one is due to Mahajan and Vinay [60]. �

Remark 6.13. For a polynomial 5 , the smallest = such that 5 can be written as a projection of

det= is called the determinantal complexity dc( 5 ) of 5 .

7 This construction does not work if the circuit is only multiplicatively disjoint, since in this case, while the

subcircuits of every multiplication gate are disjoint, they might both be connected to the rest of the circuit. However,

the nodes of �
1
cannot be used any more, once B

1
is identified with E,2

.
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Figure 4: Transforming weakly skew circuits into algebraic branching programs. (Top: addition

gate, bottom: multiplication gate)

Definition 6.14. Ap-family ( 5=) is in VPws if it is computed byweakly skew circuits of polynomial

size.

Theorem 6.12 gives us further, equivalent definitions of VPws. In particular, a p-family ( 5=)
is in VPws if it is a p-projection of the determinant family. Note that imm can be computed by

very restricted weakly skew circuits, namely for every multiplication gate, one of the inputs is a

variable or a constant. We call such circuits skew. This is achieved by sequentially multiplying the

matrices using the trivial methods. Since by Theorem 6.12, every polynomial that is computed

by a weakly skew circuits of polynomial size is a p-projection of imm, we get the following

corollary.

Corollary 6.15. If a polynomial is computed by a weakly skew circuit of size B, then it is computed by a
skew circuit of size poly(B).

The determinant

VPws describes the complexity of the determinant.

Equivalent models are: algebraic branching programs and projections of iterated

matrix multiplication.
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7 The permanent

In this chapter we define the class VNP and prove the VNP-completeness of the permanent

polynomial.

7.1 VNP and formulas

A language ! is in NP if there is a deterministic polynomial time relation ' such that for all

G, G ∈ ! iff there is a polynomially long bit string H such that '(G, H) = 1. Think of G being a

formula in 3-CNF and H being an assignment. '(G, H) = 1 means that H satisfies G. While NP

can be defined as the class of functions that assign to each G the Boolean value∨
H

'(G, H),

the class #P is the class of functions that assign to each G the number of H such that '(G, H) = 1,

that is, we compute ∑
H

['(G, H) = 1].

Here, the bracket is the Iverson bracket, which is one if the Boolean expression is true and zero

otherwise. So in our example, we want to count the number of satisfying assignments.

Definition 7.1. 1. A p-family ( 5=) is in VNP, if there are polynomially bounded functions ?

and @ and a sequence (,=) ∈ VP of polynomials ,= ∈ F [-1 , . . . , -?(=) , .1 , . . . , .@(=)] such
that

5= =
∑

4∈{0,1}@(=)
,=(-1 , . . . , -?(=) , 41 , . . . , 4@(=)).

2. A family of polynomials 5= is in VNP4 if in the definition of VNP, the family (,=) is in VP4 .

You can think of the --variables representing the input and the .-variables the witness.

With this interpretation, VNP is more like #P. In particular, we will see that the permanent

polynomial

per= =
∑
�∈S=

-
1,�(1) · · ·-=,�(=)

is complete for VNP.

With the help of so-called parse trees we will now show VNP = VNP4 .

Definition 7.2. Let � be an arithmetic circuit.

1. A parse tree of � is defined recursively as follows: Every circuit consisting of one node is

a parse tree. If the size of � is larger than one, let , be the output gate and ,1 and ,2 be

its children. Let �1 and �2 be the subcircuits rooted at ,1 and ,2, respectively. If , is an

addition gate, then we get the set of all parse trees by either taking a parse tree of �1 or a

parse tree of �2 and connecting it to ,. If , is a multiplication gate, then we get the set of

all parse trees by taking a parse tree of �1 and a parse tree of �2 and connecting both to ,.
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2. The set of all parse trees of � is denoted by pt(�).

3. The weight F()) of a parse tree ) is the product of the labels of its leaves.

For every multiplication gate, we have to include both children in the parse tree, for every

addition gate we have to choose one of them. Note that a gate may occur several times in a

parse tree, since it is reused in the circuit several times. For each occurrence in the parse tree, we

introduce a new copy. (Otherwise, it would not be a tree.)

Exercise 7.3. Let � be a circuit and ? be the polynomial computed by �. Prove (for instance by

structural induction) that

? =
∑

)∈pt(�)
F()).

Lemma 7.4. A circuit � is multiplicatively disjoint if every parse tree of � is a subcircuit of �.

Proof. Assume that � is not multiplicatively disjoint. Then there is a node E in � such that there

are two node disjoint paths to some multiplication gate ,. Since , is a multiplication gate, these

two paths can be extended to a parse tree.

Conversely, if there is a parse tree ) that is not a subcircuit of �, then there are gates , and

ℎ in � such that there a two node disjoint paths from , to ℎ. Since ) is a parse tree, ℎ is a

multiplication gate. Thus, � is not multiplicatively disjoint. �

Lemma 7.5. Let � be a multiplicatively disjoint circuit with edge set �. For each edge 4 ∈ �, let -4 be
an indeterminate. There is a formula � in the -4 ’s of size polynomial in the size of � such that for every
0 ∈ {0, 1} |� | , �(0) is the weight of the parse tree, if the edges “selected” by the vector 0 form a parse tree
in �, and zero otherwise.

Proof. Since by Lemma 7.4, every parse tree is a subcircuit of �, it is sufficient to consider

subtrees of the given circuit. For every node E in �, we introduce an additional variable.E . Note

that for {0, 1} valued variables - and ., we can simulate Boolean AND by -. and Boolean

NOT by 1 − -. We can write the fact that a given vector encodes a parse tree by the following

Boolean expressions: ∧
(8 , 9)∈�

-(8 , 9) ⇒ .8 ∧ .9

ensures that whenever an edge is selected, its end points are selected, too. Let , be the output

gate of �. Then

.,

ensures that the output gate is selected. For a gate ,, let ℓ (,) and A(,) be its children. The

following expression ensures that for every multiplication gate , that is selected, both incoming

edges are selected, too. ∧
multiplication gate ,

., ⇒ -(ℓ (,),,) ∧ -(A(,),,).
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If we replace the Boolean AND on the righthand side by a Boolean XOR, we get an expression

that checks for every selected addition gate whether exactly one of the incoming edges is chosen.

Finally, we have to check that every selected gate has at least one outgoing edge. This is done by

the following expression: ∧
E∈+

©«.E ⇒
∨
(E,D)∈�

-(E,D)
ª®¬ .

We can eliminate all occurences of the newly introduced variables by replacing .E by the

expression ∨
(E,D)∈�

-(E,D)

and ., by 1. The Boolean AND of these expressions is a Boolean formula that is true iff the

vector 0 encodes a parse tree. By the considerations above, it can be replaced by an arithmetic

formula.

If 0 encodes a parsetree, we can get the corresponding weight by the following expression:∏
E∈+
(.E · FE + 1 − .E).

Here FE is the label of E if it is an input gate and 1 otherwise. Again, we can eliminate the .E’s

as above. The product of the two expressions, one for checking whether 0 is a parse tree and

one for computing its weight, is the formula �. �

Corollary 7.6. Let 5 be a polynomial computed by an arithmetic circuit of size B. Then there is an
arithmetic formula � of size polynomial in B and a polynomially bounded ? such that

5 (-) =
∑

0∈{0,1}?(B)
�(-, 0).

Proof. This follows from combining Theorem 6.7, Exercise 7.3, and Lemma 7.5. �

Theorem 7.7. VNP = VNP4 .

Proof. Let ( 5=) be in VNP and (,=) ∈ VP such that

5=(-) =
∑

4∈{0,1}@(=)
,=(-, 4).

Using Corollary 7.6, there is a formula �= of polynomial size such that

,=(-,.) =
∑

0∈{0,1}?(=)
�=(-,., 0).

Therefore,

5=(-) =
∑

4∈{0,1}?(=) , 0∈{0,1}@(=)
�=(-, 4, 0). �

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 10 (2025), pp. 1–166 48

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


INTRODUCTION TO GEOMETRIC COMPLEXITY THEORY

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

D′

E E′

D
−1

D D′

E E′

IG

H

−2

Figure 5: The equality gadget. The pair of edges (D, E) and (D′, E′) of the left-hand side is

connected as shown on the right-hand side.

While the statement of the theorem sounds astonishing at a first glance, it just uses the

fact that we can write the result of a polynomially large circuit by an exponential sum over a

polynomially large formula and then combines the two exponential sums into one.

On a very high level, Theorem 7.7 is similar in nature to the different but equivalent

definitions of NP via a verifier from P or from NC
1
.

7.2 Hardness of the permanent

In this section, we prove that the permanent family is complete for VNP. Let � = (+, �) be an
edge weighted graph. Recall that a cycle cover � of � is a selection of node disjoint directed

cycles such that every node is contained in exactly one cycle. The weightF(�) of � is the product

of the weight of the edges in �. Cycle covers can be viewed as the graph of a permutation. The

cycles in the cycle cover correspond to the cycles in the cycle decomposition of a permutation. If

we also write � for the weighted adjacency matrix of � (by abuse of notation), then

per(�) =
∑

cycle cover � of �

F(�).

Let � be a graph and 4 = (D, E) and 4′ = (D′, E′) be two edges in �. As a first step, we want

to replace � by a graph �̂ such that per(�̂) is the sum over all F(�) such that � is a cycle cover

of � that either contains both 4 and 4′ or none of them. This is achieved by subdividing the

edges and connecting them by an equality gadget as depicted in Figure 5.

Let � be a cycle cover of � that takes both edges. Then there is one way to extend this to a

cycle cover of �̂. The only new edges and nodes in �̂ are the internal ones of the equality gadget.

When both 4 and 4′ are taken, then we only need to cover the internal node. The weight of this

new cycle cover is 2 · F(�), see Figure 6. When � does not take any of the two edges, then there

are six ways to extend �. These six ways sum up to weight 2 · F(�).
If � is a cycle cover of � that takes only one edge of 4 and 4′, say 4, then there are two ways

to extend � to �̂, see Figure 7. The weight of these covers is the same, but they differ in sign,

therefore the contributions of these two covers cancel each other.
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Figure 6: First row: The one possible configuration if both edges are taken. It has weight

−1 · (−2) = 2. Second row: The six possible configurations if none of the edges is taken. They

have weights −1, −1, 1, 1, 1, and 1, respectively.
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Figure 7: First row: The two covers of the equality gadget when only one edge is taken.

Second row: Inconsistent covers of the equality gadget. (In both rows, there is a corresponding

symmetric case).

Finally, there are inconsistent ways to cover the equality gadget in �̂, that is, covers of �̂ that

do not correspond to any cover in �, see Figure 7. Again, we can form pairs of these covers such

that the contribution of these covers cancel each other.

This construction proves the following lemma.

Lemma 7.8. Let F be a field of characteristic distinct from 2. Let � be a graph and 4 and 4′ be edges in
�. Then there is a graph �̂ such that

1

2

per(�̂) =
∑
�

F(�),

where the sum is taken over all cycle covers � of � that either use both of 4 and 4′ or none of them.
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Figure 8: The rosette graph of size four. Connector edges are drawn dashed.

Let ( 5=) ∈ VNP and let (,=) ∈ VP such that

5=(-1 , . . . , -?(=)) =
∑

4∈{0,1}@(=)
,=(-1 , . . . , -?(=) , 41 , . . . , 4@(=)).

By Theorem 7.7 we may assume that (,=) ∈ VP4 . We proved that every polynomial that is

computed by a formula of size B is a projection of a determinant of polynomial size. The same

proof yields that it is also a projection of a polynomially large permanent, since the cycle covers

of the arithmetic branchning program occuring in the proof all had the same sign. It follows that

we can write 5= as an exponential sums of permanents. The permanent itself is an exponential

sum. So we are done if we can “squeeze” the outer exponential sum into the inner one.

The rosette graph of size C consists of a directed cycle of size C. The edges 21 , . . . , 2C of this

cycle are called connector edges. The head and the tail of each connector edge are connected by

a path of length two. Every node has a self-loop. All edges have weight one in the rosette graph.

The following fact is easily verified:

Lemma 7.9. Let ( be a subset of the connector edges.

1. If ( is nonempty, then there is exactly one cycle cover of the rosette graph containing the edges in (
and no other connector edges.

2. There are two cycle covers containing no connector edges.

,= is a projection of a polynomially large permanent. This means that there is an edge

weighted graph � (with the weights being field elements and variables) such that

,=(-1 , . . . , -?(=) , .1 , . . . , .@(=)) =
∑

cycle cover �

F(�).

Assume that the variable .8 occurs ℓ8 times in �. We add a rosette graph of size ℓ8 and connect

every edge labeled with .8 with one of the connector edges of the rosette using an equality
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gadget. All edges inherit their weights from the corresponding subgraphs, that is, the edges

from � get the weights they have in �, the edges in the equality gadgets keep their weights, and

the edges in the rosette graph all have weight one. The only exception are the edges carrying a

weight .8 in �, they get the weight 1 instead. We do this for each 8. Assume, we introduced C

equality gadgets altogether. We will add one isolated self loop with weight 1/2C to compensate

for the 2 that is introduced by every equality gadget. (The characteristic of : should be distinct

from 2 for this!) Let � be the resulting graph.

Let � be a cycle cover of �. F(�) is a monomial <(-1 , . . . , -= , .1 , . . . , .@(=)). Let � be the set
of indices such that .8 appears in F(�). What is the contribution of � in∑

4

,=(-1 , . . . , -?(=) , 41 , . . . , 4@(=))?

If .8 appears in F(�), then we have to set 48 = 1, otherwise, the constribution to the exponential

sum will be zero. If .8 does not appear in F(�), then we can set 48 to 0 or 1. Therefore, the

contribution of � is

2
@(=)−|� |<(-1 , . . . , -?(=) , 1, . . . , 1).

We call a cycle cover � of � consistent if for every equality gadget, either both edges it

connects are chosen or none of them is chosen. A cycle cover � of � can be extended to a

consistent cycle cover of �. If an edge with label .8 appears in �, then we can extend it in one

possible way in the corresponding rosette. If no such edge appears in � then there are two ways.

In total, there are 2
@(=)−|� |

extensions. By Lemma 7.8, we know that

per(�) =
∑

consistent D

F(�).

Therefore,

per(�) =
∑
4

,=(-1 , . . . , -?(=) , 41 , . . . , 4@(=)).

Theorem 7.10. Over fields of characteristic distinct from 2, per is VNP-complete.

Proof. It remains to show that per ∈ VNP. It is quite easy to write a Boolean expression �(.) of
polynomial size which checks whether a given matrix . ∈ {0, 1}=×= is a permutation matrix. As

done before, we can write this as an equivalent arithmetic formula �̂(.). Now it is easy to check

that

per(-) =
∑

.∈{0,1}=×=
�̂(.)

∏
8 , 9

(-8 , 9.8 , 9 + 1 − .8 , 9).

�

Over fields of characteristic 2, the permanent can only be VNP-hard, if VNP = VP, since it

coincides with the determinant in this case. But there are other VNP-complete polynomials

that are also hard over fields of characteristic two like the Hamiltonian cycle polynomial, see,

e. g., [17].
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7.3 Valiant’s conjecture

Valiant’s conjecture is the algebraic counterpart of the P versus NP conjecture.

Conjecture 7.11 (Valiant). VP $ VNP.

Since the permanent is VNP-complete, we can rephrase this conjecture as

per ∉ VP.

SinceVPws ⊆ VP,we can formulate aweaker version ofValiant’s conjecture, namely, VPws $ VNP.

Since VPws has a nice complete family, this version can be reformulated as

per 6≤? det.

It is easy to check that VPws is closed under interpolation and substitutions. Therefore, by

Lemma 5.25, the conjecture VPws $ VP can also be restated as

per 6≤end det.

Here, geometric complexity theory starts. As in the case ofWaring rank, wewill replace arbitrary

endomorphisms by invertible ones.

Valiant’s conjecture

• VNP = VNP4

• per is complete for VNP over fields of characteristic ≠ 2.

• Valiant’s conjecture: VP $ VNP

• weaker variant: VPws $ VNP (equivalent to per 6≤end det)

8 Border complexity and group orbit closures

In this chapter we explain why in Section 3.5 we went frommonoid orbits to group orbit closures:

We phrase the questions from algebraic complexity theory in terms of group orbit closures.

Recall that on the space of polynomials A = ℂ[-1 , . . . , -"]3 we have seen several ways to

measure complexity:

• minimal size of an arithmetic formula in which the leafs are constants or variables,

• minimal size of an arithmetic formula in which the leafs are affine linear forms,

• min{= | ℓ =−3ℎ ∈ End
3=2 imm

(3)
= },
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where ℓ denotes the padding variable (which could be one of the existing variables). For a

p-family either all or none of these measures are polynomially bounded, that is, all measures

can be used to characterize the class VP4 . Recall that VP4 consists of all p-families where these

measures are polynomially bounded.

The class VPws is characterized by the following measures:

• minimal weakly skew circuit size,

• minimal skew circuit size,

• minimal algebraic branching program size,

• min{= | ℓ =−3ℎ ∈ End=3 imm=},

• min{= | ℓ =−3ℎ ∈ End=2det=} (i. e., determinantal complexity).

For a p-family either all or none of these measures are polynomially bounded. The class VPFB

consists of the p-families where these measures are polynomially bounded.

Both classes have a characterization in terms of an endomorphism orbit. Since group orbits

are much easier to handle than monoid orbits, we replace each orbit by its closure. Then we

can replace End< by GL< (like we did for Waring rank). Furthermore, in algebraic geometry,

understanding the closure of constructible sets is often much easier than understanding the set

itself. We refer to [41, App. B] for an extended discussion of this and how it relates to complexity.

We obtain new ways of measuring the complexity of polynomials. We define VP4 to be the

class of p-families where min{= | ℓ =−3ℎ ∈ GL9=imm
(3)
= } is polynomially bounded. We define

VPFB to be the class of p-families where min{= | ℓ =−3ℎ ∈ GL=2det=} is polynomially bounded.

It is easy to see that taking the closure in the other endomorphism description yields the same

class.

In general for a set � of sequences of polynomials we define its closure � as follows: The

sequence ( 5=)= is in � iff there exist polynomials 5=,8 such that

• for all 8, the sequences ( 5=,8)=∈ℕ are in �

• for all =, the sequences ( 5=,8)8∈ℕ converge to 5= .

Clearly � ⊆ �, in particular VP4 ⊆ VP4 , VPws ⊆ VPws, and VNP ⊆ VNP. But the relationship

between � and � is unknown in most cases. It is not even known whether VP4 ⊆ VNP. In

particular we could have that VP4 ≠ VNP but their closures are the same. In this case, the main

methods of this article would fail. In fact, no method that could only work with the closure

could work. Instead, we would have to consider the Zariski-constructible sets themselves and

try to separate them with methods of algebraic geometry.

The classical group orbit closure studied in geometric complexity theory is GL=2det= . For

fixed < and = we search for ways to prove ℓ =−<per< ∉ GL=2det= . Since (per<) is VNP-complete,

proving superpolynomial lower bounds is equivalent to separating VNP * VPFB .

It is a challenging problem to understand the closures of algebraic complexity classes. Some

recent results can be found in [13, 15, 42, 55].
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Border complexity and group orbit closures

The lower bound questions in algebraic complexity theory can be stated in terms of

border complexity.

Proving border complexity lower bounds is a special case of the problem of separating

a point from a group orbit closure.

9 Representation Theory

Recall the group actions from Chapter 3 and in particular the lifting of the action to the function

space. In this chapter we lift group actions again until in Section 10.2 we obtain new significant

search space restrictions for obstructions that come from representation theory. Our ground

field is the complex numbers.

9.1 Key example: Lifting the group action

Let A = ℂ[-1 , . . . , -# ]3. Recall that ℂ[A]� is the vector space of homogeneous degree �
polynomials on A, i. e., ℂ[A]� consists of homogeneous degree � polynomials in the coefficients

of a degree-3 polynomial. Let � B GL# . Since � acts onA, we know that � also acts linearly on

ℂ[A] as follows: for every , ∈ � and every 5 ∈ ℂ[A]we define the polynomial , 5 ∈ ℂ[A] via:

for every ℎ ∈ A we have (, 5 )(ℎ) B 5 (,) ℎ). (9.1)

The following two lemmas are special cases of Lemmas 3.5 and 3.6, since GL# ⊆ End# . We

state them explicitly, since we refer to them frequently.

Lemma 9.1. Let 5 , 5 ′ ∈ ℂ[A] and let , ∈ �. For all complex numbers , ′ we have

,( 5 + ′ 5 ′) = (, 5 ) + ′(, 5 ′).

By induction Lemma 9.1 holds for arbitrary finite linear combinations.

Lemma 9.2. Let 5 , 5 ′ ∈ ℂ[A] and let , ∈ �. Then

,( 5 · 5 ′) = (, 5 ) · (, 5 ′).

Again, as in Chapter 3, this means that we only need to understand the action on single

variables.

Example 9.3. Let # = 2, 3 = 2, � = 2, A = ℂ[-,.]2, and ℂ[A]2 = ℂ[)1 , )2 , )3]2 be the

homogeneous degree 2 functions on A. For the sake of readability, we here reuse the letter 3

differently (with a different meaning): Let , =

(
0 1

2 3

)
. Then ,)- = 0- + 1. and ,). = 2- + 3.
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as in Chapter 3. Thus,

,)-2 = (0- + 1.)2 = 02-2 + 201-. + 12.2 ,

,)-. = 02-2 + (12 + 03)-. + 13.2 ,

,).2 = 22-2 + 223-. + 32.2.

For every polynomial 5 ∈ ℂ[A]1, 5 = )1 + �)2 + �)3, we have 5 (-2) = , 5 (-.) = �, and
5 (.2) = �. Thus 5 = 5 (-2) · )1 + 5 (-.) · )2 + 5 (.2) · )3. Using (,)8)(ℎ) = )8(,) ℎ)we obtain:

,)1 = (,)1)(-2) · )1 + (,)1)(-.) · )2 + (,)1)(.2) · )3 = 0
2)1 + 02)2 + 22)3 ,

,)2 = 201)1 + (12 + 03))2 + 223)3 ,

,)3 = 12)1 + 13)2 + 32)3 ,

,)2

2
= 40212)2

1
+ 401(12 + 03))1)2 + 80123)1)3 + (12 + 03)2)2

2
+ 4(12 + 03)23)2)3 + 42232)2

3
,

,)1)3 = 0212)2

1
+ (0213 + 0122))1)2 + (0232 + 1222))1)3 + 0123)2

2
+ (0232 + 1223))2)3 + 2232)3.

For the discriminant, we obtain

,()2

2
− 4)1)3) = ,)2

2
− 4,)1)3

= 80123)1)3 + (12 + 03)2)2

2
− 4((0232 + 1222))1)3 + 0123)2

2
)

= 80123)1)3 + (1222 + 20123 + 0232))2

2
− (40232 + 41222))1)3 − 40123)2

2

= (80123 − 40232 − 41222))1)3 + (1222 + 20123 + 0232 − 40123))2

2

= 4(20123 − 0232 − 1222))1)3 + (1222 − 20123 + 0232))2

2

= (03 − 12)2)2

2
− 4(03 − 12)2)1)3

= (03 − 12)2()2

2
− 4)1)3)

= det(,)2()2

2
− 4)1)3).

Thus the discriminant is fixed under the group action (up to the prefactor). Indeed, the

discriminant is fixed under the group action of the special linear group (i. e., matrices with

determinant 1).

Example 9.4. Let , =
(
0 1

0 3

)
. Then ,)2

1
= 04)2

1
. Thus the line ℂ)2

1
is fixed under the action of

upper triangular matrices. However, it is not fixed under the action of lower triangular matrices:

Let , =

(
1 0

2 1

)
. Then ,)2

1
= )2

1
+ 22)1)2 + 222)1)3 + 22)2

2
+ 223)2)3 + 24)2

3
. The linear span of

these ,)2

1
is of dimension at least 5: Their coefficient vectors are (1, 22, 222 , 22 , 223 , 24), so putting

2 = −2,−1, 0, 1, 2 yields the rank 5 matrix

©«
1 −4 8 4 −16 16

1 −2 2 1 −2 1

1 0 0 0 0 0

1 2 2 1 2 1

1 4 8 4 16 16

ª®®®®®¬
.
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Remark 9.5. It is a small calculation to verify that for A = ℂ[-,.]2 we have ℂ[A]2 = ℂ()2

2
−

4)1)3) ⊕ 〈GL2)
2

1
〉.

9.2 General representation theory

Remark 9.5 gives an interesting example of a decomposition of ℂ[A]�. It is called the decomposi-

tion into irreducible representations. To understand this decomposition and how it can be used to

restrict the search space for obstructions we now study some basic representation theory. This

section and Chapter 10 are based on [16].

Let � be a group and+ be a finite dimensional complex vector space. Recall the definition of

a linear monoid action fromChapter 3. Nowwe restrict our attention tomonoids that are groups:

A group homomorphism * : �→ GL(+) is called a linear group action or a representation of �.

If the action is understood, then we just say that + is a representation.

Example 9.6. Let � = S= . Let + = ℂ=
and *(�)(48) = 4�(8), that is, the symmetric group on

= letters acts on ℂ=
by permuting the = coordinates. Then (��)(48) = 4�(�(8)) = �(�48) for all

�, � ∈ S= . This is called the defining representation ofS= . The matrices *(�) are called permutation
matrices. They consist of a single 1 in each row and each column, and the rest is filled with zeros.

Example 9.7. Let �= B ℤ/=ℤ denote the cyclic group of order =. We can think of �= ⊆ ℂ as the

group of =-th roots of unity. The identity element in �= is denoted by 1�= . Let �= be generated

by the element ,, i. e., �= = 〈,〉. Let ℂ∗ B ℂ \ {0} = GL1.

Let * : �= → ℂ∗ be a 1-dimensional representation of �= . Since ,= = 1�= we have

1 = *(1�= ) = *(,=) = *(,)= , thus *(,) = �: for some : ∈ ℤ and � B e

2�8
= . Indeed, each : gives a

representation.

Example 9.8. As we saw in Section 9.1, for A = ℂ[-1 , . . . , -# ]3 the vector space ℂ[A]� is a GL#
representation.

Remark 9.9. Representations are sometimes called modules. Representations of � are precisely

the finite dimensional modules where the underlying ring is the group algebra of �. The

group algebra ℂ[�] is defined as the vector space of formal linear combinations of finitely

many group elements. Two elements of ℂ[�] are multiplied via the obvious convolution:

(∑8 8,8) · (
∑
9 � 9, 9) =

∑
8 , 9 8� 9(,8, 9), where 8 , � 9 ∈ ℂ and ,8 , , 9 ∈ �.

Definition 9.10. A linear subspace, ⊆ + of a representation + is called a subrepresentation if it

is closed under the action of �, i. e.,

∀, ∈ �∀F ∈, : ,F ∈,.

The zero vector space and + itself are always subrepresentations. These are called the trivial

subrepresentations.

Example 9.11. Let ℂ=
denote the defining representation of S= . Then F B 41 + 42 + · · · + 4= is

fixed under the action of S= and hence the line ℂF is a subrepresentation.
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It is easy to verify that in general, for every element E ∈ + , the linear span 〈�E〉 of the orbit
�E is a subrepresentation.

Example 9.12. According to Example 9.3, for the discriminant, 〈GL2(12−402)〉 is a 1-dimensional

subrepresentation of ℂ[A]2, where A = ℂ[-,.]2.

Example 9.13. Let / ⊆ A be a set that is closed under the action of GL# . Then the vanishing

ideal �(/)� is a subrepresentation of ℂ[A]�. This can be seen as follows: Let , ∈ GL# and I ∈ /.
If 5 vanishes on /, then (, 5 )(I) = 5 (,)I) = 0 for all , ∈ GL# , because ,)I ∈ /.

Definition 9.14. If a representation + only has the two trivial subrepresentations, then + is

called irreducible.

From the definition it is clear that every 1-dimensional representation is irreducible.

Lemma 9.15. Let �= B ℤ/=ℤ. Every irreducible �=-representation is 1-dimensional.

Proof. Let �= = 〈,〉. Let + be a representation of �= . Consider *(,) ∈ GL(+) and let E ∈ + \ {0}
be an eigenvector of *(,) to some eigenvalue � ∈ ℂ. Then the line ℂE is a subrepresentation of

+ , because:

∀ ∈ ℂ : ,(E) = *(,)(E) = �E ∈ ℂE

and thus ,:(E) = ,(, · · · (,(,E)) · · · ) = �:E ∈ ℂE. Thus if+ is irreducible,+ is 1-dimensional.

�

We will see in Corollary 10.10 that for separating points ℎ from orbit closures �2 it suffices

to consider polynomials that lie in irreducible representations. This significantly strengthens

Proposition 4.17.

Representations

A group homomorphism �→ GL(+) is a representation. If the action is understood,

we simply call the representation + .

The vanishing ideal �(/)� of a set / ⊂ A that is closed under the action of � is a

subrepresentation of ℂ[A]�.

10 Representation theory of finite groups and Maschke’s theorem

Recall from Proposition 4.17 that in order to prove that a certain homogeneous polynomial ℎ of

degree � is not contained in some orbit closure GL# 2, we want to find a homogenous polynomial

5 ∈ ℂ[A]with 5 (GL# 2) = {0} and 5 (ℎ) ≠ 0. Since GL# is linearly reductive (see below), we can

find such an 5 in an irreducible subrepresentation of �(�2)�. While the linear reductivity of

GL# is beyond the scope of these lecture notes, we will prove it for finite groups.
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10.1 Maschke’s theorem

Definition 10.1. Let * and, be linear subspaces of + . We say that + is the direct sum of *

and, if for every E ∈ + there is a unique D ∈ * and F ∈ , such that E = D + F. We write

+ = * ⊕, .

If + is a �-representation and* and, are subrepresentations such that + = * ⊕, , then

we say that* and, are representation complements.

Example 10.2. Let ℂ=
denote the defining representation of S= . Then ℂ= = 〈41 + · · · + 4=〉 ⊕, ,

where, = {F ∈ ℂ= | F1 + · · · + F= = 0}. We have dim* = 1, dim, = = − 1,* ∩, = 0, thus

* ⊕, = ℂ=
.

Does every subrepresentation have a complement? In this chapter we will see that the

answer is yes, provided that � is finite.

Definition 10.3. An inner product on a finite dimensional complex vector space + is a map

〈., .〉 : + ×+ → ℂ

with

• 〈1E1 + 2E2 , F〉 = 1〈E1 , F〉 + 2〈E2 , F〉 for all 8 ∈ ℂ, E8 , F ∈ + ,

• 〈E, F〉 = 〈F, E〉, where the bar denotes complex conjugation,

• 〈E, E〉 > 0 if E ≠ 0.

For a linear subspace* ⊆ + the orthogonal complement*⊥ is defined as

*⊥ B {E ∈ + | ∀D ∈ * : 〈E, D〉 = 0}.

Lemma 10.4. If* ⊆ + is a linear subspace, then*⊥ ⊆ + is a linear subspace and + = * ⊕*⊥.

Proof. If E1 , E2 ∈ *⊥ and 1 , 2 ∈ ℂ, then let D ∈ * and calculate

〈1E1 + 2E2 , D〉 = 1〈E1 , D〉 + 2〈E2 , D〉 = 0 + 0 = 0,

thus*⊥ ⊆ + is a linear subspace. If D ∈ * and D ∈ *⊥, then 〈D, D〉 = 0 and hence D = 0, thus

* ∩*⊥ = 0. Since dim*⊥ = = − dim* (*⊥ is the vanishing set of dim* linearly independent

linear constraints: 〈E, D8〉 = 0 for all basis vectors D8 ∈ *), we have + = * ⊕*⊥. �

For ℂ=
, we can define the inner product 〈E, F〉 B ∑=

:=1
E:F: , thus every finite dimensional

complex vector space has an inner product.

Definition 10.5. 〈., .〉 is called �-invariant, if for all , ∈ �, E, F ∈ + :

〈,E, ,F〉 = 〈E, F〉.

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 10 (2025), pp. 1–166 59

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs
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Lemma 10.6. Let 〈., .〉 be �-invariant and let* ⊆ + be a subrepresentation. Then*⊥ ⊆ + is also a
subrepresentation.

Proof. Let E ∈ *⊥, , ∈ �. We have to show that ,E ∈ *⊥. Let D ∈ * be arbitrary. Then

〈,E, D〉 = 〈,E, ,,−1D〉 (∗)= 〈E, ,−1D︸︷︷︸
∈*

〉 = 0.

where (∗) holds because 〈., .〉 is �-invariant. �

Lemma 10.7. Let � be finite and let + be a �-representation. Then + has a �-invariant inner product.

Proof. Let 〈., .〉′ be an inner product on + . For E, F ∈ + , we define

〈E, F〉 B 1

|� |
∑
,∈�
〈,E, ,F〉′

It is straighforward to verify that 〈., .〉 is an inner product on+ . We show that 〈., .〉 is �-invariant:
Let ,′ ∈ �.

〈,′E, ,′F〉 = 1

|� |
∑
,∈�
〈,,′E, ,,′F〉′ = 1

|� |
∑
G∈�
〈GE, GF〉′ = 〈E, F〉.

�

Of course, dividing by |� | in the proof of Lemma 10.7 is optional, but itmakes the construction

idempotent: if 〈., .〉′ is already �-invariant, then 〈., .〉′ = 〈., .〉.

Theorem 10.8 (Maschke’s theorem). Let � be finite and + be a �-representation. Then + decomposes
into a direct sum + = *1 ⊕*2 ⊕ · · · ⊕*C of irreducible �-representations*8 .

Proof. We proceed by induction on dim+ =: 3. If 3 = 0, then C = 0. For the induction step we

make a case distinction. If + is irreducible, then we are done. If + is not irreducible, then let

* ∈ + be a nontrivial subrepresentation, i. e.,* ≠ 0 and* ≠ + . Let 〈., .〉 be a �-invariant inner
product on + , which exists by the previous lemma, and let*⊥ be the orthogonal complement

of* with respect to this inner product.

Using Lemma 10.4 and Lemma 10.6 we see that + = * ⊕*⊥ with the �-representations*

and*⊥. Using the induction hypothesis on* and*⊥ we see that both decompose into a direct

sum of irreducibles. Summing up this sum finishes the proof. �

10.2 Search space restrictions

Groups for which every representation decomposes into a direct sum of irreducibles are called

linearly reductive or just reductive (which is the same over fields of characteristic 0). We just showed

that finite groups are reductive. For us it will be important to know that GL# is reductive.
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Theorem 10.9. Every finite dimensional polynomial/rational GL# -representation + decomposes into a
direct sum + = *1 ⊕*2 ⊕ · · · ⊕*C of irreducible polynomial/rational GL# -representations*8 .

The proof of Theorem 10.9 uses the same idea as Maschke’s theorem, but the invariant scalar

product is created by using the compact Zariski-dense subgroup SU# ⊆ GL# and normalizing

using the so-called Haar measure. We omit the details here, because they require some measure

theory.

The next corollary strengthens Proposition 4.17 by putting another significant restriction on

the search space for our obstructions that we search to find complexity lower bounds.

Corollary 10.10. Let / $ A be a Zariski-closed cone that is closed under the action of GL# . We have
seen that �(/)� is a GL# -representation and hence by Theorem 10.9 �(/)� decomposes into a sum of
irreducibles. Let ℎ ∉ /. Then there exists an irreducible GL# -representation* ⊆ �(/)� and an 5 ∈ *
such that 5 (ℎ) ≠ 0.

Proof. Let 0 ≠ �(/)� = *1 ⊕ · · · ⊕ *: . Pick 0 ≠ 5 ∈ �(/)� with 5 (ℎ) ≠ 0. Write 5 = 51 + · · · + 5:
with 58 ∈ *8 , so in particular 58 ∈ �(/)�. Since 5 (ℎ) ≠ 0 there exists 8 with 58(ℎ) ≠ 0. �

Search space restrictions

GL# is a reductive group, that is, every GL# -representation decomposes into a direct

sum of irreducible GL# -representations.
If ℎ ∉ GL# 2, then for some degree � a separating polynomial 5 can be found in an

irreducible representation of �(GL# 2)�.

11 The irreducible representations of the general linear group: First
properties

Since by Corollary 10.10 we can find obstructions in irreducible GL=-representations, we want

to understand the structure of irreducible GL=-representations better. In this chapter we will

prove the existence of so-called highest weight vectors in irreducible representations of GL= .
These will be sufficient to separate points from orbit closures.

We follow [51, III.1.3–III.1.4].

11.1 Equivariant maps and isomorphisms

Given two representations (+, *) and (+′, *′) of a group �, a linear map ! : + → +′ is called
equivariant or a �-morphism if

∀, ∈ �, E ∈ + : ,!(E) = !(,E),

or in other words, *′(,)!(E) = !(*(,)E). If ! is an equivariant vector space isomorphism, then

we say that + and +′ are isomorphic representations.
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Definition 11.1. Let � ≤ GL= be a subgroup (we will take � to be GL= or the group of diagonal

matrices). A representation * : � → GL(+) is called polynomial if the dim(+)2 coordinate

functions are multivariate polynomials in the =2
coordinate functions of GL= .

Example 11.2. ℂ[A]� is a polynomial representation, see Proposition 3.21. Subrepresentations

of polynomial representations are polynomial.

Example 11.3. Letℂ2 = 〈E1 , E2〉. Let� = GL1×GL1 act onℂ
2
via (,1 , ,2)(E1 , E2) = (,2

1
.E1 , ,1,2

2
.E2),

where we used lower dots for the product of a scalar and a vector. We see thatℂ2
is a polynomial

representation of � that decomposes into a direct sum ℂ2 = ℂE1 ⊕ ℂE2 of two polynomial

subrepresentations.

Our goal is to classify the classes of isomorphic polynomial irreducible representations of

GL= . In order to do that, we will generalize Example 11.3.

11.2 The algebraic torus and the weight decomposition

Before we study the irreducible representations of GL= , in this section we study the subgroup of

invertible diagonal matrices in GL= .

Definition 11.4. )= B (ℂ×)= ⊆ GL= denotes the group of invertible diagonal matrices, also

called the algebraic torus.

We prove that )= is linearly reductive and we fully describe its irreducible representations.

Recall that a matrix , is called diagonalizable if there exists an invertible matrix % such that

%−1,% is a diagonal matrix. Matrices with pairwise distinct eigenvalues are diagonalizable, in

particular the set of diagonalizable matrices lies dense in the set of all matrices, i. e., every matrix

can be approximated arbitrarily closely by diagonalizable matrices via slight perturbations of

the entries.

We will use the following lemma for subgroups � which consist of representation matrices

*(C) ∈ GL(+), where C ∈ )= .

Lemma 11.5 (Simultaneous diagonalizability). Let � ≤ GL(+) be an abelian subgroup and each
, ∈ � diagonalizable. Then � is simultaneously diagonalizable, i. e., there exists % ∈ GL(+) such that
for all , ∈ � we have that %−1,% is a diagonal matrix.

Proof. The proof is by induction on the size of the matrices. The base case is when all matrices

of � have only one eigenvalue. This in particular includes the case for which the matrices have

size 1 × 1.

If , = (−1�( is diagonalizable (with a diagonal matrix �) and has only one eigenvalue �,
then , = diag(�, . . . ,�), because (−1

diag(�, . . . ,�)( = �(−1( = diag(�, . . . ,�). If all , ∈ � have

only one eigenvalue, then there is nothing to show, because all , are diagonal.

Let , ∈ � with at least 2 eigenvalues. Then find (−1,( = diag(�1 , . . . ,�1 ,�2 , . . . ,�2 , . . .).
Note that since 1, = ,1 for all 1 ∈ � we have (−11((−1,( = (−1,((−11(. Therefore

diag(�1 , . . . ,�1 ,�2 , . . . ,�2 , . . .)(−11( = (−11(diag(�1 , . . . ,�1 ,�2 , . . . ,�2 , . . .)
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and hence all matrices in (−1�( are block diagonal, where the block sizes depend only on the

multiplicities of the eigenvalues of ,.
Then by the induction hypothesis the single blocks can be simultaneously diagonalised

by matrices (1 , (2 . . .. Then diag((1 , (2 , . . .) simultaneously diagonalizes (−1�( and thus

% B ( · diag((1 , (2 , . . .) simultaneously diagonalizes �. �

Let (+, *) be a polynomial representation of )= . Since the elements of )= commute, all

elements *(C), C ∈ )= , commute. Let � B {*(C) | C ∈ )=}. To apply Lemma 11.5 we need that

each *(C) is diagonalizable. This is achieved in the following lemma.

Lemma 11.6. Let (+, *) be a polynomial representation of )= . Then *(C) is diagonalizable for every
C ∈ )= .

Proof. We start with a fact on multivariate interpolation. A multivariate polynomial 5 of

degree 3 in = variables is uniquely defined by its (3 + 1)= evaluations 5 (G1 , . . . , G=) at points
(G1 , ..., G=) ∈ ℂ=

, where we put 3 + 1 different values for each of the G8 , as can be seen by

multivariate interpolation.

Let )̃= ≤ )= denote the subgroup of elements diag(C1 , . . . , C=) for which each C8 has finite

order (i. e., C8 is a root of unity). By definition )̃= = ()̃1)= . For every :, the primitive :-th roots of

unity are in )̃1, in particular )̃1 has infinitely many elements. By multivariate interpolation we

conclude that if 5 vanishes on ()̃1)= , then 5 = 0. We say that ()̃1)= = )̃= lies Zariski-dense in ℂ=
.8

All elements in )̃= commute. Thus all elements in *()̃=) commute. Given B ∈ )̃= , let 〈B〉 be
the cyclic group generated by B. Since 〈B〉 is a finite cyclic group, it is linearly reductive and

its irreducible representations are 1-dimensional (Theorem 10.8 and Lemma 9.15). Thus we

can decompose + into 〈B〉-irreducibles, each spanned by a single vector E8 . Now %−1*(B)% is

diagonal, where the columns of % are given by the E8 : For standard basis vectors 48 we have

(%−1*(B)%)48 = %−1*(B)E8 = %−1E8 = 48 for some  ∈ ℂ. Therefore *(B) is diagonalizable and
using Lemma 11.5 we see that *()̃=) is simultaneously diagonalizable: There exists % such that

%−1*()̃=)% are all diagonal.

Define 58 , 9 : ℂ= → ℂ, (C1 , . . . , C=) ↦→ (%−1*(diag(C1 , . . . , C=))%)8 , 9 . We just saw that 58 , 9(B) = 0

for all B ∈ )̃= , 8 ≠ 9. Since )̃= lies Zariski-dense in ℂ=
it follows that 58 , 9(C) = 0 for all C ∈ ℂ=

, 8 ≠ 9.

Thus %−1*(C)% is diagonal for all C ∈ )= . �

Lemma 11.7. Given a nonzero multivariate polynomial � in = variables C = (C1 , . . . , C=) with �(C2) =
(�(C))2, where C2 B (C2

1
, . . . , C2=). Then � is a monomial.

Proof. For natural numbers :1 , . . . , := we have that �(:1 , :2 , . . . , := ) is a univariate nonzero
polynomial �(). Moreover, �()2 = �(2). The idea is that if :1 � :2 � · · · � := , then there is

a 1:1 correspondence between the nonzero homogeneous parts �8 of �—which are just single

monomials, since � is univariate—and the monomials in � with nonzero coefficient. (This

kind of substitution is also called Kronecker substition and has been used in polynomial identity

8 Remark: )̃
1
is an example of a set for which Zariski and Euclidean closure are not the same. The Zariski closure

is ℂ, the Euclidean closure is the unit circle. )̃
1
is not constructible.
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testing.) Because of this correspondence it suffices to show that � is homogeneous, since this

imples that � is a single monomial or zero.

For the sake of contradiction assume that � is not homogeneous, so assume that � = �8+� 9+�′
with �8 ≠ 0 being homogeneous of degree 8 and � 9 ≠ 0 being homogeneous of degree 9,

8 > 9, and �′ being of degree less than 9. Then �(2) = 28�8(1) + 29� 9(1) + $(29−2) and
�()2 = 28�8(1)2 + 29� 9(1)2 + 28+9�8(1)� 9(1) + $(8+9−1). Comparing the coefficient of degree

8 + 9 we see that 28+9�8(1)� 9(1) ≠ 0, in contradiction to �(2) = �()2. �

Theorem 11.8. For C = diag(C1 , . . . , C=) ∈ )= and � ∈ ℕ= we write C� B
∏=

8=1
C
�8
8
∈ ℂ.

For every polynomial representation * : )= → GL(+) we have that

+ =
⊕
�∈ℕ=

+� ,

where
+� B {E ∈ + | *(C)E = C�E for all C ∈ )=}.

Proof. Using Lemma 11.6, {*(C) | C ∈ )=} is simultaneously diagonalizable, so there is % ∈ GL(+)
such that %−1*(C)% is diagonal for every C ∈ )= . Therefore the 8-th diagonal entry of %−1*(C)%
is given by a function �(C). Since * is a polynomial representation, each � is a multivariate

polynomial in = variables. Since %−1*(C)% ≤ GL(+) is a subgroup of diagonal matrices,

�(CC′) = �(C)�(C′), where the product CC′ is defined componentwise. Using Lemma 11.7 it follows

that �(C) = C� for some �. �

The decomposition in Theorem 11.8 is called the weight decomposition. +� is called the weight
space of weight � and a vector in +� is called a weight vector of weight �.

Corollary 11.9. The polynomial irreducible representations of )= are 1-dimensional and indexed by lists
in ℕ= .

Proof. Given a polynomial irreducible representation + of )= , by Theorem 11.8, + decomposes

into a direct sum of weight spaces, each of which decomposes (arbitrarily) into a direct sum

of 1-dimensional irreducible )=-representations. Since + is irreducible, there can be only one

summand. It follows that each polynomial irreducible representation is 1-dimensional and a

weight space for some weight � ∈ ℕ=
.

Moreover, let � ≠ � and+ and, be 1-dimensional with weight � and �, respectively. For the
sake of readability we use lower dots for scalar multiplication: If ! : + →, is )=-equivariant,

then !(CE) = !(C�.E) = C�.!(E) ≠ C�.!(E) = C!(E) and thus + and, are not isomorphic. The

other direction works analogously: If � = �, then + and, are isomorphic. �

GL= versus )=

Every polynomial )=-representation decomposes into a direct sum of weight spaces,

indexed by � ∈ ℕ=
. This is called the weight decomposition.

Since a polynomial irreducible GL=-representation is also a polynomial )=-

representation, it also has a weight decomposition.
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11.3 Highest weight vectors

As seen in the last section, every polynomial irreducible GL=-representation has a weight

decomposition. This is a first structural result about irreducible GL=-representations. In this

section we fully classify the irreducible GL=-representations.
Embed � : S= ↩→ GL= via permutation matrices, i. e., the permutation � is mapped to the

matrix that has entries 1 at positions (8 ,�(8)) and zeros everywhere else. One can readily verify

that � is a group homomorphism. S= acts on ℕ=
in the natural way by permuting the positions,

so �(�) B (��−1(1) , . . . ,��−1(=)).

Lemma 11.10. Given a GL=-representation + and let +� denote its � weight space. Let S= act on + via
� : S= ↩→ GL= . Then �+� = +�(�).

Proof. Let E ∈ +�, C = (C1 , . . . , C=) ∈ )= and � ∈ S= .

For the sake of readability let the lower dot denote the multiplication with a scalar from the

left. We calculate: �(�−1)diag(C1 , . . . , C=)�(�) = diag(C�(1) , . . . , C�(=)) =: C�. Since

C�E = diag(C�(1) , . . . , C�(=))E = C�1

�(1) · · · C
�=
�(=).E = C

��−1(1)
1

· · · C
��−1(=)
= .E = C�(�).E,

we have

C(�E) = C�E = (��−1)C�E = �(�−1C�)E = �(C�E) = �(C�(�).E) = C�(�).(�E),

and therefore �E ∈ +�(�). We conclude �+� ⊆ +�(�) and by symmetry �+� = +�(�). �

Definition 11.11. A finite list of natural numbers � ∈ ℕ=
is called a partition if it is nonincreasing,

i. e., �1 ≥ �2 ≥ . . . ≥ �= . We define |�| B ∑=
8=1

�8 . More generally, we define |�| B ∑=
8=1

�8 for
all � ∈ ℤ=

. We say that � is a partition of # if |�| = # .

Onℤ=
we define the following partial order, the so-called dominance order. Two lists �, � ∈ ℤ=

satisfy � D � iff

• for all 1 ≤ 8 ≤ =: ∑8
9=1

� 9 ≥
∑8
9=1

�9 .

In this situation we say that � dominates �. Usually when comparing � and � we have |�| = |�|.
We write � ⊲ � to denote that both � D � and � ≠ � hold.

Example 11.12. We have (6, 3, 3) D (6, 2, 2, 2), because 6 ≥ 6, 6 + 3 ≥ 6 + 2, 6 + 3 + 3 ≥ 6 + 2 + 2,

and 6 + 3 + 3 + 0 ≥ 6 + 2 + 2 + 2.

Dominance is a partial order: (6, 3, 1, 1) 4 (5, 3, 3) and (6, 3, 1, 1) 5 (5, 3, 3).

Let *= ≤ GL= denote the subgroup of upper triangular matrices with 1s on the diagonal.

Analogously, let *−= ≤ GL= denote the subgroup of lower triangular matrices with 1s on the

diagonal.

Lemma 11.13. Let E be a weight vector of weight � and let , ∈ *= . Then ,E = E + F, where
F ∈

⊕
�⊲�+�.

If , ∈ *−= instead, then ,E = E + F, where F ∈
⊕

�⊳�+�.
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Proof. We only prove the first part. The second part is completely analogous. Again, for the

sake of readability we sometimes use the lower dot to denote the multiplication with a scalar

from the left.

Define G8 9(), 8 ≠ 9, to be the identity matrix plus a single  ∈ ℂ in row 8, column 9. We prove

the result for , = G8 9() with 8 < 9. This is without loss of generality, because*= is generated as

a group by these G8 9().
For C = diag(C1 , . . . , C=) ∈ )= we have CG8 9()C−1 = G8 9(C8 · C−1

9
· ).

Let {F1 , . . . , F�} be a basis of + . Since * is a polynomial representation, each coordinate

function of G8 9()E is a univariate polynomial in :

G8 9()E =
�∑
B=1

(
∑
ℎ≥0

2ℎ,B
ℎ)FB =

∑
ℎ≥0

ℎ .Eℎ

with 2ℎ,B ∈ ℂ and Eℎ B
∑�
B=1

2ℎ,BFB .

Since G8 9(0) = Id= , it follows G8 9(0)E = E, thus we get that the constant term E0 = E. We have

CG8 9()E = CG8 9()C−1CE = (G8 9(C8C−1

9 ))CE = (G8 9(C8C−1

9 ))(C�.E)

= C�.(G8 9(C8C−1

9 ))E = C�.
∑
ℎ≥0

Cℎ8 .C
−ℎ
9 .ℎ .Eℎ =

∑
ℎ≥0

ℎ .(C�+ℎ�8 9 .Eℎ),

where �8 9 B (0, 0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0) with the 1 at position 8 and the −1 at position 9.

On the other hand

CG8 9()E = C(
∑
ℎ≥0

ℎ .Eℎ) =
∑
ℎ≥0

ℎ .CEℎ

Comparing coefficients we see that

CEℎ = C
�+ℎ�8 9 .Eℎ ,

thus each Eℎ is an element of +�+ℎ�8 9 .
The proof is finished by observing that � ⊳ (� + ℎ�8 9) for 8 < 9, 0 < ℎ. �

Let �= ≤ GL= denote the subgroup of upper triangular matrices. A 1-dimensional linear

subspace ℂE of a GL=-representation + is called a �=-stable line, if it is closed under the action of

�= . Since )= ≤ �= is a subgroup, in a polynomial GL=-representation every �=-stable line is also

a 1-dimensional )=-representation and hence every �=-stable has a weight � ∈ ℕ=
.

Corollary 11.14. Let+ be a GL=-representation and E ∈ +� for some � ∈ ℕ= such thatℂE is a �=-stable
line. Then 〈GL=E〉 ⊆ ℂE ⊕∑

�⊳�+�.
Proof. The set *−=)=*= ⊆ GL= is dense, because LU factorization of matrices almost always

(on a Zariski open subset) works without pivoting, in other words GL= = *−=)=*= , where the

closure is taken in GL= . Thus GL=E = *−=)=*=E ⊆ *−=)=*=E ⊆ ℂ ·*−= E. Lemma 11.13 yields

ℂ ·*−= E ⊆ ℂE +∑
�⊳�+�. The right hand side is closed, since it is a finite-dimensional vector

space, thus ℂ ·*−= E ⊆ ℂE +∑
�⊳�+�. Therefore GL=E ⊆ ℂE +∑

�⊳�+�. Since the right hand side

is a vector space, it follows that 〈GL=E〉 ⊆ ℂE +∑
�⊳�+�. �
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The following theorem completely classifies the irreducible GL=-representations by the

weight of their unique �=-stable line.

Theorem 11.15. a’) Let + be a polynomial GL=-representation with a �=-stable line ℂE ⊆ + . Then
〈GL=E〉 is irreducible.

a) For each irreducible polynomial GL=-representation + there exists exactly one �=-stable line
ℂE ⊆ + . Let � be the weight of E, called the highest weight of + . Then the �-weight space
+� = ℂE is 1-dimensional. Furthermore we have that � is a partition and for all weights � that
appear in + (i. e., +� ≠ 0) we have � E �.

b) Two irreducible polynomial representations + and +′ are isomorphic, iff their highest weights �
and �′ are equal.

c) Let � ∈ ℕ= be a partition. Then there exists an irreducible polynomial representation of GL= with
highest weight �.

Remark 11.16. In the situation a) we call E a highest weight vector (HWV).

Proof. (c) For every partition � we can explicitly construct an irreducible representation. The

construction is slightly technical and we postpone it until Section 17.

(a’) Let ℂE be a �=-stable line of weight � and let, B 〈GL=E〉. Decompose, =
⊕

8,8

into irreducible GL=-representations,8 . Decompose the,8 further into their weight spaces

spanned by weight vectors E 9 , so that the E 9 form a basis of, . Since E ∈, has weight �, one
of the E 9 must have weight �. Let E 9 ∈ ,8 =: , ′. By Cor. 11.14 the � weight space,� of, is

1-dimensional and thus the � weight space, ′� is also 1-dimensional, in fact, ′� = ,�. Thus

E ∈, ′�. Thus, = 〈GL=E〉 ⊆ , ′. Hence, is irreducible.

(a) Let ℂE ⊆ + be a �=-stable line. The orbit span 〈GL=E〉 ⊆ + is a subrepresentation, but

since+ is irreducible, actually+ = 〈GL=E〉. Using Cor. 11.14 we see that 〈GL=E〉 ⊆ ℂE +∑
�⊳�+�.

Therefore:

• The poset (with respect to the dominance order) of weights that occur in + has a

maximum: �

• In + there is a unique line of weight �.

We now see that the �=-stable line in + is unique. A second �=-stable ℂF line would have a

weight � ⊳ �, but then 〈GL=F〉 ⊆ ℂF +∑
�⊳�+� would not contain ℂE, which is a contradiction

to + being irreducible. Thus the �=-stable line in + is unique.

If � is not a partition, then �(�) is a partition for some � ∈ S= . By Lemma 11.10, �+� = +�(�).
But �(�) ⊲ � (easy exercise for the reader), a contradiction to � dominating all weights in + .

It remains to show that there exists a �=-stable line. Take all weights � for which +� ≠ 0

and take a maximal element � with respect to the dominance order. Take 0 ≠ E ∈ +�. Use

Lemma 11.13 to see that *=E = E. Thus + contains at least the *=-stable line ℂE. Since

�= = )=*= and since E ∈ +�, it follows that ℂE is a �=-stable line.
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(b) Isomorphic representations clearly have equal highest weights: If ! : + → +′ is an
isomorphism, then E is �=-stable iff !(E) is �=-stable. Moreover, C!(E) = !(CE) = !(C�E) =
C�!(E).

To see the other direction, let � = �′, where ℂE ⊆ + and ℂE′ ⊆ +′ are the �=-stable lines

in + and +′, respectively. Consider the GL=-representation + ⊕ +′, ,(D, D′) B (,D, ,D′) for all
D ∈ + , D′ ∈ +′, , ∈ GL= . Then F B (E, E′) ∈ + ⊕ +′. Let, B 〈GL= · F〉 ⊆ + ⊕ +′. Since � = �′

it follows that F has weight � and ℂF ⊆ , is a �=-stable line. By part (a’) we have that, is

irreducible.

We write + = + ⊕ {0} and +′ = {0} ⊕ +′. Then, ∩ +′ ⊆ , is a subrepresentation, but

, is irreducible, so , ∩ +′ = , (i. e., , ⊆ +′) or , ∩ +′ = {0}. Since F ∈ , , but F ∉ +′,
we have , ∩ +′ = {0}. But , ∩ +′ is the kernel of the linear projection map pr : , → + ,

(E, E′) ↦→ E. Thus pr is injective. Moreover, pr is equivariant. Thus p̃r : , → pr(,), F ↦→ pr(F)
is a GL=-isomorphism. Its image is thus a subrepresentation of + , isomorphic to , . But

+ is irreducible and , ≠ {0}, thus + and , are isomorphic GL=-representations (+ � ,).

Analogously we show that, � +′ and thus + � +′. �

The previous theorem gives a complete characterization of irreducible polynomial GL=-
representations+ : Using part (a) we see that+ has a unique �=-stable line ℂE of some weight �.
Using part (a’) we see that + = 〈GL=E〉. Using parts (b) and (c) we see that there is a 1:1

correspondence between partitions into at most = parts and isomorphism types of irreducible

polynomial GL=-representations.

Example 11.17. Let A = ℂ[-,.]2, + = ℂ[A]2. The calculation from Example 9.3 shows that the

discriminant 5 B )2

2
− 4)1)3 satisfies , 5 = det(,)2 5 and thus diag(1 , 2) 5 = 2

1
2

2
5 , so 5 is a

weight vector of weight (2, 2). Moreover, , 5 = 5 if det(,) = 1, in particular 5 is fixed under*= .

Thus ℂ 5 is a �=-stable line. Hence 5 is a highest weight vector of weight (2, 2).
Example 9.4 shows analogously that the polynomial )2

1
is a highest weight vector of weight

(4, 0).
Each orbit span of a HWV is an irreducible subrepresentation. Here the orbit span of

the discriminant is 1-dimensional, while the orbit span of )2

1
is 5-dimensional. Since + is

6-dimensional this concludes the decomposition into irreducibles, as already pointed out in

Remark 9.5: the 6-dimensional GL2-representation + decomposes into a direct sum of two

irreducibles: One of type (4, 0) and one of type (2, 2).

11.4 Highest weight vector obstructions

In this section we will see how Corollary 10.10 can be strenghtened even further with an

additional significant search space restriction for obstructions: we only need to consider HWVs,

see Corollary 11.19.

Proposition 11.18. Let A = ℂ[-1 , . . . , -# ]3. Then ℂ[A]� decomposes into irreducibles as

ℂ[A]� =
⊕
8

+8 ,
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where the type of each +8 is a partition of 3�.

Proof. We consider the action of C B diag(, . . . , ) ∈ )= on ℂ[A]�. Indeed, C 5 = 3� 5 for every
5 ∈ ℂ[A]�. Thus each weight vector 5 ∈ ℂ[A]� of weight � (i. e., C 5 = C� 5 ) must satisfy

3� 5 = C 5 = C� 5 = C�1

1
C
�2

2
· C�== 5 = �1+···+�= 5 ,

thus �1 + · · · + �= = 3�. In particular this is true for highest weight vectors. The statement

follows with the classification in Theorem 11.15. �

Corollary 11.19. Let A = ℂ[-1 , . . . , -# ]3. Let 2 ∈ A, � = GL# . If ℎ ∉ �2, then there exists � ∈ ℕ,
� ∈ ℕ# a partition of �3, and a highest weight vector 5 ∈ ℂ[A]� of weight �, such that 5 (�2) = {0}
and for almost all group elements , ∈ � we have 5 (,ℎ) ≠ 0. (“Almost all” means that the set of , for
which 5 (,ℎ) = 0 is a Zariski-closed proper subset of �.)

Proof. From Corollary 10.10 we already know that an 5 exists that is contained in the homoge-

neous degree � part �(�2)� of the vanishing ideal, but that also satisfies 5 (ℎ) ≠ 0. Moreover,

�(�2)� is a subrepresentation of ℂ[A]�, so we can decompose it into irreducibles

�(�2)� =
⊕
9∈Ω

+9

for a finite index set Ω, where by Prop. 11.18 the type of each +9 is a partition of 3�. Now we

can write 5 =
∑
9∈Ω 59 , where 59 ∈ +9 . By Theorem 11.15(a),(a’) it follows that we can write the

finite sum 59 =
∑
8 , 9 ,8 59 ,8 , where , 9 ,8 ∈ � and 59 ,8 is an HWV (scalars in the linear combination

can be merged with the HWVs, so they do not appear in the sum).

Since 5 (ℎ) ≠ 0, we have that (, 9 ,8 59 ,8)(ℎ) ≠ 0 for some 9 , 8. This means 59 ,8(,)9,8ℎ) ≠ 0, which

proves the first part of the corollary, choosing , = ,)
9,8
. For the second part we have to analyze

the subset of group elements ,̃ ∈ � that satisfy 59 ,8(,̃ℎ) ≠ 0. But 59 ,8(,̃ℎ) is a polynomial in the

entries of ,̃. This finishes the proof. �

The following calculation gives a feel that looking at HWVs should be useful.

For A = ℂ[-1 , . . . , -"]3 we have dimℂ[A]� =
(�+(3+"−1

3 )−1

�

)
. Thus if " = 3 = � = 6 we have

dimℂ[A]� = 13 949 678 575 756. But one can compute that the dimension of the vector space of

highest weight vectors is only 31 781 and the highest dimension of the highest weight subspace

in a +� is 105.

More crucially, the dimensions of the highest weight vector spaces do not change when

increasing ", but dimℂ[A]� increases significantly! For A = ℂ[-1 , . . . , -"]2 we have

dimℂ[A]2 =
(
1+(1+"

2
)

2

)
= "4

8
+ "3

4
+ 3"2

8
+ "

4
, but we will see that the dimension of the

space of HWVs is just 2, independent of ", provided " ≥ 2.
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Irreducible representations of GL= and HWVs

The irreducible polynomial representations of GL= are indexed by partitions � ∈ ℕ=
.

Each irreducible polynomial representation + has a unique highest weight vector (up

to scale): A weight vector that is �=-stable. Its weight determines the isomorphism

type of + .

For proving lower bounds ℎ ∉ �2 we can restrict our search for obstructions 5 to

highest weight vectors. This greatly reduces the dimension of the search space.

12 Schur’s lemma, multiplicities, and isotypic decompositions

So far we restricted the search space for obstructions further and further. In this chapter we

want to present a sufficient criterion for obstructions that is not known to be a necessary criterion:

Comparing representation-theoretic multiplicities, see Section 12.4. This strategy for proving

ℎ ∉ �2 is mathematically beautiful, but still bears many open research questions.

Again we follow Bürgisser’s lecture notes.

12.1 Schur’s lemma

For a group � and two �-representations + and, we define

Hom�(+,,) B {! | ! : + →, a �-morphism}.

Hom�(+,,) is a vector space and a linear subspace ofHom(+,,). Moreover, defineEnd�(+) B
Hom�(+,+).

Lemma 12.1. Let ! ∈ Hom�(+,,). Then

1. ker! B {E ∈ + | !(E) = 0} is a subrepresentation of +

2. im! B {!(E) | E ∈ +} is a subrepresentation of,

Proof. It is clear that kernel and image are linear subspaces. We have to verify that both are

closed under the group action.

If E ∈ ker! and , ∈ �, then !(,E) = ,!(E) = ,0 = 0 and thus ,E ∈ ker!.
If F ∈ im! and , ∈ �, then choose E ∈ + such that !(E) = F. Then ,F = ,!(E) = !(,E) ∈

im!. �

We write + � , to denote that + and , are isomorphic representations, and + � ,

otherwise.

Lemma 12.2 (Schur’s lemma). Let + and, be irreducible �-representations. Then

1. + �, ⇒ Hom�(+,,) = 0
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2. + � , ⇒ dim Hom�(+,,) = 1

Proof. 1.: We show the contraposition and thus assume the existence of a �-morphism ! : + →
, , ! ≠ 0.

• ker! $ + is a subrepresentation. Since + is irreducible, it follows that ker! = 0, thus !
is injective.

• 0 ≠ im! ⊆ , is a subrepresentation. Since, is irreducible, im! =, , thus ! is surjective.

Putting both bullet points together we see that ! is bĳective. Thus + � , .

2.: We first treat the case + =, . Let ! ∈ End�(+) be arbitrary. Let E be an eigenvector of !
to the eigenvalue . Then ! − id ∈ End�(+) and E ∈ ker(! − id).

0 ≠ E ∈ ker(! − id)︸          ︷︷          ︸
subrepresentation of +

+ irred⇒ ker(! − id) = +,

thus ! − id = 0, therefore ! = id.

For the more general case + � , let # ∈ Hom�(+,,) be a �-isomorphism. Let ! ∈
Hom�(+,,) be arbitrary. Then #−1 ◦ ! ∈ End�(+) = ℂid+ . Thus there exists  ∈ ℂ with

#−1 ◦ ! = id+ . Therefore ! = #. We conclude that Hom�(+,,) = ℂ#. �

12.2 Multiplicities

In this section we present the definition of representation-theoretic multiplicities. We will use

this to define special types of obstructions, see Section 12.4.

Corollary 12.3. Let + be a �-representation. Let + = *1 ⊕ · · · ⊕ *C be a decomposition into
irreducibles. Let, be an irreducible �-representation. Then |{8 | *8 � ,}| = dim Hom�(,,+) =
dim Hom�(+,,).

Proof. Let pr8 : + → *8 denote the 8-th canonical projection. The following is an isomorphism

of vector spaces:

C⊕
8=1

Hom�(,,*8) → Hom�(,,+)

(!1 , . . . , !C) ↦→
(
F ↦→ !1(F) + . . . + !C(F)

)
(pr

1
◦ #, . . . , prC ◦ #) ↦→#

Schur’s lemma implies dim

⊕C
8=1

Hom�(,,*8) =
∑C
8=1

dim Hom�(,,*8) = |{8 | *8 � ,}|,
which finishes the proof of the first equality. For the second part we proceed analogously with
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an isomorphism of vector spaces.

C⊕
8=1

Hom�(*8 ,,) → Hom�(+,,)

(!1 , . . . , !C) ↦→ !1 ◦ pr
1
+ · · · + !C ◦ prC

(# |*1
, . . . ,# |*C ) ↦→#

Schur’s lemma implies dim

⊕C
8=1

Hom�(*8 ,,) =
∑C
8=1

dim Hom�(*8 ,,) = |{8 | *8 � ,}|,
which finishes the proof of the second equality. �

From this corollary we see that |{8 | *8 � ,}| is independent of the decomposition. This

justifies the name “multiplicity” in the following definition.

Definition 12.4. For a �-representation+ and an irreducible �-representation, themultiplicity
mult, (+) of, in + is defined as

mult, (+) B dim Hom�(,,+).

Corollary 12.5. If* ⊆ + is a subrepresentation, then mult, (*) ≤ mult, (+).

Proof. If* ⊆ + , then Hom�(,,*) is a linear subspace of Hom�(,,+). �

Corollary 12.6. If * � + is a �-equivariant surjection of representations, then mult, (*) ≥
mult, (+).

Proof. Let ! : * � + be a �-equivariant surjection. Define the linear map � : Hom�(+,,) →
Hom�(*,,) by �(#) = # ◦ !. It remains to show that � is injective. For this we assume that

�(#) = 0, i. e., # ◦ ! = 0. Since ! is surjective, it follows # = 0. �

In the case where � = GL# we have the following very useful way of determining multiplici-

ties:

Proposition 12.7. If + is a GL# -representation, then mult�(+) = dim HWV�(+), where HWV�(+) is
the linear subspace of highest weight vectors of weight � in + .

Proof. Fix an irreducible GL# -representation ,� and fix a nonzero vector ℎ from the 1-

dimensional linear subspace of HWVs in ,�. By Theorem 11.15(a’), if 0 ≠ E ∈ HWV�(+),
then 〈GL#E〉 is irreducible. By Lemma 12.2 it follows that dim Hom�(,� , 〈GL#E〉) = 1. Since

every equivariant map maps HWVs of weight � to HWVs of weight � or to 0, every element

in Hom�(,� , 〈GL#E〉) has !(ℎ) = E for some  ∈ ℂ. Moreover, for each  there exists such a

�-homomorphism.

Now we have the following isomorphism of vector spaces HWV�(+) → Hom�(,� , +):

E ↦→
(
! ∈ Hom�(,� , 〈GL#E〉), !(ℎ) = E

)
with inverse map ! ↦→ !(ℎ). �
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12.3 Isotypic components

In this section we assume that our group � is linearly reductive. The decomposition into

irreducible representations might not be unique as soon as the multiplicity of some isomorphism

type � exceeds 1. In this section we group together isomorphic copies of the same irreducible

representation to obtain the unique isotypic decomposition.
A representation+ is called isotypic if+ is a (not necessarily direct or finite) sum of irreducible

representations that are all isomorphic.

Definition12.8. Let� be agroupand let+ be a�-representation (inparticularfinitedimensional).

Let , be an irreducible �-representation and define � to to be its isomorphism type. The

isotypic component +� of type � is defined as the (possibly infinite) sum

∑
8 +8 of all irreducible

subrepresentations of type �.

For example the weight spaces in Section 11 are isotypic components, where the group � is

the algebraic torus.

Lemma 12.9. An isotypic representation of type � decomposes into a direct sum of irreducibles of type �.

Proof. Let + be isotypic and write + = �1 + · · · + �C with �8 irreducible of type � and C minimal.

Clearly C is finite because dim+ is finite and dim�8 ≥ 1. For the sake of contradiction assume

that the sum is not direct: There exists G8 ∈ �8 such that G1 + · · · + GC = 0 and w.l.o.g. GC ≠ 0.

Thus GC = −(G1 + · · · + GC−1) and hence (�1 + · · · + �C−1) ∩ �C ≠ 0. Since �C is irreducible:

�C ⊆ �1 + · · · + �C−1, which is a contradiction to C being minimal. �

Proposition 12.10. Every representation + decomposes into a direct sum of isotypic representations
+ =

⊕
�+�, where � runs over all types of irreducible representations.

Proof. Let + = "1 ⊕ · · · ⊕ ": be a decomposition into irreducibles. Then mult�(+) equals the
number of times for which "8 is of type �. Define the direct sum

" B
⊕

8 with "8 of type �

"8 ,

so dim" = mult�(+) · dim�, where dim� denotes the dimension of the irreducible represen-

tation of type �. It remains to show that " = +�, because then we see that the direct sum of

isotypic components results from adding up isomorphic copies of irreducible representations.

Clearly " ⊆ +�.
Since+� decomposes into a direct sum of irreducibles of type � (Lemma 12.9), the number of

summands in this decomposition ismult�(+�) byCor. 12.3. Thereforedim+� = mult�(+�)·dim�.
Since +� ⊆ + it follows mult�(+�) ≤ mult�(+) and thus dim+� ≤ mult�(+) · dim� = dim".

Since dim+� ≤ dim" and " ⊆ +�, we conclude " = +�. �
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12.4 Using multiplicities or occurrences as obstructions

Let A = ℂ�
. For a Zariski-closed set / ⊆ A we define the coordinate ring

ℂ[/] B ℂ[A]/�(/)

If / is a cone, then ℂ[/] is graded via ℂ[/]� = ℂ[A]�/�(/)�.

Lemma 12.11. Let � be a group,+ be a �-representation, and let there exist a �-invariant inner product
on + . If* ⊆ + is a subrepresentation, then the quotient +/* is also a �-representation. More precisely,
+ � * ⊕ +/* .

Proof. Since * is a �-representation, for , ∈ � we have ,* = * as a set. Thus if E ∈ + , then
E +* ∈ +/* and ,(E +*) = ,E + ,* = ,E +* ∈ +/* .

If we have a �-invariant inner product, then + = * ⊕ *⊥. We now show that *⊥ ' +/* .

Let ? : + � *⊥ be the projection that sends* to 0. The equivariant isomorphism +/* → *⊥

is given by E +* ↦→ ?(E +*) = ?(E)with inverse map F ↦→ F +* . �

From the lemma we conclude that if ℂ[A]� is a �-representation and �(/)� is a �-

representation, then ℂ[/]� is a �-representation.
An approach towards proving complexity lower bounds goes as follows. Let /′ ⊆ / be

a Zariski-closed cone that is closed under the action of GL" . Think of GL=2+1
)=−<per< ⊆

GL=2+1
det= or of GL=2-=−<

1,1
per< ⊆ GL=2det= for some fixed values of = and <. Then �(/)� ⊆

�(/′)� and thus we obtain a canonical GL=2-equivariant surjection ℂ[/]� � ℂ[/′]�. By Schur’s

lemma (Cor. 12.6) this implies mult�(ℂ[/]) ≥ mult�(ℂ[/′]).
Thus if we want to prove /′ * /, it is sufficient to show the existence of some � that satisfies

mult�(ℂ[/]) < mult�(ℂ[/′]). Such � are called representation theoretic multiplicity obstructions. If
mult�(ℂ[/]) = 0 < mult�(ℂ[/′]), then these � a called occurrence obstructions.

Mulmuley and Sohoni conjectured that one could separate VNP * VPFB by using occurrence

obstructions, but this was recently rejected:

Conjecture 12.12. For every polynomial ? there exist infinitely many < and = ≥ ?(<) with: If
/′ B GL=2-=−<

1,1
per< and / B GL=2det= , then there exists � with mult�(ℂ[/′]) > 0 = mult�(ℂ[/]).

Theorem 12.13 ([23]). Let = ≥ <25 and let /′ B GL=2-=−<
1,1

per< and / B GL=2det= . If
mult�(ℂ[/′]) > 0, then mult�(ℂ[/]) > 0.

It is an open problem if multiplicities can be used to separate orbit closures. More specifically,

it is open if VNP * VPFB can be proved using representation theoretic multiplicity obstructions.

12.4.1 Plethysm coefficients

When we try to find � such that mult�(ℂ[/′]) > mult�(ℂ[/]) > 0, then a necessary condition

is that the plethysm coefficient exceeds mult�(ℂ[/]), which we explain in this section (see

Lemma 12.14).
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Let A = ℂ[-1 , . . . , -"]3. Fix � ∈ ℕ. Let � be a partition of 3�. Define the plethysm coefficient
as

0�(�, 3) B mult�(ℂ[A]�).

We will see later (Proposition 19.8) that 0�(�, 3) basically does not depend on ": Define

ℓ (�) B max{8 | �8 > 0}. If ℓ (�) > ", then 0�(�, 3) = 0. On the other hand 0�(�, 3) has the same

value for all " ≥ ℓ (�). Therefore we define 0�(�, 3) to be the value for large ".

Finding a combinatorial description for 0�(�, 3) is a major open problem in algebraic

combinatorics. It is problem 9 on Stanley’s problem list from 2000 [74]. In terms of theoretical

computer science, this quesion can be phrased as: Is the function (�, �, 3) ↦→ 0�(�, 3) in the

complexity class #%? Here we are allowed to encode the partition � in unary.

The Schur software and the LiE software can compute plethysm coefficients.

Lemma 12.14. There exists � with mult�(ℂ[�E]�) < 0�(�, 3) iff the type � occurs in the vanishing
ideal �(�E)�.

Proof. ℂ[A]� = �(�E)� ⊕ ℂ[�E]� and thus 0�(�, 3) = mult�(ℂ[�E]�) +mult�(�(�E)�). �

Multiplicities

Representation-theoretic multiplicities count how often an irreducible representation

occurs in a decomposition into irreducibles.

The vanishing ideal and the coordinate ring are dual notions. Their multiplicities add

up to the plethysm coefficient.

An attack route towards finding obstructions goes via comparing multiplicities in

coordinate rings of orbit closures. Occurrence obstructions are known not to separate

VPFB from VNP.

13 Tensors for computer scientists

In this chapter we discuss tensors. This will serve mainly two purposes: To discuss the

computational complexity of bilinear maps using geometric complexity theory, and to explicitly

construct the irreducible representations of GL= and their highest weight vectors.

13.1 Bilinear forms

Let* and+ be vector spaces over F . All vector spaces are assumed to be finite dimensional. Let

5 : * ×+ → F be a bilinear form, that is, a form which is linear in both components. We denote

the set of all bilinear forms by Bil(*,+ ; F ). A linear form ℓ : * → F is uniquely determined

when we know its values at any basis D1 , . . . , D< of* . How about 5 ?

Lemma 13.1. Let D1 , . . . , D< and E1 , . . . , E= be bases of * and + , respectively. Then 5 is uniquely
determined by the values 58 , 9 B 5 (D8 , E 9), 1 ≤ 8 ≤ <, 1 ≤ 9 ≤ =.
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Proof. Let , : * ×+ → F be another bilinear form with ,(D8 , E 9) = 58 , 9 , 1 ≤ 8 ≤ <, 1 ≤ 9 ≤ =. Let
D =

∑<
8=1

8D8 and E =
∑=
9=1

� 9E 9 be arbitrary. We have

,(D, E) = ,(
<∑
8=1

8D8 ,
=∑
9=1

� 9E 9)

=

<∑
8=1

8,(D8 ,
=∑
9=1

� 9E 9)

=

<∑
8=1

=∑
9=1

8� 9,(D8 , E 9)

=

<∑
8=1

=∑
9=1

8� 9 58 , 9

= 5 (D, E).

Note that to get the last line, we used bilinearity again. �

By choosing the bases, we identiy * with F< and + with F = . Now, we can write 5 even

more concretely as

5 (G, H) =
<∑
8=1

=∑
9=1

58 , 9G8H 9 .

(As a golden rule, you should avoid specifying a basis unless it is really neccessary. However, it

is at first more intuitive to think in terms of bases.) You usually think of G8 as an indeterminate,

and to evaluate 5 we substitute the value 8 for G8 . But you can also think of G8 being a linear

form mapping (by substitution) a vector

∑<
8=1

8D8 to 8 , that is, G1 , . . . , G< is a dual basis to

D1 , . . . , D< . The same is true for H1 , . . . , H= . The products of linear forms G8H 9 form a basis of the

linear space of bilinear forms* ×+ → F . Recall that the set of all linear forms on* or + are

denoted by*∗ of +∗, respectively.

Definition 13.2. The space of all bilinear forms* ×+ → F is called the tensor product of*∗

and +∗ and is denoted by*∗ ⊗ +∗.

Let G =
∑<
8=1

8G8 ∈ *∗ and H =
∑=
9=1

� 9H 9 ∈ +∗. We have

GH =

<∑
8=1

=∑
9=1

8� 9G8H 9 .

How do you get the tensor product* ⊗+? You simply start with bilinear forms*∗×+∗ → F .

While this looks complicated at a first glance—bilinear forms mapping pairs of linear forms to

scalars—also*∗ is just a vector space and once you choose a basis, everything is isomorphic to

some F< .
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Exercise 13.3. Prove that Hom(*,+) � *∗ ⊗ + . While this is absolutely clear to every mathe-

matican, computer scientists tend to forget about this pretty soon. (Or even never learned it this

way.)

The previous exercise identifies linear maps * → + with bilinear forms on * ×+∗. Both
objects are specified by a two-dimensional array of field elements and we interpret this data

in two different ways. So Hom(*,+) � Bil(*,+∗; F ) essentially says nothing. However, by

re-interpreting objects in the right way, one can often prove astonishing facts very quickly. You

should get used to this!

13.2 Universal property

We can define tensor products also in terms of a universal property. A tensor product of

two spaces * and + is a vector space, denoted by * ⊗ + , together with a bilinear map

) : * ×+ → * ⊗+ such that for any bilinear map 1 : * ×+ →, , there is a unique linear map

ℓ : * ⊗ + →, such that 1 = ℓ ◦ ). Given a tensor product, we set D ⊗ E B )(D, E) for every
D ∈ + and E ∈ + .

Theorem 13.4. Let* and + be (finite-dimensional) vector spaces.
1. * and + have a tensor product.

2. Any two tensor products of* and + are isomorphic.

3. If D1 , . . . , D< is a basis of* and E1 , . . . , E= is a basis of + , then D8 ⊗ E 9 , 1 ≤ 8 ≤ <, 1 ≤ 9 ≤ = is
a basis of* ⊗ + .

Proof. To prove the first item, we construct an explicit tensor product. It will be the construction

of the previous section. We set* ⊗ + = Bil(*∗ , +∗; F ) and )(D, E)(G, H) = G(D) · H(E). Then the

third item immediately follows from the discussion right after Lemma 13.1.

Let 1 : * × + → , be a bilinear map. We choose a basis D1 , . . . , D< of * and a basis

E1 , . . . , E= of + . To finish the proof of the first item, we define the linear map ℓ : * ⊗ + →, by

ℓ (D8 ⊗ E 9) B 1(D8 , E 9), 1 ≤ 8 ≤ <, 1 ≤ 9 ≤ =. Note that for D =
∑<
8=1

8D8 and
∑=
9=1

� 9E 9 , we have

ℓ (D ⊗ E) = ℓ (
<∑
8=1

8D8 ⊗
=∑
9=1

� 9E 9)

= ℓ (
<∑
8=1

=∑
9=1

8� 9D8 ⊗ E 9)

=

<∑
8=1

=∑
9=1

8� 9ℓ (D8 ⊗ E 9)

=

<∑
8=1

=∑
9=1

8� 91(D8 , E 9)

= 1(D, E),
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so ℓ ◦ ) and 1 are equal. ℓ is unique, since it is defined on a basis of* ×+ .

It remains to prove the second item. Assume we have two tensor products * ⊗ + , ) and

* ⊗′ + , )′. We apply the definition of tensor product to* ⊗ + and ) and let the bilinear map

1 = )′ and the vector space, = * ⊗′ + . We get a linear map ℓ : * ⊗, → * ⊗′ + such that

ℓ ◦ ) = )′. In the same way, by interchanging the roles of the two tensor products, we get a

linear map ℓ ′ : * ⊗′ + → * ⊗ + . The situation is depicted below:

* ×+

* ⊗ +

* ⊗′ +

)

)′

ℓℓ ′

We have ℓ ′ ◦ ℓ ◦ ) = ℓ ′ ◦ )′ = ). We apply the definition of tensor product to * ⊗ + and

) and let the bilinear map be ) and the vector space, = * ×+ . Then the linear map can be

the identity and it can be ℓ ′ ◦ ℓ by the equation above. By the uniqueness of the linear map, we

get that ℓ ′ ◦ ℓ is the identity (on * ⊗ +). In the same way, we get that ℓ ◦ ℓ ′ is the identity (on

* ⊗′ +). Thus ℓ and ℓ ′ are isomorphisms. �

Exercise 13.5. Let* , + , and, be vector spaces. Prove the following (the isomorphisms can be

proved using the univesal property):

1. * ⊗ + � + ⊗* .

2. * ⊗ (+ ⊗,) � (* ⊗ +) ⊗, .

3. dim* ⊗ + = dim* · dim+ .

The second item says that the tensor product is associative (up to isomorphisms), therefore,

we simply can write* ⊗ + ⊗, . One could also define a threefold tensor product directly by

defining it as the vector space of trilinear form *∗ × +∗ ×, ∗ → F . In the same way, we can

build the tensor product of an arbitrary number of vector spaces.

13.3 Tensor rank

Elements of the form D ⊗ E ∈ * ⊗ + are called elementary or decomposable or rank-one tensors. Not

all elements are elementary, for instance D1 ⊗ E1 + D2 ⊗ E2 is not elementary when D1 and D2 as

well as E1 and E2 are linearly independent. In general, if we have a tensor product +1 ⊗ · · · ⊗ +: ,
we call elements of the form E1 ⊗ · · · ⊗ E: with E8 ∈ +8 elementary (or decomposable or rank-one

tensors).

The rank of a matrix " can be defined as the minimum number A of rank one matrices

(1 , . . . , (A such that " = (1 + · · · + (A . In the same way, we define the rank of a tensor

C ∈ +1 ⊗ · · · ⊗ +: as the minimum number of rank-one tensors B1 ⊗ · · · ⊗ BA ∈ +1 ⊗ · · · ⊗ +: such
that

C = B1 + · · · + BA .
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We denote the rank of a tensor by '(C).
Note that this generalizes the rank of a matrix. Any matrix " can be interpreted as an

element of*∗ ⊗ + . A rank-one matrix ( can be written as ( = 0 · 1 where 0 is a column vector

and 1 is a row vector. Then for any column vector G,

( · G = (0 · 1) · G = (1 · G) · 0,

because 1 · G is a 1 × 1 matrix. In this way, we can interpret 1 as a linear form on* .

Note that for matrices, we have further equivalent definitions of rank. In particular, there are

efficient algorithms for computing the rank. This is not true for tensors in a threefold (or higher)

tensor product. Here the problem is NP-hard [43], even complete for the existential theory over

the underlying ground field F [71, 72], and also hard to approximate [12, 78, 73].

13.4 Actions on tensor products

Let +1 , . . . , +: and *1 , . . . , *: be vector spaces and let �8 ∈ Hom(+8 , *8), 1 ≤ 8 ≤ :. We can

extend the �8 to a homomorphism

�1 ⊗ · · · ⊗ �: : +1 ⊗ · · · ⊗ +: → *1 ⊗ · · · ⊗*:

in the following way: Let E1 ⊗ · · · ⊗ E: ∈ +1 ⊗ · · · ⊗ +: . We set

�1 ⊗ · · · ⊗ �:(E1 ⊗ · · · ⊗ E:) = �1(E1) ⊗ · · · ⊗ �:(E:)

and extend �1 ⊗ · · · ⊗ �: to +1 ⊗ · · · ⊗ +: by linearity.

Exercise 13.6. Prove that �1 ⊗ · · · ⊗ �: is well-defined, that is, if we decompose a tensor C in two

different ways into rank-one tensors, then we get the same result.

Definition 13.7. Let C ∈ +1 ⊗ · · · ⊗ +: and B ∈ *1 ⊗ · · · ⊗*: . We call B a restriction of C and write

B ≤ C if there are �8 ∈ Hom(+8 , *8), 1 ≤ 8 ≤ :, such that �1 ⊗ · · · ⊗ �:(C) = B.

The proof of the following lemma is obvious.

Lemma 13.8. If B is a restriction of C, then '(B) ≤ '(C).

We can let End(+1) × · · · × End(+:) act on +1 ⊗ · · · ⊗ +: by

(�1 , . . . , �:)C = �1 ⊗ · · · ⊗ �:(C).

If*8 is a subspace of +8 , then we can write the fact that B is a restriction of C as a monoid orbit

problem, namely, B ≤ C iff
B ∈ (End(+1) × · · · × End(+:))C.

Note that by Lemma 13.8, this means that '(B) ≤ '(C). In the next chapter, we will see how we

can interpret this in terms of complexity.
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The language of tensors

The language of tensors is a natural way of describing multilinear maps.

This will help us in the study of the complexity of bilinear maps.

Moreover, tensor products are fundamental building blocks in the representation

theory of GL= .

14 Complexity of bilinear maps

The following two chapters give a brief introduction to the tensor rank problem and its relation

to fast matrix multiplication. Many results have been taken from [10], nevertheless we decided

to restate them explicitly for the reader’s convenience. For even more details, the reader is

referred to [10] and the references given there.

14.1 Strassen’s algorithm

Given a : ×<-matrix G = (Gℎ8) and and < × =-matrix H = (H8 9)whose entries are indeterminates

over some field F , we want to compute their product GH = (Iℎ 9). The entries Iℎ 9 are given by

Iℎ 9 =

<∑
8=1

Gℎ8H8 9 , 1 ≤ ℎ ≤ :, 1 ≤ 9 ≤ <. (14.1)

In 1969, Strassen [75] found a way to multiply 2 × 2-matrices with only 7 multiplications but 18

additions.

Let I8 9 , 1 ≤ 8 , 9 ≤ 2, be given by(
I11 I12

I21 I22

)
=

(
G11 G12

G21 G22

) (
H11 H12

H21 H22

)
.

We compute the seven products

?1 = (G11 + G22)(H11 + H22),
?2 = (G21 + G22)H11 ,

?3 = G11(H12 − H22),
?4 = G22(−H11 + H21),
?5 = (G11 + G12)H22 ,

?6 = (−G11 + G21)(H11 + H12),
?7 = (G12 − G22)(H21 + H22).

We can express each of the I8 9 as a linear combination of these seven products, namely,(
I11 I12

I21 I22

)
=

(
?1 + ?4 − ?5 + ?7 ?3 + ?5

?2 + ?4 ?1 + ?3 − ?2 + ?6

)
.
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By applying this construction recursively, we get the well-known algorithm which multiplies

matrices in time $(=log
2

7). To make the recursion work, it is crucial that the entries are bilinear

products.

14.2 Relation to tensor rank

Assume that in general, we have : bilinear forms

Iℎ =

<∑
8=1

=∑
9=1

C8 , 9 ,ℎG8H 9 , ℎ = 1, . . . , :

and we have A bilinear products

?� = (D�,1G1 + · · · + D�,<G<)(E�,1H1 + · · · + E�,<H<)

such that we can write each Iℎ as a linear combination of them, that is,

Iℎ = F1,ℎ?1 + · · · + FA,ℎ?A .

We can view the “array” C = (Cℎ,8, 9) as a tensor in F : ⊗ F< ⊗ F = . The products ?1 , . . . , ?A
correspond to a decomposition of C into rank-one tensors: Namely, let F� = (F�,1 , . . . , F�,:),
1 ≤ � ≤ A and define D� and E� accordingly. Then

F� ⊗ D� ⊗ E� = (F�,ℎD�,8E�, 9)

and by comparing coefficients, we get that

C =

A∑
�=1

F� ⊗ D� ⊗ E�.

In the same way, if we have a decomposition of C into A rank-one tensors, then we can obtain A

bilinear products such that each Iℎ is contained in their linear span. Therefore, the minimal

number of such products is precisely '(C).

14.3 The exponent of matrix multiplication

We denote the tensor of the multiplication of : × <-matrices with < × =-matrices by 〈:, <, =〉.
The corresponding tensor lives in F :×< ⊗ F<×= ⊗ F =×: . We here transpose the matrices in the

last component for symmetry reasons. Note that every component is indexed by double-indices.

We have

I 9′,ℎ =

<∑
8=1

Gℎ,8H8 , 9′ =

:∑
ℎ′=1

<∑
8=1

<∑
8′=1

=∑
9=1

�ℎ,ℎ′�8 ,8′� 9 , 9′Gℎ′,8H8′, 9 ,

Thus 〈:, <, =〉 = (�ℎ,ℎ′�8 ,8′� 9 , 9′). Figure 9 contains an explicit description of the tensor of

2 × 2-matrix multiplication.
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G1,1 G1,2 G2,1 G2,2

H1,1 (1, 1) (1, 2)
H2,1 (1, 1) (1, 2)
H1,2 (2, 1) (2, 2)
H2,2 (2, 1) (2, 2)

Figure 9: The tensor of 2 × 2-matrix multiplication. It is {0, 1}-valued. An entry (ℎ, 9) in the

row (ℎ, 8) and column (8 , 9) means that Gℎ,8H8 , 9 appears in I 9 ,8 . Recall that we transposed the

third component.

Definition 14.1. $ = inf{� | '(〈=, =, =〉) ≤ O(=�)} is called the exponent of matrix multiplication.

In the definition of $ above, we only count bilinear products. For the asymptotic growth, it

does not matter whether we count all operations or only bilinear products [7], see also [19, 10].

Let $̃ be the infimum over all � such that there is a family of arithmetic circuits of size O(=�)
computing the product of two = × =-matrices. Since these circuits compute forms of degree

two, we can make these circuits homogeneous such that the only nonscalar multiplications are

products of linear forms.

Theorem 14.2. $ = $̃.

Proof. We first prove $ ≤ $̃: Consider an arbitrary circuit computing the product of two

matrices. Let A be number of nonscalar multiplications in it. As in the transformation of

arbitrary circuits into homogeneous ones, we now compute with each homogeneous component

separately. Note that since the output of each circuit is homogeneous of degree two, we only

need to keep the components of degree up to two. The only nonscalar multiplications that we

need to perform are the multiplications between the degree-one-terms, which is a product of

linear forms. Therefore, we can modify the circuit as follows: We first compute several linear

forms, then we perform A multiplications in them and then we compute linear combinations of

the A products.

Does this prove that the rank is bounded by A, too? Not quite. The linear forms can be linear

forms in the entries of both matrices. Consider such a product D(-,.)E(-,.). We can write

D(-,.) = D′(-) + D′′(.). We do the same for E. Then

D(-,.)E(-,.) = D′(-)E′(-) + D′(-)E′′(.) + D′′(.)E′(-) + D′′(.)E′′(.).

Since the outputs are all bilinear forms, the contribution of all D′(-)E′(-) and of all D′′(.)E′′(.)
cancel. Therefore, we can replace the product above by two bilinear products D′(-)E′′(.) +
D′′(.)E′(-). Therefore, the rank is bounded by 2A and $ ≤ $̃.

For the other inequality, note that from the definition of $, it follows that

∀& > 0 : ∃ and <0 > 1 : ∀< ≥ <0 : '(〈<, <, <〉) ≤  · <$+& .

Let & > 0 be given and choose < large enough. Let A = '(〈<, <, <〉).
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To multiply < 8 × < 8
-matrices we decompose them into blocks of < 8−1 × < 8−1

-matrices and

apply recursion. To multiply matrices of arbitrary sizes, we can pad with 0 to the next power of

<. Let �(=) be the number of arithmetic operations for the multiplication of = × =-matrices

with this approach. We obtain

�(=) ≤ A�(=/<) + 2(=/<)2

where 2 is the number of additions and scalar multiplications that are performed by the chosen

bilinear algorithm for 〈<, <, <〉 with A bilinear multiplications. Solving the recursion using the

master theorem [29], we get �(=) = $(=log< A). (Note that A > <2
in general, so log< A > 2 and

we are in the first case of the master theorem.)

Since A ≤  · <$+&
, we have log< A ≤ $ + & + log< . With &′ = & + log< ,

!(〈=, =, =〉) = $(=log< A) = $(=$+&′).

Thus

$̃ ≤ $ + & for all & > 0,

since log< → 0 if < →∞. This means $̃ = $, since $̃ is an infimum. �

Remark 14.3. The lower bound '(〈=, =, =〉) ≥ 5

2
=2 − 3= was obtained in [8]. [52] improved this

lower bound to '(〈=, =, =〉) ≥ 3=2 − >(=2).

14.4 Rank and restrictions

In the following, 〈A〉 denotes the tensor in F A ⊗ F A ⊗ F A that has a 1 in the positions (�, �, �),
1 ≤ � ≤ A, and 0s elsewhere (a “diagonal”, the three-dimensional analogue of the identity

matrix). This tensor corresponds to the A bilinear forms G�H�, 1 ≤ � ≤ A (A independent products)
and is called the unit tensor.

Lemma 14.4. '(C) ≤ A ⇔ C ≤ 〈A〉.

Proof. "⇐": follows immediately from the observations that B ≤ B′ implies '(B) ≤ '(B′).
"⇒": 〈A〉 =

A∑
�=1

4� ⊗ 4� ⊗ 4�, where 4� is the �th unit vector. If the rank of C is ≤ A, then we can

write C as the sum of A triads,

C =

A∑
�=1

D� ⊗ E� ⊗ F�.

We define three homomorphisms

 : 4� ↦→ D� , 1 ≤ � ≤ A,
� : 4� ↦→ E� , 1 ≤ � ≤ A,
� : 4� ↦→ F� , 1 ≤ � ≤ A.
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By construction,

( ⊗ � ⊗ �)〈A〉 =
A∑

�=1

(4�)︸︷︷︸
=D�

⊗ �(4�)︸︷︷︸
=E�

⊗ �(4�)︸︷︷︸
=F�

= C.

�

Thus we can rephrase the question whether '(〈=, =, =〉) ≤ A as 〈=, =, =〉 ≤ 〈A〉. Note that

〈=, =, =〉 and 〈A〉 live in general in different spaces, (F =×=)⊗3
and (F A)⊗3

. For A ≥ =2
we can embed

〈=, =, =〉 into (F A)⊗3
by padding the tensor with zeros. Therefore, the question '(〈=, =, =〉) ≤ A

is equivalent whether the padded 〈=, =, =〉 is in the End(F A)×3
-orbit of 〈A〉.

14.5 Permutations of matrix multiplication tensors

Let C ∈ F : ⊗ F< ⊗ F = and C =
A∑
9=1

C 9 with rank-one tensors C 9 = 0 91 ⊗ 0 92 ⊗ 0 93, 1 ≤ 9 ≤ A. Let

� ∈ S3, where S3 denotes the symmetric group on {1, 2, 3}. For a rank-one tensor C 9 , let

�C 9 = 0 9�−1(1) ⊗ 0 9�−1(2) ⊗ 0 9�−1(3) and �C =
∑A
9=1

�C 9 . It is an easy exercise to prove that �C is
well-defined. The proof of the following lemma is obvious.

Lemma 14.5. '(C) = '(�C).

Let C = (Cℎ′,8 ,8′, 9 , 9′,ℎ) = 〈:, <, =〉 and � = (123). Then for �C =: C′ ∈ F (=×:) ⊗ F (:×<) ⊗ F (<×=),
we have

C′9′,ℎ,ℎ′,8 ,8′, 9 = � 9 , 9′�ℎ,ℎ′�8 ,8′

= �8 ,8′� 9 , 9′�ℎ,ℎ′

= Cℎ′,8 ,8′, 9 , 9′,8

Therefore,

'(〈:, <, =〉) = '(〈=, :, <〉) = '(〈<, =, :〉).
Now, let C′′ = (C8 ,ℎ′, 9 ,8′,ℎ, 9′). We have '(C) = '(C′′), since permuting the “inner” indices

corresponds to permuting the slices of the tensor.9

Next, let � = (12)(3). Let �C′′ =: C′′′ ∈ F (=×<) ⊗ F (<×:) ⊗ F (:×=). We have,

C′′′9′,8 ,8′,ℎ,ℎ′, 9 = �8 ,8′�ℎ,ℎ′� 9 , 9′

= Cℎ′,8 ,8′, 9 , 9′ℎ .

Therefore,

'(〈:, <, =〉) = '(〈=, <, :〉).
The second transformation corresponds to the well-known fact that �� = � implies �)�) = �) .

To summarize:

9 We can think of a tensor B = (B8 , 9 ,:) ∈ F : ⊗ F< ⊗ F = as : matrices B8 = (B8 , 9 ,:) ∈ F<×= stacked on top of each

other. These are the 1-slices of B. In the same way, we define the 2- and 3-slices.
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Lemma 14.6. '(〈:, <, =〉) = '(〈=, :, <〉) = '(〈<, =, :〉) = '(〈<, :, =〉) = '(〈=, <, :〉) =
'(〈:, =, <〉).

14.6 Products of matrix multiplication tensors

If we have two tensors C ∈ * ⊗ + ⊗ , and C′ ∈ *′ ⊗ +′ ⊗ , ′, we can view their product

C ⊗ C′ ∈ (* ⊗ + ⊗,) ⊗ (*′ ⊗ +′ ⊗, ′) as a tensor in (* ⊗*′) ⊗ (+ ⊗ +′) ⊗ (, ⊗, ′) by using

the natural isomorphism.

Lemma 14.7. '(C ⊗ C′) ≤ '(C)'(C′).

Proof. Let C =
A∑
8=1

D8 ⊗ E8 ⊗ F8 and C′ =
A′∑
8=1

D′
8
⊗ E′

8
⊗ F′

8
. We have

C ⊗ C′ = (
A∑
8=1

D8 ⊗ E8 ⊗ F8) ⊗ (
A′∑
9=1

D′9 ⊗ E
′
9 ⊗ F

′
9)

A∑
8=1

A′∑
9=1

(D8 ⊗ E8 ⊗ F8) ⊗ (D′9 ⊗ E
′
9 ⊗ F

′
9)

A∑
8=1

A′∑
9=1

(D8 ⊗ D′9) ⊗ (E8 ⊗ E
′
9) ⊗ (F8 ⊗ F

′
9).

�

Note that for the rank, it can make a difference whether we view C ⊗ C′ as a tensor in

(* ⊗ *′) ⊗ (+ ⊗ +′) ⊗ (, ⊗, ′) or * ⊗ *′ ⊗ + ⊗ +′ ⊗, ⊗, ′. In the first case the number

of inputs stays the same, we still compute bilinear forms. But the size of each input increases.

In the second case, we would have five inputs, but their size stays the same. For complexity

applications, we choose the first point of view. This is sometimes called a vertical tensor product.
Let D1 , . . . , D: be a basis of* , E1 , . . . , E< of+ , andF1 , . . . , F: of, . Let Cℎ,8, 9 be the coefficient

of C of Dℎ ⊗ E8 ⊗ F 9 . In the same way, choose bases for the other three spaces and let C′
ℎ′,8′, 9′ be the

coefficient of C′ of Dℎ′ ⊗ E8′ ⊗F 9′ . Then the coefficient of C ⊗ C′ of (Dℎ ⊗ D′ℎ′) ⊗ (E8 ⊗ E
′
8′) ⊗ (F 9 ⊗F′9′)

is Cℎ,8, 9Cℎ′,8′, 9′.

For the tensor product of matrix multiplications, we have

〈:, <, =〉 ⊗ 〈:′, <′, =′〉 = (���̄���̄���̄��′�̄′��′�̄′��′�̄′)
= (���̄��′�̄′���̄��′�̄′���̄��′�̄′)
=

(
�(�,�′),(�̄,�̄′)�(�,�′),(�̄,�̄′)�(�,�′),(�̄,�̄′)

)
= 〈::′, <<′, ==′〉

Thus, the tensor product of two matrix multiplication tensors is a bigger matrix multiplication

tensor. This corresponds to the well known identity (� ⊗ �)(�′ ⊗ �′) = (��′ ⊗ ��′) for the
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Kronecker product of matrices. (Note that we use quadruple indices to address the entries

of the Kronecker products and also of the slices of 〈:, <, =〉 ⊗ 〈:′, <′, =′〉.) It follows that the

inequality in Lemma 14.7 can be strict. We have '(〈2, 2, 2〉) = 7, but there are faster ways to

multiply matrices than Strassen’s algorithm.

Using this machinery, we can show that whenever we can multiply matrices of a fixed format

efficiently, then we get good bounds for $.

Theorem 14.8. If '(〈:, <, =〉) ≤ A, then $ ≤ 3 · log:<= A.

Proof. If '(〈:, <, =〉) ≤ A, then '(〈=, :, <〉) ≤ A and '(〈<, =, :〉) ≤ A by Lemma 14.6. Thus, by

Lemma 14.7,

'(〈:, <, =〉 ⊗ 〈=, :, <〉 ⊗ 〈<, =, :〉︸                                    ︷︷                                    ︸
=〈:<=,:<=,:<=〉

) ≤ A3

and, with # = :<=,

'(〈# 8 , # 8 , # 8〉 ≤ A38 = (#3 log# A)8 = (# 8)3 log# A

for all 8 ≥ 1. Therefore, $ ≤ 3 log# A. �

Thus, to get a fast matrix multiplication algorithm, it suffices to get a good upper bound on

the rank of some fixed matrix multiplication tensor. However, Coppersmith and Winograd [28]

prove that we cannot achieve $ = 2 by starting with a fixed size matrix multiplication tensor.

Tensor rank and the exponent of matrix multiplication

The exponent ofmatrixmultiplication$ can be expressed equivalently using arithmetic

circuits and tensor rank.

Tensor rank can be studied via the restrictions of the unit tensor.

15 Border rank

15.1 Approximate computations

Over ℝ or ℂ, the rank of matrices is semi-continuous. Let

ℂ=×= 3 � 9 → � = lim

9→∞
� 9

If for all 9, rk(� 9) ≤ A, then rk(�) ≤ A as rk(� 9) ≤ A means all (A + 1) × (A + 1)minors vanish. But

since minors are continuous functions, all (A + 1) × (A + 1)minors of � vanish, too.

The same is not true for 3-dimensional tensors. Consider the multiplication of univariate

polynomials of degree one modulo -2
:

(00 + 01-)(10 + 11-) = 0010 + (0110 + 0011)- + 0111-
2

The tensor corresponding to the two bilinear forms 0010 and 0110 + 0011 consists of the two

slices:
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1 0

0 0

0 1

1 0

It has rank 3: To show the lower bound, we use a method called the substitution method.

We first set 00 = 0, 10 = 1. Then we still compute 01. Thus there is a product that depends on 01,

say one factor is 00 + �01 with � ≠ 0. When we replace 01 by − 
� 00, we kill one product. We

still compute 0010 and − 
� 0010 + 0011. Next, set 00 = 1, 10 = 0. Then we still compute 11. We can

kill another product by substituting 11 as above. After this, we still compute 0010, which needs

one product.

However, we can approximate the tensor above by tensors of rank two. Let

C(&) = (1, &) ⊗ (1, &) ⊗ (0, 1

& ) + (1, 0) ⊗ (1, 0) ⊗ (1,− 1

& )

C(&) obviously has rank two for every & > 0. The slices of C(&) are

1 0

0 0

0 1

1 &

Thus C(&) → C if &→ 0.

Bini, Capovani, Lotti and Romani [7] used this effect to design better matrix multiplication

algorithms. They started with the following partial matrix multiplication tensor that we denote

by {I11 , I12 , I21}: (
G11 G12

G21 G22

) (
H11

H21

���� H12

H22

)
=

(
I11

I21

���� I12

∗

)
where we only want to compute three entries of the result. It can be shown using the substitution

method that '({I11 , I12 , I21}) = 6, but we can approximate {I11 , I12 , I21}with only five products.

Consider the following five products:

?1 = (G12 + &G22)H21 ,

?2 = G11(H11 + &H12),
?3 = G12(H11 + H21 + &H22),
?4 = (G11 + G12 + &G21)H11 ,

?5 = (G12 + &G21)(H11 + &H22).

We have

&I11 = &?1 + &?2 + $(&2),
&I12 = ?2 − ?4 + ?5 + $(&2),
&I21 = ?1 − ?3 + ?5 + $(&2).

Here, $(&8) collects terms of degree 8 or higher in &. Now we take a second copy of the

partial matrix multiplication above, with new variables. With these two copies, we can multiply
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2 × 2-matrices with 2 × 3-matrices (by identifying some of the variables in the copy). So we

can approximate 〈2, 2, 3〉 with 10 multiplications. If approximation would be as good as exact

computation, then we would get $ ≤ 2.78 out of this, an improvement over Strassen’s algorithm.

We will formalize the concept of approximation. We need to be more formal here, since

we want to control the degree of approximation in order to turn approximate into exact

computations. The role of the small quantity & in the beginning of this chapter is now taken by

the indeterminate &.

Definition 15.1. Let ℎ ∈ ℕ, C ∈ F : ⊗ F< ⊗ F = .

1. 'ℎ(C) = min{A | ∃D� ∈ F [&]: , E� ∈ F [&]< , F� ∈ F [&]= :

A∑
�=1

D� ⊗ E� ⊗ F� = &ℎC + $(&ℎ+1)}.

2. '(C) = min

ℎ
'ℎ(C). '(C) is called the border rank of C.

Remark 15.2. 1. '0(C) = '(C).

2. '0(C) ≥ '1(C) ≥ ... = '(C).

3. For 'ℎ(C) it is sufficient to consider powers up to &ℎ in D� , E� , F�.

Above, we have used an algebraic definition of border rank. There is an equivalent geometric

definition (see the end of this chapter), but the proof of equivalence is beyond the scope of this

lecture.

Theorem 15.3 (Alder [3]). Let* , + , and, be vector spaces over an algebraically closed field. The set
of all tensors C ∈ * ⊗ + ⊗, with '(C) ≤ A is the closure of the set of all tensors B ∈ * ⊗ + ⊗, with
'(B) ≤ A.

15.2 Properties of border rank

Theorem 15.4. Let C ∈ F : ⊗ F< ⊗ F = , C′ ∈ F :′ ⊗ F<′ ⊗ F =′. We have

1. ∀� ∈ S3 : 'ℎ(�C) = 'ℎ(C).

2. 'ℎ+ℎ′(C ⊗ C′) ≤ 'ℎ(C) · 'ℎ′(C′).

Proof. 1. Clear.

2. Let C = (C8 , 9 ,;) and C′ = (C′8′, 9′,;′). We have C ⊗ C′ = (C8 , 9 ,; · C′8′, 9′,;′) ∈ F
::′ ⊗ F<<

′ ⊗ F ==
′
. Take

two approximate computations for C and C′ as above. Viewed as exact computations over

F [[&]], their tensor product computes over the following:

) = &ℎC + &ℎ+1B, )′ = &ℎ
′
C′ + &ℎ′+1B′
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with B ∈ F [&]: ⊗ F [&]< ⊗ F [&]= and B′ ∈ F [&]:′ ⊗ F [&]<′ ⊗ F [&]=′. The tensor product of

these two computations computes:

) ⊗ )′ = (&ℎC8 9; + &ℎ+1B8 9;)(&ℎ
′
C′8′ 9′;′ + &

ℎ′+1B′8′ 9′;′)

= (&ℎ+ℎ′C8 9;C′8′ 9′;′ + $(&
ℎ+ℎ′+1))

= &ℎ+ℎ
′
C ⊗ C′ + $(&ℎ+ℎ′+1)

But this is an approximate computation for C ⊗ C′.
�

15.3 From approximate to exact computations

The next lemma shows that we can turn approximate computations for matrix multiplication

into exact ones. So for matrix multiplication, border rank is the right measure.

Lemma 15.5. There is a constant 2ℎ such that for all C: '(C) ≤ 2ℎ'ℎ(C). 2ℎ depends polynomially on ℎ,
in particular 2ℎ ≤

(
ℎ+2

2

)
.

Remark 15.6. Over infinite fields, even 2ℎ = 1 + 2ℎ works.

Proof. Let C be a tensor with border rank A and let

A∑
�=1

(
ℎ∑

=0

&D�

)
⊗ ©«

ℎ∑
�=0

&�E��
ª®¬ ⊗ ©«

ℎ∑
�=0

&�F��
ª®¬ = &ℎC + $(&ℎ+1)

The left-hand side of the equation can be rewritten as follows:

A∑
�=1

ℎ∑
=0

ℎ∑
�=0

ℎ∑
�=0

&+�+�D� ⊗ E�� ⊗ F��

By comparing the coefficients of & powers, we see that C is the sum of all D� ⊗ E�� ⊗ F�� with

 + � + � = ℎ. Thus to compute C exactly, it is sufficient to compute

(
ℎ+2

2

)
products for each

product in the approximate computation. �

The following theorem is the border rank version of Theorem 14.8.

Theorem 15.7. If '(〈:, <, =〉) ≤ A then $ ≤ 3 log:<= A.
Proof. Let # = :<= and let 'ℎ(〈:, <, =〉) ≤ A. By Theorem 15.4, we get '3ℎ(〈#, #, #〉) ≤ A3

and '3ℎB(〈# B , # B , # B〉) ≤ A3B
for all B. By Lemma 15.5, this yields '(〈# B , # B , # B〉) ≤ 23ℎBA

3B
.

Therefore,

$ ≤ log# B (23ℎBA
3B) = 3B log# B (A) + log# B (23ℎB) = 3 log# (A) +

1

B
log# (poly(B))︸             ︷︷             ︸

→0

for B →∞. Since $ is an infimum, we get $ ≤ 3 log# (A). �
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Corollary 15.8. $ ≤ 2.78.

Proof. Combine Theorem 15.7 with '(〈2, 2, 3〉) ≤ 10. �

15.4 Degeneration

Degenerations relate to border rank like restrictions relate to rank. Again, we only give an

algebraic definition of degenerations and we simply state an equivalent topological definition.

Furthermore, we choose coordinate right from the beginning, since it simplifies the notations

somewhat.

Definition 15.9. Let C ∈ F : ⊗ F< ⊗ F = , C′ ∈ F :′ ⊗ F<′ ⊗ F =′.

1. Let C′ =
A∑

�=1

D� ⊗ E� ⊗ F� as well as �(&) ∈ F [&]:×:′, �(&) ∈ F [&]<×<′, and �(&) ∈ F [&]=×=′.

Define

(�(&) ⊗ �(&) ⊗ �(&))C′ =
A∑

�=1

�(&)D� ⊗ �(&)E� ⊗ �(&)F�.

(This is well-defined.)

2. C is a degeneration of C′ if there are �(&) ∈ F [&]:×:′, �(&) ∈ F [&]<×<′, �(&) ∈ F [&]=×=′, and
@ ∈ ℕ such that

&@C = (�(&) ⊗ �(&) ⊗ �(&))C′ + $(&@+1).
We will write C E@ C′ or simply C E C′.

As for the rank, it is very easy to prove the following lemma.

Lemma 15.10. Let B and C be tensors.

1. C E B ⇒ '(C) ≤ '(B).

2. '(C) ≤ A ⇔ C E 〈A〉.
The proof of the following theorem is beyond the scope of this lecture.

Theorem 15.11 (Strassen [77]). Let F be algebraically closed. Let* , + , and, be vector spaces over F .
Let C ∈ * ⊗ + ⊗, .

{B ∈ * ⊗ + ⊗, | B E C} = {B ∈ * ⊗ + ⊗, | B ≤ C}.

Since {B ∈ * ⊗ + ⊗ , | B E C} is constructible (it is the image of a constructible set

under a polynomial map, see Theorem 4.12), the Zariski closure and the ℂ-closure coincide in

Theorem 15.11 (see Theorem 4.15).

Let C ∈ + ⊗ + ⊗ + and dim+ = A. '(C) ≤ A is equivalent to C E 〈A〉. If C lives in a smaller

space* ⊗* ⊗* , we first embed it into + ⊗ + ⊗ + by choosing a injective linear map* → + .

By the above theorem, C E 〈A〉 is equivalent to

C ∈ End(+)×3〈A〉,
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so again, we have a (monoid) orbit closure problem. Since GL(+) lies dense in End(+), we can

even just look at group orbits:

C ∈ GL(+)×3〈A〉.

Border rank: a geometric complexity measure

In the sameway as defining the border determinantal complexity via the determinantal

complexity, we define the border rank via the tensor rank.

As for the border determinantal complexity, border rank lower bounds can be defined

via an orbit closure question.

16 Symmetric and alternating tensors

Let + be a vector space. Recall that the characteristic is zero. The symmetric group S3 acts on

+⊗3 by (�, C = E1 ⊗ · · · ⊗ E3) ↦→ �C = E�−1(1) ⊗ · · · ⊗ E�−1(3) and linear extension to higher rank

tensors. (In the previous chapters, we defined this for 3 = 3.)

16.1 (2+ and Λ2+

We start with the simplest examples. Let E1 , . . . , E= be a basis of + . The space (2+ is defined as

(2+ = 〈E8 ⊗ E 9 + E 9 ⊗ E8 | 1 ≤ 8 , 9 ≤ =〉.

We call it the space of symmetric 2-tensors of + .

Proposition 16.1. 1. (2+ = 〈E ⊗ E | E ∈ +〉.

2. For C ∈ + ⊗ + , C ∈ (2+ iff (1, 2)C = C.

Proof. We start with the first item. We have

(E8 + E 9) ⊗ (E8 + E 9) − (E8 − E 9) ⊗ (E8 − E 9) = 2(E8 ⊗ E 9 + E 9 ⊗ E8).

Therefore, the left-hand side is contained in the right-hand side. On the other hand, if

E = 1E1 + · · · + =E= , then

E ⊗ E =
∑
8< 9

8 9(E8 ⊗ E 9 + E 9 ⊗ E8) +
∑
8

2

8
1

2
(E8 ⊗ E8 + E8 ⊗ E8).

Thus, the right-hand side is also contained in the left-hand side.

For the second item, notice that every tensor C ∈ (2+ fulfills (1, 2)C = C, since the basis does.
For the other direction, let C =

∑
8 , 9 8 , 9E8 ⊗ E 9 . If (1, 2)C = C, then 8 , 9 =  9 ,8 for all 8 , 9. Therefore,

C ∈ (2+ . �
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The skew-symmetric 2-tensors of + are defined as

Λ2+ = 〈E8 ⊗ E 9 − E 9 ⊗ E8 | 1 ≤ 8 , 9 ≤ =〉.

Exercise 16.2. Prove the following:

1. Λ2+ = 〈E ⊗ F − F ⊗ E | E, F ∈ +〉.

2. For all C ∈ Λ2+ , (1, 2)C = −C.

By the first item of Proposition 16.1 and Exercise 16.2, the spaces (2+ and Λ2+ are GL(+)-
invariant (where GL(+) acts simultaneously on both factors).

Proposition 16.3. + ⊗ + = (2+ ⊕ Λ2+ .

Proof. By the second item of Proposition 16.1 and Exercise 16.2, (2+ ∩Λ2+ = {0}. Furthermore,

E8 ⊗ E 9 = 1

2
(E8 ⊗ E 9 + E 9 ⊗ E8) + 1

2
(E8 ⊗ E 9 − E 9 ⊗ E8). �

Remark 16.4. Proposition 16.3 has a well-known interpretation for matrices: Every square

matrix � can be written uniquely as the sum of a symmetric matrix and a skew-symmetric

matrix. The decomposition is given by

� = 1

2
(� + �)) + 1

2
(� − �))

16.2 Symmetric tensors

Let �( : +⊗3 → +⊗3 be the map that is defined on rank-one tensors by

�((E1 ⊗ · · · ⊗ E3) =
1

3!

∑
�∈S3

E�(1) ⊗ · · · ⊗ E�(3).

Definition 16.5. The 3th symmetric power of + is defined as (3+ B �((+⊗3).

Note that this generalises the definition of (2+ in the previous section. Wewrite E1E2 . . . E3 B
�((E1 ⊗ E2 ⊗ · · · ⊗ E3).

Proposition 16.6. For all C ∈ +⊗3, �((�((C)) = �((C), that is, �( is a projection.

Proof. We have

�((�((E1 ⊗ · · · ⊗ E3)) =
1

3!

∑
�∈S3

1

3!

∑
�∈S3

E�(�(1)) ⊗ · · · ⊗ E�(�(3)).

Since � is a bĳection, all 3! inner sums are the same. �

Proposition 16.7. If F1 , . . . , F= is a basis of + , then (F 91 · · ·F 93 )1≤ 91≤···≤ 93≤= , is a basis of (3+ .
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Proof. If { 91 , . . . , 93} = {81 , . . . , 83}, then

�((F 91 ⊗ · · · ⊗ F 93 ) = �((F81 ⊗ · · · ⊗ F83 ).

On the other hand, if { 91 , . . . , 93} ≠ {81 , . . . , 83}, then the terms appearing in the sums �((F 91 ⊗
· · · ⊗ F 93 ) and �((F81 ⊗ · · · ⊗ F83 ) are all distinct. Therefore, any linear dependency between

F 91 . . . F 93 , 1 ≤ 91 ≤ · · · ≤ 93 ≤ = would translate into a linear dependency betweenF 91 ⊗ · · ·⊗F 93 ,

1 ≤ 91 , . . . , 93 ≤ =. �

Corollary 16.8. dim (3+ =
(=+3−1

3

)
.

16.3 Alternating tensors

Let �Λ : +⊗3 → +⊗3 be the map that is defined on rank-one tensors by

�Λ(E1 ⊗ · · · ⊗ E3) =
1

3!

∑
�∈S3

sgn(�)E�(1) ⊗ · · · ⊗ E�(3).

Definition 16.9. The 3th alternating power of + is defined as Λ3+ B �Λ(+⊗3).

Exercise 16.10. �Λ is a projection.

Again, this generalises the space Λ2+ of the first section. We write E1 ∧ E2 ∧ · · · ∧ E3 B
�Λ(E1 ⊗ E2 ⊗ · · · ⊗ E3).

Proposition 16.11. E�(1) ∧ · · · ∧ E�(3) = sgn(�)E1 ∧ · · · ∧ E3.

Proof. We have:

E�(1) ∧ · · · ∧ E�(3) = 1

3!

∑
�∈S3

sgn(�)E�(�(1)) ⊗ · · · ⊗ E�(�(3))

= 1

3!

∑
�∈S3

sgn(� ◦ �−1)E�(1) ⊗ · · · ⊗ E�(3)

= sgn(�−1) 1

3!

∑
�∈S3

sgn(�)E�(1) ⊗ · · · ⊗ E�(3)

= sgn(�)E1 ∧ · · · ∧ E3 .

The third line follows from the fact that � ↦→ � ◦ �−1
is a bĳection and the last line from the fact

that sgn(�) = sgn(�−1). �

Proposition 16.12. We have E = E1 ∧ · · · ∧ E3 = 0 if and only if E1 , . . . , E3 are linearly dependent.

Proof. If two of the vectors are the same, say E1 = E2, then we can group the summands in

�Λ(E) into pairs such that the two summands in the pair cancel. (Namely, if we switch the two

identical vectors, we get the same tensor product but with opposite sign.)
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In the general case, we can w.l.o.g. write E1 = 2E2 + · · · + 3E3. Now by using linearity, we

get a sum of tensors, each of which has two identical vectors.

For the other direction, assume that E1 , . . . , E3 are linearly independent. Enlarge the set

{E1 , . . . , E3} to a basis of + . Then in

E1 ∧ · · · ∧ E3 =
1

3!

∑
�∈S3

sgn(�)E�(1) ⊗ · · · ⊗ E�(3) ,

all E�(1) ⊗ · · · ⊗ E�(3) are distinct basis vectors of +⊗3, hence E1 ∧ · · · ∧ E3 cannot vanish. �

Proposition 16.13. If F1 , . . . , F= is a basis of+ , then F 91 ∧ · · · ∧F 93 , 1 ≤ 91 < · · · < 93 ≤ =, is a basis
of Λ3+ .

Proof. Given any tensor E1 ∧ · · · ∧ E3, we can express each E8 as a linear combination of the basis

vectors. Using linearity, we get a sum of alternating products of the basis vectors. Whenever

two of the basis vectors are the same, the product vanishes by the previous proposition. Each

product with pairwise distinct basis vectors can be brought into the form of the statement by

permuting the vectors.

The vectors in the statement are obviously independent. �

Corollary 16.14. dimΛ3+ =
(=
3

)
.

Now let 3 = = = dim+ . Then Λ=+ � ℂ. GL(+) acts on Λ=+ by

,(E1 ∧ · · · ∧ E=) = ,E1 ∧ · · · ∧ ,E= .

Let ,E8 =
∑=
9=1

�9 ,8E 9 . Then

,(E1 ∧ · · · ∧ E=) = (
=∑
9=1

�9 ,1E 9) ∧ · · · ∧ (
=∑
9=1

�9 ,=E 9)

=
∑
91 ,..., 9=

�91 ,1 . . . �9= ,=E 91 ∧ · · · ∧ E 9= .

In the last sum, only summands with pairwise distinct indices 91 , . . . , 9= are non-zero. Let � be

the permutation such that �(ℎ) = 9ℎ for all ℎ. By Proposition 16.11, we have E 91 ∧ · · · ∧ E 9= =
sgn(�)E1 ∧ · · · ∧ E= . Thus

,(E1 ∧ · · · ∧ E=) = det(,)E1 ∧ · · · ∧ E= .

This is called the alternating representation.

Symmetric and alternating tensors

Two types of tensors of high importance are the symmetric and alternating tensors.

They are defined by symmetrization and skew-symmetrization of tensors, respectively.

These important tensors will serve as building blocks in the representation theory of

GL= .
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17 The construction of the irreducible representations of the general
linear group

We wish to understand much better the representation theory of coordinate rings of orbit

closures. A first step into the right direction is to understand the building blocks: The

irreducible representations of GL= . They are completely understood in terms of combinatorial

objects called Young tableaux. We follow the exposition in [36, Ch. 8] very closely.

17.1 Young tableaux

A Young diagram is a left-justified top-aligned array of boxes. To each partition � we assign its

Young diagram by interpreting �8 as the number of boxes in row 8. For example, the Young

diagram corresponding to the partition (5, 3, 3, 1) is

.

We often identify partitions with their Young diagrams. The number of boxes in a Young

diagram shall be denoted by |�| B ∑
8 �8 .

If we fill the boxes of a Young diagram with numbers, we obtain a so-called Young tableau.
For example,

6 2 4 4 8

2 1 6

4 3 1

3

is a Young tableau. The partition corresponding to its Young diagram is called the shape of the
Young diagram.

To simplify the notation, we define �8 to be the number of boxes of the 8-th column of �. We

call � = (�1 , �2 , . . .) the transpose of �. The Young diagram of � is obtained by transposing the

Young diagram of �.
We will need the notion of an exchange. This depends on a choice of two columns and a

choice of : boxes in each column. For a Young tableau ) of shape � (with entries in any set) the

corresponding exchange is the Young tableau ( obtained from ) by interchanging the entries in

the two chosen sets of boxes, maintaining the vertical order in these; the entries outside these

boxes are unchanged.

For example, if � = (4, 3, 3, 2) and the chosen boxes are the top two in the third column and

the second and fourth in the second column, then the exchange takes

) =

1 5 2 1

1 3 4

2 4 5

3 5

to ( =

1 5 3 1

1 2 5

2 4 5

3 4

.
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Sometimes we fix two columns and fix a subset of boxes in the right chosen column. The set

of all corresponding exchanges are defined to have the same exchange type, i. e., an exchange

type is a pair of columns together with a set of boxes from the right column.

17.2 Construction as a quotient space

Let � = ℂ=
with the standard action of GL= . All linear maps in the following constructions are

equivariant, which defines the action of GL= on the target space.

We write �×� = � ⊕ � ⊕ · · · ⊕ � (|�| times) and we associate each summand � with a position

in the Young diagram of �. In particular, if we write vectors in the boxes of �, then we obtain

an element of �×� and every element of �×� is obtained in this way. Next, we map �×� into

�⊗|�|. Then we mod out by some relations. These relations make the columns alternating, and

between the columns we introduce the so-called exchange relations.

More formally: For a vector space �×: = � ⊕ · · · ⊕ � (: times) we define the linear map to

� ⊗ � ⊗ · · · ⊗ � via (ℓ1 , . . . , ℓ:) ↦→ ℓ1 ⊗ · · · ⊗ ℓ: . We can compose this with an antisymmetrization

map and obtain a linear map �×: → �∧: . We can tensor several of these maps to obtain the map

# : �×� →
⊗�1

8=1

∧�8 �. Now

�� B
(
∧�1 � ⊗ · · · ⊗ ∧�ℓ�

)
/&�(�), (17.1)

where &�(�) is the subrepresentation of

⊗�1

8=1

∧�8 � generated by all elements of the form

#(®E) −∑
#( ®F), where for some fixed exchange type C the sum is over all ®F obtained from ®E by

an exchange of type C. �� is called a Schur module.
Suppose we have an ordered basis {41 , . . . , 4<} of �. Then for any Young tableau of ) of

shape � with elements in {1, . . . , <} we get an element of �×� by replacing every 8 in a box of )

by the element 48 . We call this element 4̂) . The image of this element in �� is denoted by 4) .

One can now easily verify that the map ! : �×� → �� has the following three properties:

(1) ! is multilinear

(2) ! is alternating in the entries of any column of �

(3) For any ®E ∈ �×� and any exchange type C we have !(®E) = ∑
!( ®F), where the sum is over

all ®F obtained from ®E by an exchange of the type C.

17.3 A more explicit quotient space

Lemma 17.1. If 41 , . . . , 4< is a basis of �, then �� ' �/&, where � is the vector space whose basis is the
set 4̂) for all Young tableaux ) of shape � with entries from {1, . . . , <} and & ⊆ � is generated by the
elements

(i) 4̂) if ) has two equal entries in a column,

(ii) 4̂) + 4̂)′ where )′ is obtained from ) by interchanging two entries in a column,
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(iii) 4̂) −
∑
( 4̂(, where for some exchange type C the sum is over all ( obtained from ) by an exchange of

type C.

Proof. For every Young tableau ) of shape � we get an element in �×� and these elements

generate �×�. Therefore their images 4) generate ��, i. e., the map � → �� is surjective.

Properties (2) and (3) imply that the generators of & map to zero, so �/& � �� is surjective. We

now routinely check that this is an isomorphism as follows. The vectors 4) for Young tableaux )

give a basis of the tensor product �⊗�. The vector space obtained by the relations (i) and (ii) is

exactly the tensor product

∧�1� ⊗ · · · ⊗ ∧��1�

(and the 4̂) with all columns strictly increasing forms a basis for this vector space). The relations

(iii) then generate the vector space of relations &�(�), as follows from multilinearity and the fact

that the 48 generate �. The lemma therefore follows from (17.1). �

The image of 4̂) under the map �→ �� is denoted by 4) . For example,

4
2 1

3 4

= 4
1 2

3 4

+ 4
2 3

1 4

= 4
1 2

3 4

− 4
1 3

2 4

Since this notation is clumsy, we usually write ) instead of 4) . For example, using this

notation we have

1 2 3 4 = 3 1 4 2 = 2 4 1 3

and

1

2

3

4

= −
2

1

3

4

=

1

3

4

2

17.4 Sylvester’s lemma

A multilinear function 5 : +×3 → ℂ is called alternating if

5 (E1 , . . . , E8 , E8+1 , . . . , E3) = − 5 (E1 , . . . E8−1 , E8+1 , E8 , E8+2 , . . . , E3).

Lemma 17.2. A multilinear function 5 : +×3 → ℂ is alternating iff 5 (E1 , . . . , E3) = 0 whenever
E8 = E8+1.

Proof. Clearly, if 5 is alternating, then

5 (E1 , . . . , E8 , E8 , E8+2 , . . . , E3) = − 5 (E1 , . . . , E8 , E8 , E8+2 , . . . , E3)

and thus 5 (E1 , . . . , E8 , E8 , E8+2 , . . . , E3) = 0 (because char(ℂ) ≠ 2).
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For the other direction,

5 (E1 , . . . , E8 , E8+1 , E8+2 , . . . , E3)
= 5 (E1 , . . . , E8 , E8 , E8+2 , . . . , E3) + 5 (E1 , . . . , E8 , E8+1 − E8 , E8+2 , . . . , E3)
= 5 (E1 , . . . , E8 , E8+1 − E8 , E8+2 , . . . , E3)
= 5 (E1 , . . . , E8 − E8+1 , E8+1 − E8 , E8+2 , . . . , E3) + 5 (E1 , . . . , E8+1 , E8+1 − E8 , E8+2 , . . . , E3)
= −

(
5 (E1 , . . . , E8+1 − E8 , E8+1 − E8 , E8+2 , . . . , E3) + 5 (E1 , . . . , E8+1 , E8 − E8+1 , E8+2 , . . . , E3)

)
= −

(
5 (E1 , . . . , E8+1 , E8 − E8+1 , E8+2 , . . . , E3)

)
= −

(
5 (E1 , . . . , E8+1 , E8 − E8+1 , E8+2 , . . . , E3) + 5 (E1 , . . . , E8+1 , E8+1 , E8+2 , . . . , E3)

)
= − 5 (E1 , . . . , E8+1 , E8 , E8+2 , . . . , E3).

�

Corollary 17.3. For + = ℂ? the only alternating multilinear function +?+1 → ℂ is the zero function.

Proof. If 5 is alternating, to calculate 5 (E) we express E ∈ +?+1
over the standard basis. By

the pigeonhole principle at least one standard vector appears at least twice. By Lemma 17.2

5 (E) = 0. �

For the explicit construction of the irreducibles we need the following lemma, proved by

Sylvester in 1851.

Lemma 17.4. For any ? × ? matrices " and # , and 1 ≤ : ≤ ?,

det(") · det(#) =
∑

det("′) · det(#′),

where the sum is over all pairs ("′, #′) of matrices obtained from " and # by interchanging a fixed set
of : columns of # with any : columns of ", preserving the ordering of the columns.

Proof. By the alternating property of determinants, w.l.o.g. the fixed set of columns of # are the

first : columns. For vectors E1 , . . . , E? ∈ ℂ?
we write det(E1 · · · E?) for the determinant of the

matrix with these column vectors. We have to prove

det(E1 · · · E?)det(F1 · · ·F?) =
∑

81<···<8:

det(E1 · · ·F1 · · ·F: · · · E?)det(E81 · · · E8:F:+1 · · ·F?),

where in the sum the vectors F1 , . . . , F: are interchanged with the vectors E81 , . . . , E8: . It suffices

to show that the difference of the two sides is an alternating function in the ? + 1 vectors

E1 , . . . , E? , F1, since any such function must vanish (see Cor. 17.3). For this it suffices to show

(see Lemma 17.2) that the two sides are equal when two successive vectors E8 and E8+1 are equal

(which is easy to see: The left hand side is zero and we can pair the nonzero summands on the

right hand side such that each pair cancels out) and when E? = F1. In the latter case, fixing

E? = F1, it suffices to show that the difference of the two sides is an alternating function of

E1 , . . . , E? , F2. Again, the case when E8 = E8+1 is immediate. This time E? = F2 means F1 = F2

and thus both sides vanish. �
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Let /8 , 9 be variables, 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ <. We write ℂ[/] B ℂ[/1,1 , . . . , /=,<].
For each ?-tuple (81 , . . . , 8?) of integers from {1, . . . , <}, with ? ≤ =, we define the symbolic

determinant

�81 ,82 ,...,8? B det

©«
/1,81 · · · /1,8?
...

. . .
...

/?,81 · · · /?,8?

ª®®¬ .
For a Young tableau ) we take the product of the column determinants:

�) B

�1∏
9=1

�)(1, 9),)(2, 9),...,)(�9 , 9) ,

where )(8 , 9) is the entry of ) in the 8-th row and 9-th column of ).

Lemma 17.5. There is a well-defined (canonical) homomorphism from �� to ℂ[/] that maps 4) to �)
for all Young tableaux ).

Proof. Using Lemma 17.1, for well-definedness it suffices to show that the elements �) satisfy

the corresponding properties (i)-(iii) of Lemma 17.1. Properties (i) and (ii) follows from the

alternating property of determinants. Property (iii) follows from Sylvester’s lemma 17.4, applied

to appropriate matrices. For this, suppose the two columns of ) in which the exchange takes

place have entries 81 , . . . , 8? in the first and 91 , . . . , 9@ in the second. Set

" B
©«
/1,81 · · · /1,8?
...

. . .
...

/?,81 · · · /?,8?

ª®®¬ # B
©«
/1, 91 · · · /1, 9@ 0

...
. . .

... Id?−@
/?,91 · · · /?,9@

ª®®¬
Here the matrix # has a lower right identity matrix of size ? − @, and an upper right @ × (? − @)

block of zeros. Note that det(#) = det

©«
/1, 91 · · · /1, 9@
...

. . .
...

/@,91 · · · /@,9@

ª®®¬. Sylvester’s lemma, applied to " and

# and the fixed subset of columns in # being specified by the subset of the right column of )

used in the exchange, translates precisely to the required equation. �

17.5 An explicit basis of the Schur module

Definition 17.6. A Young tableau is called semistandard if each row read from left to right is

nondecreasing and each column read from top to bottom is strictly increasing.

Example of a semistandard Young tableau:

1 1 1 1 2 2 2 3

2 2 2 3 4

3 3 4 4
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Theorem 17.7. If 41 , . . . , 4< is a basis of �, then 4) is a basis of ��, where ) runs over all semistandard
tableaux of � with entries from {1, . . . , <}.

Proof. On the set of Young tableaux we define an ordering:

• )′ � ) if in the right-most column which is different, the lowest box where they differ has

a larger entry in )′.

We first prove that the 4) generate ��. We also use �� = �/& from Lemma 17.1. We must show

that, given any ) that is not semistandard, we can write 4) as a linear combination of elements

4( with ( � ) and elements in &, because then we can use this process recursively to express

every 4) as a linear combination of 4( with ( semistandard and elements in &.

We may assume that the entries in each column of ) are strictly increasing by using relations

(i) and (ii); Note that by making the the columns strictly increasing in ) replaces ) by )′ with

)′ � ).
If the columns are strictly increasing, but ) is not semistandard, then suppose the :-th entry

of the 9-th column is strictly larger than the :-th entry of the (9 + 1)-st column. Then we have a

relation 4) ≡
∑
( 4(, the sum over all ( obtained from ) by exchanging the top : entries of the

(9 + 1)-st column with : entries in the 9-th column (preserving their order). Since each such (

has ( � ), we proved that the 4) for semistandard ) generate ��.

To prove that the 4) are linearly independent, we use Lemma 17.5, so it suffices to prove

that the �) are linearly independent as ) varies over all semistandard tableaux ). For this we

order the variables /8 , 9 in the order: /8 , 9 < /8′, 9′ if 8 < 8′ or both 8 = 8′ and 9 < 9′. We order the

monomials in these variables lexicographically: "1 < "2 if the smallest /8 , 9 that occurs to a

different power occurs to a smaller power in"1 than in"2. Note that if"1 < "2 and #1 < #2,

then"1#1 < "2#2. It follows immediately from this definition that the smallest monomial that

appears in a determinant �81 ,...,8? if 81 < · · · < 8? is the diagonal term /1,81 · · ·/?,8? . Therefore the
smallest monomial occurring in �) , if ) has increasing columns, is

∏(/8 , 9)<) (8 , 9), where <)(8 , 9)
is the number of times 9 occurs in the 8-th row of ). This monomial occurs with coefficient 1.

Now order the semistandard tableaux by saying that ) < )′ if the first row where they differ,

and the first entry where they differ in that row, is smaller in ) than in )′. Equivalently, ) < )′

if for the smallest 8 for which there is a 9 with <)(8 , 9) ≠ <)′(8 , 9) and for the smallest such 9 we

have <)(8 , 9) < <)′(8 , 9). It follows that if ) < )′, then the smallest monomial occurring in �)
is smaller than the smallest monomial occurring in �)′ and thus smaller than anymonomial

occurring in �)′. From this the linear independence follows: If

∑
)�) = 0, take ) minimal

such that ) ≠ 0, then the coefficient of

∏(/8 , 9)<) (8 , 9) in ∑
)�) is ) . �

Remark 17.8. The proof of Theorem 17.7 provides an algorithm to express any 4) for a tableau

) over the basis (4)′)with )′ semistandard. This algorithm is called the straightening algorithm.

Together with the upcoming Lemma 17.9 this gives an algorithmic way of computing the action

of GL= in ��.
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17.6 Highest weight vectors

Lemma 17.9. Fix an arbitrary ordering on the set of boxes of a Young diagram �. Let ) be a Young
tableau and let 1 ≤ 91 , . . . , 9= ≤ < be the entries in its boxes. We write ) = �(91 , . . . , 9=). If , ∈ GL< ,
then

,4) =
∑

(81 ,...,8=)∈{1,...,<}=
,81 , 91 · · · ,8= , 9= 4�(81 ,...,8=).

Proof. This is not only true for ��, but it is already true for �⊗|�|. More precisely, for a Young

tableau ) consider the vector in �×� obtained from replacing each 8 in ) by 48 . Let 4̃) denote its

image under the map �×� → �⊗|�|. The action on �⊗|�| is given by

,(E1 ⊗ · · · ⊗ E |�|) = (,E1) ⊗ · · · ⊗ (,E |�|).

Thus by multilinearity of the tensor product we have

, 4̃) =
∑

(81 ,...,8=)∈[<]=
,81 , 91 · · · ,8= , 9= 4̃)(81 ,...,8=) ,

The claim follows by (17.1). �

Usingpart (a’) and (a) of Theorem11.15, the following lemmafinishes the explicit construction

of the polynomial irreducible representations of the general linear group and proves part (c) of

Theorem 11.15, where the �� are the required irreducible representations.

Lemma 17.10. Up to multiplication with a nonzero scalar, the only highest weight vector in �� is the
vector 4) , where ) is the semistandard tableau of shape � whose 8-th row contains only the integer 8 as
entries.

Proof. Let ) be the semistandard tableau of shape � whose 8-th row contains only the integer 8

as entries. Let , ∈ *= be an upper triangular matrix with 1s on the main diagonal, i. e., ,8 , 9 = 0

if 8 > 9. From Lemma 17.9 it follows that the only nonzero 4)′ that can occur in ,4) is 4) itself

and therefore 4) is a HWV.

Similary suppose that the ?-th row of ) is the first row that contains an element larger than

?. Let @ > ? be the smallest such misplaced element in row ?. Define , to be the elementary

matrix that has 1s on the main diagonal and an entry  in row ? and column @. We see that

,4) =
∑
2)′ 4)′ , where the sum is over all tableaux )′ by exchanging some set (possibly empty)

of the @s appearing in ) to ?s, and 2)′ is the number of such exchanges. Considering this as a

univariate polynomial in  and looking at the linear coefficient, this is a sum over )′ in which a

single @ is switched to a ?. Some of these )′ could have ? appear in a column twice, but the

other )′ are pairwise distinct semistandard tableaux and there is at least one of them. Thus

,4) ≠ 4) and hence 4) is not a HWV. �
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MARKUS BLÄSER AND CHRISTIAN IKENMEYER

The explicit construction of the irreducible representations of the general linear
group

This chapter finalizes our classification of the polynomial irreducible representations

of GL= : The irreducibles are indexed by partitions � that have at most = parts.

We will use the explicit quotient space from Lemma 17.1 for several constructions in

Chapters 19 and 20, in particular we will use it to construct the irreducibles of the

symmetric group (the so-called Specht modules).

18 The algebraic Peter–Weyl theorem

In this chapter we prove the algebraic Peter–Weyl theorem. It will be used in Chapter 19 to prove

the Schur–Weyl duality that is used to understand the highest weight vectors in ℂ[GL=2det=].
Moreover, we will see that it can directly be used to find upper bounds on the multiplicities

for example in ℂ[GL=2det=] by using so-called Kronecker coefficients. We will see how these

coefficients can then be used in the multiplicity based approach outlined in Section 12.4.

18.1 Regular functions

Let � = GL# and E ∈ A, where A has a polynomial �-action. The coordinate ring ℂ[�E] is a
subring of the algebra ℂ[�E] that we define next. The ring ℂ[�E]will have a particulary nice

representation theory.

Definition 18.1. A regular function 5 on a locally closed set - ⊆ A is a function 5 : - → ℂ

defined on the whole of - as follows: There exist finitely many fractions of polynomials
58
,8

with

58 , ,8 ∈ ℂ[A] such that

∀G ∈ - ∃8 : ,8(G) ≠ 0

and

∀G ∈ - ∀8 : either ,8(G) = 0 or

58(G)
,8(G)

= 5 (G).

For a locally closed set - define ℂ[-] to be the algebra of regular functions on -.

The following example is called the glued double cusp and was provided by Prof. Dr. Eike Lau.

Example 18.2. Let the closed set. ⊆ ℂ5
be cut out by the polynomials )3

1
−)2

2
, )3

3
−)2

4
, )1)3−)2

5
,

and )2)4 − )3

5
. Since {0} ⊆ . is closed, - B . \ {0} is a locally closed set. One can check that -

is parameterized by two variables as follows:

- = {(C1 , C2 , C3 , C4 , C5) | , � ∈ ℂ,  ≠ 0 or � ≠ 0,

C1 = 2 , C2 = 3 , C3 = �2 , C4 = �3 , C5 = �}.
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Now consider the following regular function defined by two fractions of polynomials:

5 =
C5C1

C2
=
C4

C3
,

whose value is just � in the above syntax. Although 5 is defined on the whole -, the two

fractions of polynomials are not, because their denominators both have zeros in -. In fact, one

can show that 5 cannot be written as a single fraction of polynomials.

If �E is a cone, then ℂ[�E] is graded with the same argument as at the end of Chapter 4.

Remark 18.3. If - in Definition 18.1 is Zariski-closed, then ℂ[-] coincides with our earlier

definition of the coordinate ring, i. e., ℂ[-] = ℂ[A]/�(-).

Our main interest in ℂ[-] stems from the map

� : ℂ[�E]� ↩→ ℂ[�E]�

that is the restriction of functions. Clearly � is a linear map. We show that � is injective: If

�( 5 ) = 0, then 5 (F) = 0 for all F ∈ �E. Since 5 is continuous, 5 (F) = 0 for all F ∈ �E. �
With Corollary 12.5 we obtain

mult�(ℂ[�E]�) ≤ mult�(ℂ[�E]�). (18.1)

18.2 Invariants under the stabilizer

Definition 18.4. Let a group � act on a set (. For E ∈ ( define the stabilizer of E under the action of
� as

stab�(E) B {, ∈ � | ,E = E}.

Definition 18.5. Let � be a group. For an �-representation + define the set of �-invariants

+� B {E ∈ + | ∀, ∈ � : ,E = E}.

For a group � the group algebra ℂ[�] is defined as the set of finite formal sums of group

elements from �. If � is finite, then ℂ[�] ' ℂ|� | as a vector space. The group � × � acts on

ℂ[�] via
((,1 , ,2) 5 )(,) = 5 (,−1

1
,,2).

Theorem 18.6. Let � be a finite group, let + be a �-representation, and let E ∈ + . Let ℂ[�]stab�(E)

denote the set of right stab�(E)-invariants, i. e., the elements fixed under the action of {1} × stab�(E).
Note that ℂ[�]stab�(E) is a representation of � × {1} ' �. Then the map

! : ℂ[�E] → ℂ[�]stab�(E) , 5 ↦→
(
, ↦→ 5 (,E)

)
is an isomorphism of �-representations.
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Proof. The finiteness of � implies that ℂ[�E] is the vector space of all functions on �E and ℂ[�]
is the vector space of all functions on �, without any additional constraints on the functions.

First of all, we verify that ! is well-defined, i. e., that � : , ↦→ 5 (,E) is invariant under

stab�(E). Let ,2 ∈ stab�(E). Then (,2�)(,) = �(,,2) = 5 (,,2E) = 5 (,E) = �(,), thus � is fixed

under ,2.

The map ! is clearly linear.

The inverse map !−1
maps the stab�(E)-invariant # to

(
,E ↦→ #(,)

)
∈ ℂ[�E]. But #(,)

depends on , and not just ,E, so we have to verify that this is well-defined: If ,′E = ,E, then we

have to show that #(,) coincides with #(,′). We have E = ,′−1,E, thus ,′−1, ∈ stab�(E). Since
# is stab�(E)-invariant, # = (id, ,′−1,)# and therefore (id, ,′)# = (id, ,)#. In particular, if we

evaluate both sides at the identity we obtain #(,′) = #(,).
It is easy to verify that both maps are inverses of each other.

For the �-equivariance we have to show that ,(!( 5 )) = !(, 5 ).
We have !( 5 ) = (,′ ↦→ 5 (,′E)) and hence ,(!( 5 )) = (,′ ↦→ 5 ((,−1,′)E)). Therefore !(, 5 ) =

(,′ ↦→ (, 5 )(,′E)) = (,′ ↦→ 5 (,−1,′E)) = ,(!( 5 )). �

Without giving the proof we state that Theorem 18.6 also holds for large classes of groups,

including GL# . This is particularly interesting because the representation theoretic structure of

ℂ[�]stab�(E)
� can be obtained in Theorem 18.9 below.

18.3 Algebraic Peter–Weyl theorem

Proposition 18.7. Let � and � be groups and let + be a �-representation and, an �-representation.
Then + ⊗, is an irreducible � × �-representation iff both + and, are irreducible. Moreover, every
irreducible � × �-representation is isomorphic to some + ⊗, for + ,, irreducible.

We omit the proof, but refer the reader to [50].

Definition 18.8. If + is a �-representation, then the dual space +∗ is also a �-representation via

(,ℓ )(E) B ℓ (,−1E) for all ℓ ∈ +∗, E ∈ + . This representation is called the dual representation of + .

Clearly dim+ = dim+∗. Moreover, + is irreducible iff +∗ is irreducible.
If+ is a polynomial representation, then+∗ is not necessarily also a polynomial representation.

Indeed, for GL# we have that both + and +∗ are polynomial representations iff the type of + is

(0, 0, . . . , 0).

Theorem 18.9 (Algebraic Peter–Weyl theorem for finite groups). Let � be a finite group. On ℂ[�]
we have an action of � × � via ((, , ,′) 5 )(,̃) B 5 (,−1,̃,′) and we have

ℂ[�] =
⊕
�

{�}∗ ⊗ {�},

where � runs over all isomorphism types of irreducible �-representations and {�} denotes an irreducible
�-representation of type �.
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Proof. We follow [54, Thm. 8.6.4.3].

Let + be a �-representation. Define the � × �-equivariant linear map

8+ : +∗ ⊗ + → ℂ[�], 8+ (ℓ ⊗ E)(,) = ℓ (,E),

defined via linear continuation on all tensors.

We first show that if + is irreducible, then 8+ is injective: ker(8+ ) is a subrepresentation

of +∗ ⊗ + . Since 8+ ≠ 0, ker(8+ ) ≠ +∗ ⊗ + . +∗ ⊗ + is an irreducible � × �-representation
(Proposition 18.7). Thus ker(8+ ) = 0. Hence 8+ is injective.

This already proves that the right-hand side is contained in the left-hand side.

To finish the proof we show that 8+ (+∗ ⊗ +) equals the isotypic component of type +∗ w.r.t.
the action of � × {1}.

Let, ∗ be an irreducible � × {1}-representation that is isomorphic to +∗. Let 9 : , ∗ → ℂ[�]
be a � × {1}-morphism. We need to show that 9(, ∗) ⊆ 8+ (+∗ ⊗ +).

We identify, ∗ and +∗. Let ℓ ∈ +∗ be arbitrary. Define E ∈ + via ℓ (E) B 9(ℓ )(1�). Note that

(,−1ℓ )(E) = (,−1(9(ℓ )))(1�) = 9(,−1ℓ )(1�). Then 9(ℓ ) = 8+ (ℓ ⊗ E) because:

(9(ℓ ))(,) = (9(ℓ ))(, · 1�) = (,−1 · 9(ℓ ))(1�) = (9(,−1 · ℓ ))(1�) = (,−1ℓ )(E) = ℓ (,E) = (8+ (ℓ ⊗ E))(,).

�

The group algebra ℂ[�] for finite groups � is isomorphic (as a � × �-representation) to
the coordinate ring of � (where � is interpreted as finite subset of matrices in the set of all

invertible matrices of some fixed size). The key fact is that with the coordinate ring interpretation

Theorem 18.9 generalizes to all reductive algebraic groups, in particular for � = GL# . There the
sum is over all types � of rational representations, which includes all polynomial representations.

In particular, using Theorem 18.6, the following corollary holds.

Corollary 18.10.
mult�(ℂ[�E]) = dim({�∗}stab�(E)).

Proof.

mult�(ℂ[�E])
Thm. 18.6
= mult�(ℂ[�]stab�(E)) Thm. 18.9

= mult�((
⊕
�

{�} ⊗ {�}∗)stab�(E))

= dim({�∗}stab�(E)),

where the last equality holds because mult�({�}) = 1 iff � = � and 0 otherwise. �

Several variants of Theorem 18.9 are also true, with minor changes in the proof: On ℂ#×#

we have the action of GL# × GL# via (,1 , ,2)" = ,1",C
2
. The algebraic Peter–Weyl theorem

implies the decomposition of the coordinate ring of the matrix space

ℂ[ℂ#×# ]3 =
⊕
�`# 3
{�} ⊗ {�}. (18.2)
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This generalizes to a GL0 × GL1 action on ℂ0×1
:

ℂ[ℂ0×1]3 =
⊕

�`
min(0,1)3

{�}0 ⊗ {�}1 , (18.3)

where {�}0 denotes the irreducible GL0-representation of type �.

18.4 The determinant and rectangular Kronecker coefficients

Combining (18.1) and Corollary 18.10 we see that

mult�(ℂ[�E])
(18.1)

≤ mult�(ℂ[�E])
Cor. 18.10

= dim({�∗}stab�(E)), (18.4)

which could potentially be used to findmultiplicity or even occurrence obstructions. If � = GL=2

and E = det= , then stab�(E)was determined by Frobenius in 1897 [35]:

� B stabGL
=2
(det=) =

(
(GL= × GL=)/ℂ∗

)
oℤ2.

The multiplicities dim{�}� are known as rectangular symmetric Kronecker coefficients B:(�, = × 3).
We have seen in (18.4) that if 0�(�, 3) > 0 and B:(�, = × 3) = 0, then the type � occurs in the

vanishing ideal �(GL=2det=). We will see a working application of this approach in Chapter 22.

An upper bound for B:(�, = × 3) is given by a similar coefficient: Given a partition � of <

with at most =2
rows, we interpret it as a GL= ×GL=-representation via the map (, , ,′) ↦→ , ⊗ ,′,

where the matrix , ⊗ ,′ is the Kronecker product of matrices. Then {�} decomposes into

irreducible GL= × GL=-representations and the Kronecker coefficient :(�, �, �) is defined as the

multiplicity of the irreducible GL= ×GL=-representation {�} ⊗ {�} in {�}. Mulmuley and Sohoni

conjectured that the vanishing of the Kronecker coefficients should give enough elements in the

vanishing ideal to separate VPB $ VNP, but that was recently disproved [47] (and strengthened

in [23]).

Coordinate rings of orbits

The coordinate rings of orbit closures are not well understood.

The coordinate rings of orbits are much better understood: Their multiplicities are

dimensions of stabilizer-invariant subspaces.

Moreover, we will use the Algebraic Peter–Weyl theorem to prove the Schur–Weyl

duality in Chapter 19.

19 Explicit HWV constructions via Schur–Weyl duality

In this chapter we give an explicit interpretation of ℂ[A]3, A = ℂ[-1 , . . . , -<]= , in terms of

tensors. We understand the action of GL< using the famous Schur–Weyl duality. We derive
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useful results on plethysm coefficients and potential candidates for partitions � to separate the

determinant from the padded permanent, and related orbit closure questions. In particular we

will prove a result by Kadish and Landsberg [48] that the first row of �must be large and we

will see that the degree 3 must be superpolynomially large.

As in Proposition 12.7, HWV�(,) denotes the vector space of highest weight vectors of

weight � in the GL# -representation, .

19.1 Specht modules

In this section we describe without proof the irreducible representations of the symmetric group.

The irreducible representations of S= are called Specht modules. The Specht modules of S= are

indexed by partitions of =, i. e., partitions � with |�| = =. Note the difference to GL= , where the

irreducible polynomial representations are indexed by partitions � with ℓ (�) ≤ =, but where |�|
is arbitrary.

The construction of the Specht modules works as follows. For = ∈ ℕ let {�} denote the

irreducible GL=-representation of type �. We assume |�| = =. Let {�}0 denote the weight

space of {�} of weight (1, 1, . . . , 1) ∈ ℕ=
. We embed S= ⊆ GL= via permutation matrices as in

Lemma 11.10. Lemma 11.10 says that S= acts on {�}0. It turns out (without proof) that

• {�}0 is irreducible as an S=-representation,

• if � ≠ �, then {�}0 and {�}0 are non-isomorphic S=-representations,

• all irreducible representations of S= are obtained as {�}0 for some � with |�| = =.
We denote by [�] B {�}0 the Specht module of type �.

Example 19.1. 1. -=
1
is a HWV in + = ℂ[-1 , . . . , -"]= of weight � = (=, 0, . . . , 0). For

= = " we have a unique line of weight (1, 1, . . . , 1) = (1=), which is ℂ · -1-2 · · ·-= . Thus
{(=)}0 = [(=)] is 1-dimensional. The action ofS= permutes the positions of the variables in

the monomial -1-2 · · ·-= , so the action of S= is trivial: [(=)] is the trivial representation.

2. Take + = ℂ. GL= acts on + via ,E B det(,)E. The weight is (1, 1, . . . , 1) = (1=). Thus

[(1=)] is 1-dimensional. Moreover, if *(�) ∈ GL= denotes the permutation matrix of the

permutation � ∈ S= , then det(*(�)) = sign(�), so [(1=)] is the alternating representation:
�E = sign(�)E.

A semistandard Young tableau with = boxes in which each number 1, 2, . . . , = appears

exactly once is called a standard Young tableau. A basis of [�] is given by 4) , where ) goes over

the standard Young tableaux of shape �, see Section 17.3. For example, [(2, 1)] is 2-dimensional

and we have (when writing ) instead of 4))

(2 3) 1 2

3

=
1 3

2

and

(1 2) 1 2

3

=
2 1

3

=
1 2

3

+ 2 3

1

=
1 2

3

− 1 3

2

.
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19.2 Explicit Schur–Weyl duality

We write � �
# 3 to denote that � is a partition of 3 into at most # parts.

The group S3 × GL# acts on ⊗3ℂ#
via

(�, ,)(E1 ⊗ · · · ⊗ E# ) B (,E�−1(1)) ⊗ · · · ⊗ (,E�−1(#)).

Its decomposition into irreducibles is known as the Schur–Weyl duality.

Theorem 19.2 (Schur–Weyl duality).⊗3
ℂ# �

⊕
�
�
# 3

{�} ⊗ [�].

Proof sketch. We follow [49].

In (18.3), let 3 = 0 and take the GL3-weight (1, 1, . . . , 1) space:

ℂ[ℂ3×1]0
3
=

⊕
�
�
min(3,1) 3

[�] ⊗ {�}1 .

A partition with 3 boxes cannot have more than 3 rows, so ℓ (�) ≤ 3 is a void restriction. We

obtain

ℂ[ℂ3×1]0
3
=

⊕
�
�
1 3

[�] ⊗ {�}1 .

Degree 3 polynomials on ℂ3×1
that have GL3-weight (1, 1, . . . , 1) are linear combinations of

the monomials G1, 91G2, 92 · · · G3,93 , 1 ≤ 98 ≤ 1. These are in bĳection to the rank 1 tensors

G 91 ⊗ G 92 ⊗ · · · ⊗ G 93 , 1 ≤ 98 ≤ 1. This gives a canonical isomorphism

ℂ[ℂ3×1]0
3
�

⊗3
ℂ1

and the result follows. �

The highest weight vectors in Theorem 19.2 can be described explicitly as follows.

We denote by -1 , . . . , -# the standard basis vectors of ℂ#
. Let � ` � and � denote the

transpose of �, so �8 denotes the number of boxes in the 8-th column of �. For 9 ≤ # we note

that E 9×1 B -1 ∧ -2 ∧ · · · ∧ -9 is a highest weight vector of weight 9 × 1: If we use the definition

of G88′() from the proof of Lemma 11.13, then for 8 < 8′ we have

G88′(1)-1 ∧ -2 ∧ · · · ∧ -9 = -1 ∧ -2 ∧ · · · ∧ -9 + -1 ∧ · · · ∧ -8′−1 ∧ -8 ∧ -8′+1 ∧ · · · ∧ -9︸                                             ︷︷                                             ︸
=0

We define now:

E� B E�1×1 ⊗ . . . ⊗ E��
1
×1 ∈

⊗
�+. (19.1)

It is easy to check that E� is a nonzero highest weight vector of weight �.
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Proposition 19.3. Let � �
dim+

�. Then the vector space HWV�(
⊗

�+) is spanned by the S�-orbit
of E�.

Proof. Schur–Weyl duality provides a GL(+) ×S�-isomorphism⊗
�+ '

⊕
�
�
dim+ �

{�} ⊗ [�].

Recalling that HWV�({�}) is one-dimensional, we see that HWV�(
⊗

�+) is isomorphic to [�] as
an S�-module. From the irreducibility of [�] it follows that HWV�(

⊗
�+) is spanned by the

S�-orbit of any of its nonzero elements. �

Note that Prop. 19.3 is even more explicit:

The isomorphism

⊗
�+ '

⊕
�
�
dim+ �

{�} ⊗ [�]maps E� to ) ⊗ (, (19.2)

where) is the semistandard tableauwith only letters 8 in row 8 and ( is the so-called superstandard
tableau: ( contains the entries 1, . . . , |�| ordered columnwise from left to right, top to bottom.

For example, E(3,2,1) corresponds to

1 1 1

2 2

3

⊗
1 4 6

2 5

3

.

This provides a new basis for

⊗
�+ given by pairs (), () of semistandard ()) and standard (()

tableaux. This is a special case of the so-called Robinson-Schensted-Knuth-correspondence.

19.3 Polynomials as symmetric tensors: Plethysms

We follow [23].

In this section we establish the fundamental connection between tensors and the coordinate

ringsℂ[A]3,A = ℂ[-1 , . . . , -<]= . This leads to several results concerning the possible partitions

� that can be used to separate orbit closures.

19.3.1 Wreath products and symmetric powers of symmetric powers

We have seen in Section 16.2 that the 3th symmetric power (H<3, of a vector space, can

be defined as the S3-invariant subspace of

⊗
3, . This construction is easily seen to work

for arbitrary GL# -representations , . In fact, if + = ℂ#
we can choose , = (H<=+ and

define (H<3(H<=+ B (H<3((H<=+) as the space of S3-invariants in
⊗

3((H<=+). This is a
subrepresentation of

⊗
3(
⊗

=+) in a natural way that we want to understand now.

We partition the position set [3=] B {1, . . . , 3=} into the blocks �1 , . . . , �3, where �D B
{(D − 1)= + E | 1 ≤ E ≤ =}. The subgroup ofS3= of permutations that preserve the partition into

blocks is called the wreath productS= oS3. It is generated by the permutations leaving the blocks
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invariant, and the permutations of the form (D − 1)= + E ↦→ (�(D) − 1)= + E with � ∈ S3, which

simultaneously permute the blocks. Structurally, the wreath product is a semidirect product

S= oS3 ' (S=)3 oS3. Note that its order equals 3! =!
3
. Symmetrizing over S= oS3, we obtain

the projection

Σ3,=(F) B
1

3! =!
3

∑
�∈S= oS3

�(F) (19.3)

onto the S= oS3-invariant subspace (
⊗

3=+)S= oS3 ⊆
⊗

3=+ .

It is crucial and readily verified that

(
⊗

3=+)S= oS3 = (H<3(H<=+. (19.4)

Example 19.4. We give an example that will naturally lead to the connection with polynomials.

First, it is easy to verify that in [(2, 2)] (recall Section 17.3 and Section 19.1 for the relations on

tableaux)

1 2

3 4

+ 2 1

3 4

is invariant under S2 oS2. We write 0 ∧ 1 B 1

2
(0 ⊗ 1 − 1 ⊗ 0) and 0 � 1 B 1

2
(0 ⊗ 1 + 1 ⊗ 0). In

particular 0 � 0 = 0 ⊗ 0. We write G B 41 and H B 42 and omit the tensor symbol between

them (caveat: the omitted symbol is not the symmetric product, but the tensor product).

We convert tableaux to tensors using (19.2), so in particular
1

2

= G ∧ H = 1

2
(GH − HG) and

1 3

2 4

= (G ∧ H) ⊗ (G ∧ H) = 1

4
(GHGH − GHHG − HGGH + HGHG).

1 2

3 4

+ 2 1

3 4

=
1 2

3 4

+ 1 2

3 4

+ 2 3

1 4

= 2
1 2

3 4

− 1 3

2 4

= 1

2
(GGHH − HGGH − GHHG + HHGG) − 1

4
(GHGH − HGGH − GHHG + HGHG)

= 1

2
GGHH − 1

4
HGGH − 1

4
GHHG + 1

2
HHGG − 1

4
GHGH − 1

4
HGHG

= 1

2
(GGHH + HHGG) − 1

4
(GHGH + HGGH + GHHG + HGHG)

= 1

2
(GGHH + HHGG) − 1

4
(GH + HG)⊗2

= 1

2
(2(G�2) � (H�2)) − 1

4
(2G � H)�2

= ((G�2) � (H�2)) − (G � H)�2

= ((G�2) � (H�2)) − (G � H)�2 ,

which reminds us of the discriminant function, but without the coefficients.

Why did we choose
1 2

3 4

+ 2 1

3 4

in the previous example? We will see this in the

Remark 19.11.
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19.3.2 Polynomials as symmetric tensors

Let, = ℂ#
with standard basis -1 , . . . , -# . For a list � = (81 , . . . , 83) ∈ {1, . . . , #}3 we define

-� B -81 ⊗ -82 ⊗ · · · ⊗ -83 ∈
⊗

3,

Let �# (3) denote the set of all  ∈ ℕ#
with | | = 3. These  are called compositions of 3. For

� ∈ {1, . . . , #}3 we define the type �(�) ∈ �# (3), letting �(�)8 denote the number of appearances

of 8 in �. For example �(1, 2, 5, 3, 4, 2, 1, 3, 2) = (2, 3, 2, 1, 1). We associate with  ∈ �# (3) the
monomial

- B
1(3


) ∑
�(�)=

-� , (19.5)

where the sum is over all  ∈ �# (3) such that �(�) =  and

(<


)
is the multinomial coefficient(

3

1 2 · · · #

)
B

3!

1!2! · · · # !

.

This agrees with our definition:

- = -1
� · · · � -3 =

1

3!

∑
�∈S3

�(-1
⊗ · · · ⊗ -3 )

Note that -
is a symmetric tensor: - ∈ (H< | |.

Given a homogeneous degree 3 polynomial 5 we can interpret the evaluation at a point ? via

5 (?) = 〈 5 , ?⊗3〉, (19.6)

where 〈, 〉 is the inner product that is inherited from the standard inner product onℂ#
: Eq. (19.6)

is easily checked for monomials 5 , and since evaluation is a linear function, eq. (19.6) holds for

all homogeneous polynomials 5 . The inner product of two tensors is called a tensor contraction.
We formalize this correspondence as follows.

Proposition 19.5. For a GL# -representation, there is a GL# -isomorphism ℂ[,]3 ' (H<3, given
by mapping monomials as in (19.5), which implies that evaluating polynomials is given by tensor
contraction as in (19.6).

Iterating Proposition 19.5 twice we obtain the following corollary.

Corollary 19.6. There is a natural GL# -isomorphism

ℂ[A]3 ' (H<3(H<=+ ,

where A = ℂ[-1 , . . . , -dim+ ]= .
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Example 19.7. The tensor that corresponds (up to scale) to the discriminant via Corollary 19.6 is

the tensor from Example 19.4:

2GGHH + 2HHGG−HGGH − GHHG − GHGH − HGHG.
We evaluate the discriminant at 0-2 + 1-. + 2.2

, which is a contraction with the tensor

(0G2 + 1G � H + 2H2)⊗2
, according to (19.6). In order to do so, we expand first:

(0G2 + 1G � H + 2H2)⊗2 = (0GG + 1
2
GH + 1

2
HG + 2HH)2

= 02GGGG + 01
2
GGGH + 01

2
GGHG + 02GGHH

+ 01
2
GHGG + 12

4
GHGH + 12

4
GHHG + 12

2
GHHH

+ 01
2
HGGG + 12

4
HGGH + 12

4
HGHG + 1

2
2HGGG

+02HHGG + 12
2
HHGH + 12

2
HHHG + 22HHHH.

The contraction is color-coded and yields 402 − 12
, which is the evaluation of (the negative of)

the discriminant at 0-2 + 1-. + 2.2
.

We study (19.6) in more detail in Section 20.1 in the situation of Corollary 19.6.

19.3.3 Plethysm coefficients

In Section 12.4.1 we defined 0�(3, =) as the multiplicity of � in ℂ[A]3 with A = ℂ[-1 , . . . , -# ]= .
By Proposition 12.7 we know that

0�(3, =) = dim HWV�(ℂ[A]3).
With Corollary 19.6 we obtain

0�(3, =) = dim HWV�((H<3(H<=+).
Proposition 19.8. Formally 0�(3, =) depends on < B dim+ , i. e., we would need a symbol 0�,<(3, =).
For ℓ (�) > dim+ we have 0�,dim+ (3, =) B 0, as there exists no GLdim+ -representation of type �. If
ℓ (�) ≤ <1 and ℓ (�) ≤ <2, then 0�,<1

(3, =) = 0�,<2
(3, =).

Proposition 19.8 justifies the notation 0�(3, =). This was claimed in Section 12.4.1.

Proof of Proposition 19.8. Note that by Schur–Weyl duality and (19.4) we have

0�(3, =) = dim HWV�((H<3(H<=+)
(19.4)

= dim HWV�((⊗=3+)S= oS3 )
= dim HWV�((

⊕
�
�
dim+ =3

{�} ⊗ [�])S= oS3 )

= dim(
⊕

�
�
dim+ =3

HWV�({�}) ⊗ ([�])S= oS3 )

= dim[�]S= oS3 ,

provided ℓ (�) ≤ dim+ . �
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19.3.4 Semistandard tableaux again: Gay’s theorem

We follow [46, Sec. 4.3(A)]. Since the HWVs of type � in (H<3(H<=+ are explicitly described

by S= oS3-invariants in [�] (see the proof of Proposition 19.8), we study those invariants now.

Recall that a standard tableau indexes a vector in [�] = {�}0, but via Schur–Weyl duality it

also indexes a vector in HWV�(
⊗

3=+) � [�]. This can be confusing at first, but this beautiful

correspondence makes things a lot easier.

Lemma 19.9. Let + be an S= oS3-representation. Then we have an action of S3 on the invariant space
+S3

= . Moreover, +S= oS3 = (+S3
= )S3 .

Proof. Interchanging the block structure of invariant blocks keeps the blocks invariant, so we

have an S3-action. The second statement follows from our definition of S= oS3. �

It turns out that the S3
=-invariants of [�] can be easily understood using semistandard

tableaux. Let {�}3×= denote the 3 × = weight space in {�} (recall that a basis of {�}3×= is given
by the 4) where ) is semistandard of shape � and content 3 × =). Consider the map

! : {�}0 → {�}3×= (19.7)

that replaces each entry 1, 2, . . . , = by 1, each entry = + 1, = + 2, . . . , 2= by 2, and so on. This is

an application of a matrix in End(ℂ|�|), for example:

!
©«

2 1 3 5 8

4 7 9 10

6 12

11

ª®®¬ =

1 1 1 2 3

2 3 3 4

2 4

4

for = = 3, 3 = 4

is obtained by applying the matrix

©«

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

ª®®®®®®®®®®®®®®®®®®®¬

·
2 1 3 5 8

4 7 9 10

6 12

11

=

1 1 1 2 3

2 3 3 4

2 4

4

.

For a standard tableau ) there are two cases:

1. !()) is semistandard or
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2. !()) has a column with a repeated entry.

Using the relations in the columns, we see that only the semistandard tableaux correspond to

nonzero vectors. Moreover, distinct semistandard tableaux correspond to linearly independent

vectors in {�}3×= .
The map ! gives a way of representing the S3

=-invariants:

Lemma 19.10 (Gay’s theorem [38]). Let S3 act on [�] by permuting the 3 blocks, i. e., for example
the transposition (1 2) switches 1 with = + 1, switches 2 with = + 2, . . ., and switches = with 2=. The
map ! is S3-equivariant. Moreover, if we restrict ! to the invariant space [�]S3

= , then it becomes an
isomorphism of S3-representations [�]S

3
= and {�}3×= .

Proof. Permuting blocks and then setting the whole block to a number has the same effect as

setting the whole block to a number and then permuting the blocks. Thus ! is S3-equivariant.

The inverse function !−1
is given (up to scale) by summing over all ways of replacing each

entry 8 in the semistandard tableau by all entries 8(= − 1) + 9, 1 ≤ 9 ≤ =. For example

!−1( 1 1

2 2

) ↦→ 1 2

3 4

+ 2 1

3 4

+ 1 2

4 3

+ 2 1

4 3

�

Remark 19.11. Note that

1 2

3 4

+ 2 1

3 4

+ 1 2

4 3

+ 2 1

4 3

= 2

(
1 2

3 4

+ 2 1

3 4

)
,

which explains the choice at the end of Section 19.3.1.

Taking S3-invariants in Lemma 19.10 we obtain:

Corollary 19.12. 0�(3, =) = dim({�}3×=)S3 .

The following example shows how we can calculate plethysm coefficients using tableaux.

Example 19.13. For � = (2, 2) there is a unique semistandard tableau of shape �with rectangular

content 2 × 2:

1 1

2 2

.

Thus dim[�]S2

2 = 1. Let us consider the action of S2:

1

2

(
1 1

2 2

+ (1 2) 1 1

2 2

)
=

1 1

2 2

and thus dim[�]S2oS2 = 1 = 0(2,2)(2, 2). This invariant tableau can therefore now be used with

the above constructions to find the unique HWV of weight (2, 2): The discriminant, as it was

done in Example 19.4.
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Corollary 19.14. Via Schur–Weyl duality we identify tableaux ( of shape � that have content (1, 1 . . . , 1)
with vectors E( ∈ HWV�(

⊗
3
⊗

=+). The vector space HWV�(
⊗

3(H<=+) has as a basis the highest
weight vectors !−1()), where) ranges over all semistandard tableaux of shape�with content 3×=. More-
over, the vector space HWV�((H<3(H<=+) is spanned by the highest weight vectors ∑

�∈S3
!−1(�)),

where ) ranges over all semistandard tableaux of shape � with content 3 × =.
Example 19.15.

(H<2(H<2ℂ< = {(2, 2)} ⊕ {(4)} for all < ≥ 2.

Proof. • There is a unique semistandard tableau of shape (2, 2) and rectangular content 2× 2:

1 1

2 2

.

It is invariant under S2.

• There is a unique semistandard tableau of shape (4, 0) and rectangular content 2 × 2:

1 1 2 2 .

It is invariant under S2.

• There is a unique semistandard tableau of shape (3, 1) and rectangular content 2 × 2:

1 1 2

2

. (19.8)

It vanishes under symmetrization over S2.

• There are no semistandard tableaux of shape (2, 1, 1) or (1, 1, 1, 1)with rectangular content

2 × 2.

�

Some more small examples:

Theorem 19.16 (Howe’s theorem [44, Thm. 4.3]). Let 3 > 1. Let 3 × = B (=, =, . . . , =) denote the
partition of =3 whose Young diagram is rectangular with = columns and 3 rows.

03×=(3, =) =
{

1 if = is even,
0 otherwise.

Proof. There is exactly 1 semistandard tableau of shape 3 × = and rectangular content 3 × =. For
example:

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

.

Applying a transposition (8 9) ∈ S3 gives a sign change for each column. So the tableau is

invariant iff = is even. �
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Proposition 19.17. A partition � is called a nontrivial hook if � = (:, 1<) B (:, 1, 1, . . . , 1︸     ︷︷     ︸
< times

) with

: ≥ 1 and < ≥ 1. If � is a partition of =3 and � is a nontrivial hook, then the plethysm coefficient
0�(3, =) is zero.

Proof. This generalizes the vanishing of eq. (19.8) under symmetrization.

Let � ` =3 be a nontrivial hook. Pick any Young tableau ) of shape � with rectangular

content 3 × =. Then ) will have at least two numbers 0 and 1 appearing in the first column, for

example

1 1 1 2 2 3 3 4 4

2

3

4

Then pick two numbers 0 and 1 that appear in the first column. Then ) + (0 1)) = 0 and thus )

vanishes when symmetrizing over a cardinality 2 subgroup of S3, therefore ) also vanishes

when symmetrizing over the whole S3. �

Explicit construction of HWVs

The explicit construction of highest weight vectors gives us first results about plethysm

coefficients. In Chapter 20 we will lift these techniques to multiplicities in coordinate

rings of orbit closures.

20 Tensor contraction

In this chapter we describe a combinatorial interpretation of the contraction in (19.6) and give

several applications, including strong restrictions on the shape of partitions � that can potentially

serve as obstructions. We will see that those � require a very long first part.

20.1 Contracting highest weight vectors in plethyms with rank one tensors

In this section we give a combinatorial interpretation of the contraction in (19.6). This will

enable us to deduce restrictions on the possible � that can serve as obstructions.

Let + = ℂ#
and let B : {1, . . . , 3=} → ℂ#

.

We view � ` 3= as a Young diagram and, for convenience, denote by � also the set of boxes

of the diagram. Recall the map ! from (19.7).

Definition 20.1. Let ) be a tableau of shape �with content 3 × = and ' : �→ [3=] be a bĳection.
This results in a tableau (' with content (1, . . . , 1). We say that ' respects ) iff there exists a

permutation � ∈ S3 such that !((') = )�()).

Clearly for a given ) there are (=!)33! maps ' that respect ), which is the size of the wreath

product group S= oS3.

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 10 (2025), pp. 1–166 116

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


INTRODUCTION TO GEOMETRIC COMPLEXITY THEORY

Pictorially, the composition B ◦ ' puts vectors in the tableau cells.

Let 9 = (91 , . . . , 9:) be a list of vectors in ℂ#
. We define

det(91 , . . . , 9:) B 〈41 ∧ 42 ∧ · · · ∧ 4: , 91 ⊗ 92 ⊗ · · · ⊗ 9:〉, (20.1)

which is the determinant of the top : × : submatrix of the # × : matrix 9.

Suppose ' : �→ [3=] respects the tableau ) of shape � with content 3 × =, and take a map

B : {1, . . . , 3=} → ℂ#
. We define the value val'(B) of ' at B : {1, . . . , 3=} → ℂ#

by

val'(B) B
∏

column 2 of �

det(B('(1, 2)), . . . , B('(�2 , 2)), (20.2)

where � = �C . This is natural in the following sense:

val'(B) = 〈41 ∧ · · · ∧ 4�1
⊗ · · · ⊗ 41 ∧ · · · ∧ 4��

1

, B('(1, 1)) ⊗ B('(2, 1)) ⊗ · · · ⊗ B('(��1
,�1))〉

Pictorially, B ◦ ' places vectors in the tableau and val'(B) is the product over the column

determinants.

Theorem20.2. Let) be a tableau of shape� ` 3= with content 3×= and let E) be the correspondingHWV
in HWV�(

⊗
3(H<=+) (Cor. 19.14). Let Ẽ) B 1

3!

∑
�∈S3

�E) be the HWV in HWV�((H<3(H<=+).
Let B : {1, . . . , 3=} → ℂ# be a map. Then

〈Ẽ) , B(1) ⊗ . . . ⊗ B(3=)〉 =
1

3! =!
3

∑
'

val'(B),

where the sum is over all bĳections ' : �→ {1, . . . , 3=} respecting ).

Proof. Let ( be a tableau with content (1, 1, . . . , 1) such that !(() = ). Let � ∈ S3= any

permutation such that �(0 = (, where (0 is the standard tableau that is ordered columnwise

from left to right, top to bottom.

〈Ẽ) , B(1) ⊗ . . . ⊗ B(3=)〉 = 1

3! =!
3

∑
�∈S3 oS3

〈�E( , B(1) ⊗ . . . ⊗ B(3=)〉

= 1

3! =!
3

∑
�∈S3 oS3

〈E( , �(B(1) ⊗ . . . ⊗ B(3=))〉

= 1

3! =!
3

∑
�∈S3 oS3

〈�E(0
, �(B(1) ⊗ . . . ⊗ B(3=))〉

= 1

3! =!
3

∑
�∈S3 oS3

〈E(0
,�−1�(B(1) ⊗ . . . ⊗ B(3=))〉

= 1

3! =!
3

∑
'

val'(B),

where the last equality follows from E(0
= 41 ∧ · · · ∧ 4�1

⊗ · · · ⊗ 41 ∧ · · · ∧ 4��
1

. �
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20.2 Applications: Waring rank and a proof of Weintraub’s conjecture

20.2.1 The discriminant

We let

) B 1 1

2 2

and aim to evaluate Ẽ) at a tensor of Waring rank 1: ℓ 2
, where ℓ ∈ ℂ"

.

We observe (ℓ 2)⊗2 = ℓ ⊗ ℓ ⊗ ℓ ⊗ ℓ and set B = (ℓ , ℓ , ℓ , ℓ ).

〈Ẽ) , (ℓ 2)⊗2〉 = 1

8

∑
' respecting )

val'(B)

But every summand val'(B) is zero, because it is a product of 2 × 2 determinants in which both

columns are ℓ . Therefore the discriminant vanishes on Waring rank 1 polynomials.

20.2.2 Too many rows

The following observation generalizes the discriminant.

Observation 20.3. Let ) be a semistandard tableau of shape � and content 3 × = with more than : rows.
Then Ẽ) vanishes on all points of border Waring rank ≤ :.

Proof. Let ℎ = ℓ =
1
+ ℓ =

2
+ · · · + ℓ =

:
for linear forms ℓ8 .

〈Ẽ) , ℎ⊗3〉 =
∑

1≤01 ,...,03≤:
〈Ẽ) , ℓ =01

⊗ · · · ⊗ ℓ =03〉

= 1

3!(=!)3
∑

1≤01 ,...,03≤:

∑
'

val'(ℓ01
, . . . , ℓ01

, ℓ02
, . . . , ℓ02

, . . . , . . . , ℓ03 , . . . , , ℓ03 )

As for the discriminant, each summand vanishes independently. Indeed, for

B = (ℓ01
, . . . , ℓ01

, ℓ02
, . . . , ℓ02

, . . . , . . . , ℓ03 , . . . , , ℓ03 ),

the map B ◦ ' places the ℓ8 in the tableau such that each position that has the same number

in ) gets the same ℓ8 . But the first column of ) has more than : different numbers. So by the

pigeonhole principle B ◦ ' puts at least two coinciding ℓ8 in the first column. Thus val'(B) = 0

because a determinant with a repeating column is zero. �

20.2.3 Aronhold’s invariant

We can do a little bit better, i. e., use fewer rows, as Aronhold’s invariant in (H<4(H<3+ shows

(and this can be generalized):

) B
1 1 1 2

2 2 3 3

3 4 4 4

.
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Let ℎ ∈ (H<3+ be of Waring rank 3, ℎ = ℓ 3

1
+ ℓ 3

2
+ ℓ 3

3
. Then

ℎ⊗4 = ℓ 3

1
⊗ ℓ 3

1
⊗ ℓ 3

1
⊗ ℓ 3

1
+ ℓ 3

1
⊗ ℓ 3

1
⊗ ℓ 3

1
⊗ ℓ 3

2
+ · · · + ℓ 3

3
⊗ ℓ 3

3
⊗ ℓ 3

3
⊗ ℓ 3

3
.

〈Ẽ) , ℎ⊗4〉 =
∑

1≤0,1,2,3≤3

〈Ẽ) , ℓ 3

0 ⊗ ℓ 3

1
⊗ ℓ 3

2 ⊗ ℓ 3

3
〉

= 1

4!(3!)4
∑

1≤0,1,2,3≤3

∑
'

val'(ℓ0 , ℓ0 , ℓ0 , ℓ1 , ℓ1 , ℓ1 , ℓ2 , ℓ2 , ℓ2 , ℓ3 , ℓ3 , ℓ3)

Again each summand vanishes independently. Indeed, for

B = (ℓ0 , ℓ0 , ℓ0 , ℓ1 , ℓ1 , ℓ1 , ℓ2 , ℓ2 , ℓ2 , ℓ3 , ℓ3 , ℓ3) ,

the map B ◦ ' places the ℓ8 in the tableau such that each position that has the same number in )

gets the same ℓ8 . For a nonzero summand it is required that ' puts different vectors ℓ8 on the

numbers 1,2,3 because of the first column. But in ) the number 4 shares columns with each 1,2,3

and there is no 4th different vector ℓ8 . Thus for every ' there is at least one column in which the

determinant vanishes because of a repeated column.

20.2.4 Proof of Weintraub’s conjecture

With one additional idea it is now straightforward to prove Weintraub’s conjecture that allows

us to create nonzero Ẽ) :

Theorem 20.4 ([18]). Let = be even. Given a partition � of 3= into at most 3 parts such that all �8 are
even. Then 0�(3, =) > 0.

Proof. If � is even, ℓ (�) ≤ 3, then we can fill it with content 3 × = such that each column appears

twice (for example in a greedy fashion, taking the column pair with the most empty rows first).

For example

) =

1 1 1 1 4 4 2 2 3 3 4 4

2 2 2 2 1 1

3 3 3 3

4 4

.

Now choose a homogeneous polynomial ℎ as the sum of 3 many homogeneous degree = linear

forms with real coefficients:

ℎ = ℓ =
1
+ · · · + ℓ =

3
,

where each ℓ8 ∈ ℝ3
. Here we choose each ℓ8 in a “generic” way, i. e., its entries should be

algebraically independent or at least all top : × : determinants of all subsets of : vectors ℓ8
should be nonzero. We will see that

〈Ẽ) , ℎ⊗3〉 > 0. (20.3)
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Indeed,

〈Ẽ) , ℎ⊗3〉 = 1

3!(=!)3
∑

1≤01 ,02 ,...,03≤3

∑
'

val'(ℓ01
, . . . , ℓ01

, ℓ02
, . . . , ℓ02

, . . . . . . , ℓ03 , . . . , ℓ03 )

When expanding we get a sum of products of determinants, but in each product each

determinant appears an even number of times. Therefore we sum over squares of real numbers!

Since squaring nonzero real numbers results in positive real numbers, (20.3) will be positive. It

remains to show that there is at least one positive summand, but that is given for example for

the summand ' in which ℓ8 is placed on 8. �

20.3 Application: Obstructions require long first rows

For a partition � we define �̄ to be its body, i. e., �̄ is obtained from � by removing its first row.

The following insight is due to Kadish and Landsberg [48]. It puts a strong restriction on the

types � that can be used to separate the determinant from the padded permanent.

Proposition 20.5 ([48]). Let Ω=,< B GL=2(-=−<
1,1

per<). If � ` =3 occurs in ℂ[Ω=,<]3, then
ℓ (�) ≤ <2 + 1 and |�̄| ≤ <3.
Proof. Suppose that � ` =3 satisfies ℓ (�) > <2 + 1 or |�̄| > <3. We need to show that � does not

occur in ℂ[Ω=,<]3. We will show that 〈Ẽ) , ℎ⊗3〉 = 0 for every semistandard tableau ) of shape �
with content 3 × = and every ℎ ∈ Ω=,< . So fix a tableau ) of shape � with content 3 × = and fix

a point ℎ ∈ Ω=,< .

Assume first that ℓ B ℓ (�) > <2 + 1. We prove that 〈Ẽ) , ℎ⊗3〉 = 0. We use an argument

that is very similar to Observation 20.3. For this, it suffices to show that 〈Ẽ) , C〉 = 0 for all

tensors C = B(1) ⊗ · · · ⊗ B(3=), where B : {1, . . . , 3=} → {41 , . . . , 4<2+1
} and 48 are the standard

basis vectors of ℂ<2+1
. Indeed, for every ' we have val'(B) = 0 because the determinant that

corresponds to the first column is zero: It is a determinant of a ℓ × ℓ matrix, ℓ > <2 + 1, whose

last ℓ − (<2 + 1) rows are zero. Thus 〈Ẽ) , ℎ⊗3〉 = 0.

Assume now |�̄| > <3, so that �1 < (= − <)3. For , ∈ GL=2 let / B ,-1,1 so that

/=−< · ,per< ∈ GL=2(-=−<
1,1

per<). Let @ B /=−<,per< . We can express @⊗3 as a linear

combination of tensors C = B(1) ⊗ · · · ⊗ B(3=), where B : {1, . . . , 3=} → ℂ"
maps at least (= −<)3

elements to the vector /. Fix such a tensor C. It suffices to show that 〈Ẽ) , C〉 = 0. Indeed, each

summand of

∑
' val'(B) vanishes independently. This can be seen as follows. Since�1 < (=−<)3,

the partition � has less than (= − <)3 columns. By the pigeonhole principle, there is a column 2

in which B ◦ ' puts a vector / in at least two boxes. Thus the determinant corresponding to this

column vanishes. �

Explicit construction of HWVs

Evaluation of highest weight vectors can be defined via tensor contraction. In several

cases this tensor contraction can be fully understood, so that nontrivial results about

multiplicities in coordinate rings of orbit closures can be deduced, for example

equations for Waring rank.
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21 Good occurrence obstructions for determinant vs padded perma-
nent do not exist

In this chapter, we will see that showing (-1)=−<per< ∉ GL=2det= for superpolynomially large

= cannot be achieved with occurrence obstructions. The padding is crucial for the proof of this

result. It is astonishing that such a seemingly small modification has such a large impact (on

the proof, the complexity of the polynomial is of course not changed by much). Multiplicity

obstructions might still work, as well as occurrence obstructions in models of computation where

no padding is involved. One such example is homogeneous iterated matrix multiplication. The

hope that multiplicity obstructions might work (at least in models without padding) comes from

the fact that in many situations group orbits and orbit closures can be reconstructed without

loss of information from the multiplicities in their coordinate rings [58, 83, 22].

We roughly follow [23]. The crucial tool is the semigroup property that is explained in

Section 21.2.1. It is a well-known theorem of independent interest: If � and � occur in the

coordinate ring of a GL=-orbit closure, then � + � occurs as well. This means that we only have

to prove the occurrence for a large enough set of building blocks so that we can obtain every

partition as a sum of building blocks. We will see that this essentially works in the range of all

“interesting” partitions. This splitting of partitions into building blocks is the main argument,

see Section 21.2.2. The range of all “interesting” partitions is cut down significantly by the

requirement to have a long first row and only very few rows, see Section 20.3. Moreover, we

rule out that a polynomially bounded number of boxes in the Young diagram suffices, see

Section 21.1. This means that we have only polynomially many rows, but superpolynomially

many columns and a very long first row. We show directly that the rectangular partitions with

even number of columns and an additional long first row occur (rectangular blocks with an

even number of columns are particularly easy to understand, and the long first row is handled

by a lifting theorem, see Section 21.1.3), so using these building blocks we can construct any

partition that has even row lengths, few rows, and a long first row. If there were no odd row

lengths, then we would be done at this point. We handle odd row lengths by proving that wide

rectangular blocks with one additional other column and an additional long first row also occur.

For this type of building block we can prove occurrence directly by evaluating on a padded

power sum, see Section 21.2.3.

21.1 The degree lower bound

In this section we prove a lower bound on the degree 3 that (polynomial) obstructions must

have: 3 >
√

=
< . In particular if we want to prove superpolynomial lower bounds on the border

determinantal complexity of the permanent, we need superpolynomially high degree.

21.1.1 Padded low-rank embedding

We will apply the following theorem with B = <3.

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 10 (2025), pp. 1–166 121

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs
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Theorem 21.1. Let =, B, 3 be positive integers such that = ≥ B3 and

/, E1,1 , . . . , E1,B , E2,1 , . . . , . . . , E3,B ∈ +.

Then we have /=−B(E1,1E1,2 · · · E1,B + · · · + E3,1E3,2 · · · E3,B) ∈ GL=2det= .

Proof. Let -1,1 , . . . , -3,B , . . . , -= denote the standard basis of + (that last = − 3B variables are
indexed by just one integer). Writing the polynomial -1,1-1,2 · · ·-1,B + · · · +-3,1-3,2 · · ·-3,B as a
formula requires at most (B − 1)3 + 3 − 1 = B3 − 1 many additions and multiplications. Valiant’s

construction [80] implies that -1,1-1,2 · · ·-1,B + · · · + -3,1-3,2 · · ·-3,B has the determinantal

complexity at most B3 ≤ =, i. e., it can be written as the determinant of an =×=-matrix with affine

linear entries in -1,1 , . . . , -3,B . The determinantal complexity is invariant under invertible linear

transformations. Hence the determinantal complexity of E1,1E1,2 · · · E1,B+· · ·+E3,1E3,2 · · · E3,B is at
most =, for any linearly independent system E1,1 , . . . , E3,B of linear combinations of -1 , . . . , -=2 .

By homogenizing with respect to a new variable . and then substituting . by / ∈ + , we see that

/=−B(E1,1E1,2 · · · E1,B + · · · + E3,1E3,2 · · · E3,B) ∈ GL=2det= . Since GL=2det= is closed, we can drop

the assumption that the E8 , 9 are linearly independent, by taking limits. �

21.1.2 Low-rank evaluation

We present now a useful lemma on the evaluation of polynomials at “points of low rank”.

Lemma 21.2. Let 5 ∈ (H<3, be such that 5 (∑A
9=1
E 9) ≠ 0 for some E1 , . . . , EA ∈, . Then there exists

( ⊆ {1, . . . , A} with |( | ≤ 3 and 5 (∑9∈( E 9) ≠ 0.

Proof. (an alternative proof is given in [23, Lem. 3.1]) Let [A] B {1, . . . , A}. For a subset

( ⊂ [A] we write E( B E(1
+ E(2

+ · · · + E(|( | . Let E B E[A]. For a map � : [3] → [A] we write

E� B E�(1) ⊗ E�(2) ⊗ · · · ⊗ E�(3). In the following inclusion/exclusion calculation we can assume

all sets (8 to have at most 8 elements. We will express 5 (E) as a linear combination of evaluations
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5 (E(), where |( | ≤ 3, ( ⊆ [A]. A two-headed arrow “�” indicates a surjective map.

5 (E) = 〈 5 , E⊗3〉 =
∑

�:[3]→[A]
〈 5 , E�〉

=
∑
(3⊂[A]

∑
�:[3]�(3

〈 5 , E�〉

=
∑
(3⊂[A]

©« 5 (E(3 ) −
∑

�:[3]→(3 not surj
〈 5 , E�〉ª®¬

=
∑
(3⊂[A]

©« 5 (E(3 ) −
∑

(3−1
$(3

∑
�:[3]�(3−1

〈 5 , E�〉ª®¬
=

∑
(3⊂[A]

©« 5 (E(3 ) −
∑

(3−1
$(3

©« 5 (E(3−1
) −

∑
(3−2

$(3−1

∑
�:[3]�(3−2

〈 5 , E�〉ª®¬ª®¬
=

∑
(3⊂[A]

©«
5 (E(3 ) −

∑
(3−1

$(3

©«
5 (E(3−1

) −
∑

(3−2
$(3−1

©«
· · ·

©«
∑
(1$(2

∑
�:[3]�(1

〈 5 , E�〉︸ ︷︷ ︸
= 5 (E(

1
)

ª®®®®¬
· · ·

ª®®®®¬
ª®®®®¬
ª®®®®¬

Hence we see that 5 (E) can be expressed as a linear combination of evaluations 5 (E(), where

|( | ≤ 3. Since 5 (E) ≠ 0 there exists ( such that 5 (E() ≠ 0. �

A direct corollary of Lemma 21.2 (using E 9 to be the monomial basis) is the following.

Corollary 21.3. Let + be a finite dimensional ℂ-vector space and 3, = ≥ 1. If 5 ∈ (H<3(H<=+ is
nonzero, then there exists a polynomial ℎ ∈ (H<=+ that has at most 3 nonzero coefficients such that
5 (ℎ) ≠ 0.

21.1.3 The inner degree tableau lifting

Given a tableau with shape � and content 3 × = we define the lifted tableau to be the tableau of

shape � + (3)where we append the entries 1, . . . , 3 to the first row. For example:

1 1 1 1 4 4 2 2 3 3 4 4

2 2 2 2 1 1

3 3 3 3

4 4

lifting

↦→
1 1 1 1 4 4 2 2 3 3 4 4 1 2 3 4

2 2 2 2 1 1

3 3 3 3

4 4

If Ẽ) is a HWV in (H<3(H<=+ , then Ẽ)′ is a HWV in (H<3(H<=+1+ , where )′ is the lifted

tableau of ). The lifting is an injective map HWV�((H<3(H<=+) ↩→ HWV�+(=)((H<3(H<=+1+).
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The proof can be readily obtained from the semigroup property of the partitions in the coordinate

ring ℂ[GL3(-1-2 · · ·-3)], but we omit the details, see [23].

We can apply the lifting several times and also call the result a lifted tableau.

Recall the monomial

- =
1

3!

∑
�∈S3

�(-1
⊗ · · · ⊗ -3 )

We define a linear map (H<=+ → (H<=+1+ that is suited to this lifting (and which is basically

a rescaled multiplication with -1):

-1 � (
∑
�∈S3

�(-1
⊗ · · · ⊗ -3 )) B

1

:

∑
�∈S3+1

�(-1
⊗ · · · ⊗ -3 ⊗ -1)

where : = |{ 9 |  9 = 1}| + 1 is the -1-degree of the right-hand side. The crucial property is that

the summands on the left-hand side are in bĳection (taking into account the rescaling factor
1

:
)

to the summands on the right-hand side which have -1 as their last tensor factor. In terms of

monomials, this is a rescaled multiplication with -1. The rescaling factor is chosen so that is

works well with the lifting map Ẽ) ↦→ Ẽ)′:

〈Ẽ) , (?)⊗3〉 = 〈Ẽ)′ , (-1 � ?)⊗3〉 (21.1)

which can be seen immediately by comparing summands in the tensor contractions (this is also

the reason why we state (21.1) in terms of tensors and not monomials, which would also be

perfectly possible. In fact, [23, Sec. 5(b)] gives a more algebraic presentation of this construction).

Applying -1 � ℎ to a polynomial preserves the number of monomials that have a nonzero

coefficient, but it changes the coefficients individually, depending on the number of occurrences

of -1 in each monomial. We write (-1)=−< � ? B -1 � (-1 � (· · · � ?)).

Corollary 21.4. Let =, B, 3 be positive integers such that = ≥ B3 and

/, E1,1 , . . . , E1,B , E2,1 , . . . , . . . , E3,B ∈ +.

Then we have /=−B � (E1,1E1,2 · · · E1,B + · · · + E3,1E3,2 · · · E3,B) ∈ GL=2det= .

Proof. /=−B � (E1,1E1,2 · · · E1,B + · · · + E3,1E3,2 · · · E3,B) has the required format for applying The-

orem 21.1 directly: /=−B � (E1,1E1,2 · · · E1,B + · · · + E3,1E3,2 · · · E3,B) = /=−B(Ẽ1,1Ẽ1,2 · · · Ẽ1,B + · · · +
Ẽ3,1Ẽ3,2 · · · Ẽ3,B) for some Ẽ8 , 9 . �

We write �♯�
for the partition of the “lifted shape” � + (� − |�|), that arises from � by

extending the first row so that �♯�
has � boxes.

Corollary 21.5. If 0�(3, =) > 0, then 0�♯3# (3, #) > 0 for all # ≥ =.

Proof. If 0�(3, =) > 0, then there is some nonzero Ẽ) ∈ HWV�((H<3(H<=+) and therefore some

ℎ ∈ (H<=+ such that Ẽ)(ℎ) ≠ 0. We obtain Ẽ)′ that satisfies Ẽ)′(-#−=
1
� ℎ) = Ẽ)(ℎ) ≠ 0 according

to (21.1). As Ẽ)′ is a nonzero HWV of weight �♯3#
, we get that 0�♯3# (3, #) > 0. �
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1 1 1 1 1 1 1 2 2 2 3 3 3 3 4 4 4

2 2 2 2 4 4

3 3 3

4 4

shortening

↦→
1 1 1 1 1 1 2 2 3 3 3 4 4

2 2 2 2 4 4

3 3 3

4 4

Figure 10: Shortening the first row. Here = = 7, 3 = 4, " = 6, �2 + |�̄| = 18 ≤ 24 = "3

� = (16, 6, 4, 2). Then � = (12, 6, 4, 2). The crucial property is that for each number there is a

singleton box containing that number in the left tableau.

We will use the following proposition with " = <3.

Proposition 21.6. Suppose that � ` =3 satisfies �2 ≤ " and �2 + |�̄| ≤ "3. Then every HWV of
weight � in (H<3(H<=+ is obtained by lifting a HWV in (H<3(H<"+ of weight �, where � ` "3

such that �̄ = �̄.

Proof. Note that �2 + |�̄| ≤ "3 is the number of boxes of � that appear in columns that are not

singleton columns. We can therefore shorten the given � to a partition � ` "3 by removing

singleton columns, see Figure 10 for an example. Indeed, if ) is semistandard of shape � with

content 3 × =, then each number can appear in non-singleton columns at most" times, because

�2 ≤ ". Therefore shortening ) to shape � ` "3 can be done by removing (= −") of each
number 1, . . . , 3 from singleton columns, which gives the HWV we searched for. �

21.1.4 The degree lower bound

If we want to separate with polynomials, then the following proposition gives a lower bound on

the possible degree.

Proposition 21.7. Let � ` =3 be such that there exists a positive integer < satisfying |�̄| ≤ <3 and
3 ≤

√
=
< . Then every nonzero HWV of weight � in (H<3((H<=+) does not vanish on GL=2det= .

In particular, to show superpolynomial lower bounds on the border determinantal complexity of per<
we need superpolynomially high degree 3.

Proof. The case 3 = 1 is trivial as (=) occurs in ℂ[GL=2det=]1. So suppose 3 ≥ 2.

Let � ∈ HWV�((H<3(H<=+). We have �2 ≤ |�̄| ≤ <3 and �2 + |�̄| ≤ 2|�̄| ≤ 2<3 ≤
<3 · 3. Therefore, we are in the setting of Proposition 21.6 with respect to the lifting

(H<3(H<<3+ → (H<3(H<=+ . We conclude that � arises by an inner degree lifting from a

HWV 5 ∈ (H<3(H<<3+ of weight � − (3(= − <)).
By Corollary 21.3, there are E1,1 , . . . , E3,<3 ∈ + such that 5 does not vanish on

? B E1,1E1,2 · · · E1,<3 + · · · + E3,1E3,2 · · · E3,<3 .

Using (21.1) we see that � does not vanish on @ B -=−<
1
� ?. By Corollary 21.4 we have

@ ∈ GL=2det= since = ≥ <3 · 3 (i. e., 3 ≤
√

=
< ). Therefore, � does not vanish on GL=2det= . �
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MARKUS BLÄSER AND CHRISTIAN IKENMEYER

21.1.5 A first row that is too long

In a mostly analogous way one can prove the following proposition that takes care of cases with

a huge �1. We omit the details.

Proposition 21.8. Let � ` =3 and assume there exist positive integers B, < such that ℓ (�) ≤ <2,
�1 ≥ =3 − B, <2B2 ≤ =, and <2B ≤ 3. Then every nonzero ℎ ∈ HWV�((H<3(H<=+) of weight �
does not vanish on GL=2det= .

21.2 No occurrence obstructions

In this section we prove that occurrence obstructions cannot prove superpolynomial lower

bounds on dc(per<).

Theorem 21.9. Let =, 3, < be positive integers with = ≥ <25 and � ` =3. If � occurs in ℂ[/=−<per<],
then � also occurs in ℂ[GL=2det=]. In particular occurrence obstructions cannot show superpolynomial
lower bounds on dc(per<).

Proof. We may assume that < ≥ 2, as the case < = 1 is trivial. Suppose that � ` =3 occurs in
ℂ[/=−<per<] and = ≥ <25

. Proposition 20.5 implies that |�̄| ≤ <3 and ℓ (�) ≤ <2
.

In the case of “small degree”, where = ≥ <32
, Proposition 21.7 implies that � occurs in

ℂ[GL=2det=].
So we may assume that 3 >

√
=/<. In this case we have 3 ≥

√
<25/< = <12

. We conclude

by two further case distinctions.

If |�̄| < <10
, we can apply Proposition 21.8 with B B <10

since �2 ≤ |�̄| ≤ B (note that

�1 ≥ =3 − B iff �2 ≤ B), <2B2 = <22 ≤ =, and <2B = <12 ≤ 3. Thus � occurs in ℂ[GL=2det=]3.
We handled the case where the 3 is small or |�| is small. Finally, we come to the most

interesting case. If |�̄| ≥ <10
, then an explicit construction (Corollary 21.22) tells us that � occurs

in ℂ[GL=2det=]3. �

The explicit construction mentioned in the proof crucially uses the so-called semigroup
property that we introduce in the next section.

21.2.1 The semigroup property

To have an explicit construction of HWVs in ℂ[GL=2det=]we use the semigroup property, which

allows us to construct HWVs as products of HWVs of smaller degrees.

Let A B ℂ#
. A Zariski-closed subset / ⊆ A is called an irreducible subvariety if / is not a

union of two distinct proper Zariski-closed subsets of /. More generally, in a topological space

a subset is irreducible if it is not the union of two distinct proper closed subsets.

Lemma 21.10. The affine space A B ℂ# is irreducible.
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Proof. Let+( 51 , . . . , 5A) denote the simultaneous vanishing set of 51 , . . . , 5A , where 58 ∈ ℂ[A]. IfA
is reducible, then A = +( 51 , . . . , 5A) ∪+(,1 , . . . , ,B), where 58 , , 9 ∈ ℂ[A], 58 , , 9 ≠ 0. In particular

A ⊆ +( 51) ∪ +(,1) = +( 51,1). Since 51,1 ≠ 0 there exists a point G ∈ A with ( 51,1)(G) ≠ 0

(Lemma 1.9). But this means that A * +( 51,1), which is a contradiction. �

Lemma 21.11. The image 5 (-) of an irreducible set - under a continuous map 5 is irreducible.

Proof. If 5 (-) = .1 ∪ .2 with nontrivial distinct Zariski-closed subsets .8 , then - = 5 −1(.1) ∪
5 −1(.2). Since 5 is continuous, 5 −1(.8) is closed. Moreover, if 5 −1(.1) = -, then 5 (-) = .1, in

contradiction to .1 $ 5 (-). Analogously it holds 5 −1(.2) ≠ -. Thus - is a union of nontrivial

closed subsets, in contradiction to - being irreducible. �

Lemma 21.12. The closure . of every irreducible set . is irreducible.

Proof. Assume that . is not irreducible, i. e., . = ( ∪ ) with closed subsets ( ⊆ . and ) ⊆ .,
and (, ) ≠ .. We have . ⊆ . ⊆ ( ∪ ). Thus . = (( ∪ )) ∩ . = (( ∩ .) ∪ () ∩ .), where both

(( ∩ .) and () ∩ .) are closed in . (subspace topology). The decomposition is nontrivial: if

( ∩ . = ., then . ⊆ (, and therefore . ⊆ ( = ( and thus . = (, a contradiction. Analogously

for ). Therefore . is not irreducible. �

Lemma 21.13. The orbit closure GL=2det= ⊆ ℂ[-1 , . . . , -=2]= is an irreducible subvariety.

Proof. By Lemma 21.10 the affine matrix space ℂ=2×=2

= End=2 is irreducible. Hence the orbit

End=2det= is irreducible by Lemma 21.11. Its closure is irreducible by Lemma 21.12. �

Remark 21.14. Lemma 21.13 holds in high generality: The orbit closure of any connected

algebraic group under a polynomial group action is irreducible.

Claim 21.15. In a domain (i. e., a ring without zero divisors) we have:

If 0G = 0H with 0 ≠ 0, then G = H.

Proof.
0G = 0H ⇒ 0(G − H) = 0⇒ 0 = 0 or G = H.

�

Lemma 21.16. For an irreducible subvariety / the coordinate ring ℂ[/] has no zero divisors.

Proof. Let 5 , , with 5 , = 0 in ℂ[/], i. e., 5 ,(I) = 0 for all I ∈ /. Since 5 , vanishes on /,

/ = +( 5 ,)∩/ = (+( 5 )∩/)∪ (+(,)∩/). Since / is irreducible,+( 5 )∩/ and+(,)∩/ cannot be

both proper subsets of /. Therefore either+( 5 ) ∩ / = / or+(,) ∩ / = /. W.l.o.g.+( 5 ) ∩ / = /,
thus 5 = 0 in ℂ[/]. �
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Proposition 21.17 (The semigroup property). Let � = GL< act polynomially on A. Let the cone
/ ⊆ A be an irreducible subvariety that is closed under the action of �. Then the coordinate ring of / in
degree 3 is a �-representation and we have the following:

If the type � occurs with positive multiplicity <1 in ℂ[/]31
and the type � occurs with positive

multiplicity <2 in ℂ[/]32
, then the type � + � occurs with multiplicity at least max(<1 , <2) in

ℂ[/]31+32
.

Proof. W.l.o.g. let <1 ≤ <2. Let 5 be a HWV of weight � in ℂ[/]31
. Let �1 , . . . , �<2

be a basis

of HWVs of weight � in ℂ[/]32
. Then 5 �1 , · · · 5 �<2

are linearly independent HWVs of weight

� + � in ℂ[/]31+32
, as can be seen as follows.

Assume a nontrivial linear combination of zero:

1 5 �1 + ... + <2
5 �<2

= 0

We conclude

5 (1�1 + ... + <2
�<2
) = 5 0.

Since ℂ[/] has no zero divisors, using Claim 21.15 it follows 1�1 + ... + <2
�<2

= 0, a

contradiction to the linear independence of the �8 . �

Corollary 21.18. Let � = GL=2 and E = det= or E = /=−<per< . If mult�(ℂ[�E])31
> 0 and

mult�(ℂ[�E])32
> 0, then

mult�+�(ℂ[�E])31+32
> max(mult�(ℂ[�E])31

,mult�(ℂ[�E])32
).

Moreover, if 0�(31 , =) > 0 and 0�(32 , =) > 0, then 0�+�(31 + 32 , =) > max(0�(31 , =), 0�(32 , =)).

Proof. Both facts are direct corollaries of Prop. 21.17. �

21.2.2 Building blocks and the splitting technique

We construct as “building blocks” certain partitions that occur in ℂ[GL=2det=] and combine

them with the semigroup property Corollary 21.18.

A first building block is the following.

Proposition 21.19. Let = ≥ :ℓ and ℓ be even. Then (: × ℓ )♯=: occurs in ℂ[GL=2det=]: .

Proof. Let ) denote the tableau of shape : × ℓ with content : × ℓ from Theorem 19.16. Suppose

= ≥ :ℓ and let � ∈ (H<:(H<=+ denote the lifting of E) ∈ (H<:(H<ℓ+ . Hence � is a highest

weight vector of weight (: × ℓ )♯=: . Choose ? ∈ (H<ℓ+ with at most : nonzero coefficients and

the property that E)(?) ≠ 0 (Corollary 21.3). Applying (21.1), we obtain with @ B -=−ℓ
1
� ? that

〈�, @⊗:〉 = 〈E) , ?⊗:〉 ≠ 0. Even if we rescale its coefficients, the determinantal complexity of ? is

less than :ℓ ≤ =. Therefore � does not vanish on GL=2det= and the assertion follows. �

We postpone the proof of the following technical result to Section 21.2.3. (It is based on an

explicit construction of a highest weight vector.)
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Theorem 21.20. Let 2 ≤ 1, 2 ≤ <2 and let = ≥ 24<6. Then there exists an even 8 ≤ 2<4, such that

� = 1 × 1 + 2 × 8 + 1 × 9

occurs in ℂ[GL2

=det=]3<4 for 9 = 3<4= − 1 − 82.

The splitting strategy in the following proof is a refinement of the one in [47]. The proof

relies on Theorem 21.20 and on the semigroup property (Corollary 21.18).

Proposition 21.21. Given a partition � with |�| = =3 such that there exists < ≥ 2 with ℓ (�) ≤ <2,
<10 ≤ |�̄| ≤ <3, = ≥ 24<6, and 3 > 4<6. Then � occurs in ℂ[GL=2det=]3.

Proof. Let ! B ℓ (�) and 2: denote the number of columns of length : in � for 1 ≤ : ≤ !. Let  
be the index : ≥ 2, for which 2: is maximal, i. e., 2 = max(2: ; : = 2, . . . , !). By assumption, we

have 2 ≤  ≤ <2
and

<10 ≤ |�̄| =
!∑
:=2

(: − 1)2: ≤ 2 
!∑
:=2

(: − 1) ≤ 2 
!2

2

≤ 2 
<4

2

,

hence 2 ≥ 2<6
.

Let ( denote the set of integers : ∈ {2, . . . , !} for which 2: is odd. For : ∈ ( we define the

partition

$: B : × 1 +  × 8: ,

where the even integer 8: ≤ 2<4
is taken from Theorem 21.20, so that $♯3=<4

:
occurs in

ℂ[GL=2det=]3<4 . (Here we have used the assumption = ≥ 24<6
.)

Assume first that  ∉ (, that is, 2 is even. Then we can split � vertically in rectangles as

follows:

� = 1 × 21 +
!∑
:=2

:∉(∪{ }

: × 2: +
!∑
:=2

:∈(

: × 2: +  × 2 

= 1 × 21 +
!∑
:=2

:∉(∪{ }

: × 2: +
!∑
:=2

:∈(

: × (2: − 1) +
∑
:∈(

$: +  ×
(
2 −

∑
:∈(

8:

)
.

If, for : ≤ !, we set 3: B 2: if : ∉ (∪ { } and 3: B 2: − 1 if : ∈ (, and define 3 B 2 −
∑
:∈( 8: ,

then the above can be briefly written as

� = 1 × 21 +
!∑
:=2

: × 3: +
∑
:∈(

$: . (21.2)

By construction, all 3: are even. It is crucial to note that, using 8: ≤ 2<4
,

3 = 2 −
∑
:∈(

8: ≥ 2 − (<2 − 1) · 2<4 ≥ 2 − 2<6 ≥ 0.
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The last inequality is due to our observation at the beginning of the proof.

In the case where  ∈ (, we achieve the same decomposition as in (21.2) with the modified

definition 3 B 2 − 1 −∑
:∈( 8: . Here, as well 3 ≥ 0 and all 3: are even.

We need to round down rational numbers to the next even number, so for 0 ∈ ℚ we define

bb0cc B 2b0/2c. Note that bb0cc ≥ 0 − 2 for all 0 ∈ ℚ. Hence bb=/:cc ≥ =/: − 2 ≥ 2 for all

2 ≤ : ≤ <2
, since = ≥ 4<2

.

Using division with remainder, let us write 3: = @: bb =: cc + A: with 0 ≤ A: < bb =: cc. Then we

split : × 3: = @:(: × bb =: cc) + : × A: . Since 3: is even and bb=/:cc is even, A: is even as well. From

(21.2) we obtain that the partition

� B
!∑
:=2

@:((: × bb=/:cc)♯=:) +
!∑
:=2

(: × A:)♯=: +
∑
:∈(

$♯3=<4

:
(21.3)

coincides with � in all but possibly the first row.

Since bb=/:cc ≤ =/:, A: ≤ =/:, and both bb=/:cc and A: are even, Proposition 21.19 implies that

(:×bb=/:cc)♯=: and (:×A:)♯=: occur as highestweights inℂ[GL=2det=]: . Moreover, Theorem 21.20

tells us that $♯3=<4

:
occurs as a highest weight in ℂ[GL=2det=]3<4 . The semigroup property

implies that � occurs in ℂ[GL=2det=].

Claim. |�| ≤ 3=.

Let us finish the proof assuming the claim. If |�| ≤ 3=, we can obtain � from � by adding

boxes to the first row of �. Note that |�| − |�| is a multiple of =. Since (=) ∈ ℂ[GL=2det=], the
semigroup property implies that � occurs in ℂ[GL=2det=]3.

It remains to verify the claim. From (21.3) we get

|�| ≤
!∑
:=2

(@:=: + =: + 3=<4).

We have, using bb0cc ≥ 0 − 2,

@: ≤
3:

bb=/:cc ≤
:3:
= − 2:

.

This implies

|�| ≤ =

!∑
:=2

( :23:
= − 2:

+ : + 3<4

)
.

Using 3: ≤ 2: and ! ≤ <2
, we get

|�| ≤ =

!∑
:=2

<2

= − 2<2

:2: + =
<2∑
:=2

: + 3=<4(<2 − 1).
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Noting that

∑!
:=2

:2: = |�̄| + �2 ≤ 2|�̄|, we continue with

|�| ≤ =<2

= − 2<2

· 2|�̄| + =
(<2(<2 + 1)

2

+ 3<4(<2 − 1)
)

≤ =<2

12<6 − <2

· |�̄| + =
(
3<6 − 5

2

<4 + 1

2

<2

)
,

where we have used = > 24<6
for the second inequality. Plugging in the assumptions |�̄| ≤ 3<

and 3 > 4<6
, we obtain

|�| ≤ 3=<3

11<6

+ 3=<6 ≤ 3=

11

+ 3=<6 ≤ 3=

11

+ 33=

4

< 3=,

which shows the claim and completes the proof. �

Corollary 21.22. Let < ≥ 2, = ≥ <25, � ` =3, |�̄| ≤ <3, ℓ (�) ≤ <2, 3 >
√
=/<, |�̄| ≥ <10. Then

� occurs in ℂ[GL=2det=]3.

Proof. To apply Proposition 21.21 we need to ensure that = ≥ 24<6
and 3 > 4<6

. Indeed,

= ≥ <25 ≥ 32<20 ≥ 24<6
and 3 >

√
=/< ≥

√
<24 = <12 ≥ 4<10 ≥ 4<6

. �

At this point, to finish the proof of Theorem 21.9 it just remains to prove Theorem 21.20.

21.2.3 Explicit constructions of tableaux and positivity of plethysms

The goal of this section is to provide the proof of Theorem 21.20, which finishes the proof

of Theorem 21.9. We achieve this by a direct construction of a HWV of type �. The first

Proposition 21.23 treats a simple case, while Proposition 21.24 covers the full generalization.

Since the degree is low enough, we can then use the methods from Section 21.1 to show that �

occurs in ℂ[GL=2det=].

Proposition 21.23. Let C ≥ A, 8 ≥ 2C + 3 be positive integers and let = ≥ 8 and 3 ≥ 2C + 8 + 1. Let
� = (C + 1) × 8 + (A + 1) × 1 + (9), where 9 = 3= − (C + 1)8 − (A + 1). Then 0�(3, =) > 0.

Proof. We may assume that = = 8 and 3 = 2C + 8 + 1 (see Lemma 21.18 for 3 > 2C + 8 + 1 and

Corollary 21.5 if = > 8).

Let ) be a tableau of shape � labeled with the integers 1, 2, 3, . . . , 3, each appearing = times,

as explained in Figure 11 for the case C = 5, A = 3 and 8 = 13. Formally, if 1 ≤ : ≤ A, the row

: + 1 of ) has 8 + 1 boxes: : + 1 boxes are labeled :, and the remaining 8 − : boxes are labeled
2C + 1 − :. If A < : ≤ C, then the row : + 1 of ) has 8 boxes: : + 1 boxes are labeled : and the

remaining 8 − : − 1 boxes labeled 2C + 1 − :. The first row of ) starts with the first 8 + 1 boxes

labeled with 2C + 1, . . . , 3 = 2C + 8 + 1, respectively, and all the remaining 9 labels are put in the

singleton columns of ) such that each integer in 1, . . . , 3 appears exactly = times. Note that each

integer 1, . . . , 3 appears in at least one singleton column, since = ≥ 8 ≥ 2C + 3.
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11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 1 1 ...

1 1 10 10 10 10 10 10 10 10 10 10 10 10

2 2 2 9 9 9 9 9 9 9 9 9 9 9

3 3 3 3 8 8 8 8 8 8 8 8 8 8

4 4 4 4 4 7 7 7 7 7 7 7 7

5 5 5 5 5 5 6 6 6 6 6 6 6

.

8︷                                                    ︸︸                                                    ︷
A

C

Figure 11: Prop. 21.24: C = 5, A = 3, 8 = 13, 3 = 24, = = 13, � = 10, 3= = 312, 9 = 230.

Put � B 2C. By construction, for any 1 ≤ D ≤ � in ), D appears in row 1 and in a unique

row :D + 1 for some 1 ≤ :D ≤ C. Let �(D) denote the number of occurrences of D in row :D + 1.

Note that 2 ≤ �(1) < �(2) < . . . < �(�) by construction.

We consider now the tensor

Φ B
�⊗
D=1

(
4
⊗�(D)
:D+1

⊗ 4⊗(=−�(D))
1

)
⊗

3⊗
D=�+1

4=
1
,

which, more precisely, is defined by the map, B : [3=] → ℂ#
,

B(D−1)=+E =

{
4:D+1 if 1 ≤ D ≤ � and 1 ≤ E ≤ �(D)
41 otherwise.

SinceΦ is of rank 1, the tensor contraction 〈Ẽ) ,Φ〉 from Section 20.1 simplifies: Since the �(D) are
all distinct, the only nonzero summands in the expansion of 〈Ẽ) ,Φ〉 satisfy (B ◦ ')(�) = 4row(�).
These summands have val'(B) = 1, which makes the overall contraction nonzero. �

By generalizing this construction in the proof, we can show the following.

Proposition 21.24. Let C, A be positive integers, 8 ∈ [ (A+2C)2
2C ,

(A+2C)2
2C + A + C + 1], and let = > 6C + 2A

and 3 > A + 2C + 8. Let � = (C + 1) × 8 + (A + 1) × 1 + (9), where 9 = 3= − (A + 1) − (C + 1)8. Then
0�(3[=]) > 0.

Proof. If A < C then we can directly apply Proposition 21.23, noticing that

2C + 2 <
(1 + 2C)2

2C
≤ (A + 2C)2

2C
≤ 8 ≤ (C + 2C)2

2C
+ A + C + 1 ≤ 11

2

C + A + 1 ≤ 6C + A ≤ =.

Let now A ≥ C. The proof is similar to the proof of Proposition 21.23, so we describe a more

general construction which applies in the case A < C as well. Define 4 B 2(b(A − 1)/(2C)c + 1), so
that A ≤ C4 ≤ A + 2C − 1 and 4 is even. Put

8′ B (C4 + 1) 4
2

≤ (A + 2C) 4
2

≤ (A + 2C)(b A − 1

2C
c + 1) ≤ (A + 2C) (A + 2C − 1)

2C
≤ 8.
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We will prove the statement for 8 = 8′. When 8 > 8′, the tableau construction below can be

modified by increasing the number of appearances of the C largest labels by 8 − 8′ ≤ A + C in the

subtableau )′ as defined below. By assumption, = > 6C+2A ≥ C4+2 and 3 > A+2C+ 8 ≥ C4+ 8+1.

Indeed, we will prove the statement for the more general case in which we do not require

= > 6C + 2A and 3 > A + 2C + 8, but only = ≥ C4 + 2 and 3 ≥ C4 + 8 + 1. It suffices to prove the

statement with = = C4 + 2 and 3 = C4 + 8 + 1.

Let ) be a tableau of shape � filled with the labels 1, 2, 3, . . . , 3 = C4 + 8 + 1, each number

appearing = = C4 + 2 times, as in Figure 12 for the case C = 2, A = 8, 4 = 4, 8 = 18, = = 10, 3 = 27.

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 1 1 1 ...

8 1 4 4 4 4 5 5 5 5 5 8 8 8 8 8 8 8 8

7 2 2 3 3 3 6 6 6 6 6 6 7 7 7 7 7 7 7

6

5

4

3

2

1

︸                                                                           ︷︷                                                                           ︸
8

C

A

Figure 12: Prop. 21.24: C = 2, A = 8, 4 = 4, 8 = 18, = = 10, 3 = 27.

In the first row and in the first 8 + 1 colums we have the labels C4 + 1, . . . , C4 + 8 + 1. In the

first column and in the rows 2 to A + 1 we have the labels C4 , C4 − 1 . . . , C4 − A + 1. The remaining

rectangular C × 8 subshape of ), denoted )′, consisting of the columns 2 to 8 + 1 and the rows 2 to

C + 1, is filled with the remaining labels 1, . . . , C4, so that each label appears a different number

of times. More precisely, for each 1 ≤ B ≤ C4, let the label B appear in )′ exactly B times and only

in row min(ℓ , 2C − ℓ + 1), where B ≡ ℓ (mod 2C), 1 ≤ ℓ ≤ 2C. (Note that the first row in )′, which

we are referring to, is actually the second row in ).) So the row : of )′ contains the 4 different
labels :, 2C + 1− :, 2C + :, 4C + 1− :, . . . , C(4 − 2) + :, C4 + 1− :, each appearing that many times,

adding up to the row length of

4/2∑
=1

(
(2( − 1)C + :) + (2C + 1 − :)

)
= (C4 + 1) 4

2

= 8.

The remaining labels of each kind are then put in the singleton boxes of ).

As in Proposition 21.23, we show that the corresponding highest-weight vector Ẽ) in

HWV�((H<3(H<=+) is nonzero by contracting it with a particular monomial tensor Φ. For each

label D, 1 ≤ D ≤ 3, let the associated monomial be

<D =
⊗

�∈), label(�)=D
-

row(�) ,
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where the product goes over all boxes of ) labeled D and for each such box we take the variable

- whose index is the row the box is in. Again, let Φ B ⊗3
D=1

<D be the tensor. The nonvanishing

of the contraction 〈E) ,Φ〉 can be seen analogously as in Proposition 21.23. �

Finally we can complete the proof of the promised technical result.

Proof of Theorem 21.20. We apply Proposition 21.24 with A = 1−1 ≤ <2−1 and C = 2−1 ≤ <2−1.

We have

(A + 2C)2
2C

=
(1 + 22 − 3)2

2(2 − 1) ≤ max

(
(1 + 1)2

2

,
(1 + 2<2 − 3)2

2(<2 − 1)

)
≤ <4 ,

where we use the fact that (1 + 22 − 3)2/(2(2 − 1)) is a convex function of 2 and so attains its

maximum at the end points of the interval [2, <2]. We can then find an even integer 8 in the

interval [ (A+2C)2
2C ,

(A+2C)2
2C + A + C + 1] ⊆ [1, <4 + 2<2]. By Proposition 21.24, there exists a highest

weight vector 5 of weight � = 1 × 1 + 2 × 8 + 1 × 9′ in (H<3(H<#+ for

3 B 3<4 > 3<2 + 2<2 + <4 ≥ A + 2C + 8 , # B 8<2 > 6C + 2A.

By Proposition 21.3 we have 〈 5 , ℎ3〉 ≠ 0 for a generic polynomial ℎ ∈ (H<#+ that has at

most 3 nonzero coefficients. Moreover, by Corollary 21.4, @ B -=−#
1
� ? is contained in GL=2det=

for all = ≥ 3# , in particular for = ≥ 24<6
. Consider the lifting � ∈ (H<3(H<=+ of 5 ; it has

the weight � = �♯3= with 3= = 3<4=. By (21.1) we see that �(-=−<
1
� ℎ) = 5 (ℎ) ≠ 0. Therefore,

� occurs in ℂ[GL=2det=]3<4 . �

No occurrence obstructions

By an explicit construction of HWVs in ℂ[GL=2det=] we showed that occurrence

obstructions are too weak to separate /=−<per< from GL=2det= for = being superpoly-

nomially large in <.

The proof relied heavily on the padding of the permanent (i. e., the partition having a

very long first part). Other algebraic computational models do not have that property.

Multiplicity obstructions could also still be an option to prove Valiant’s conjecture.

22 Occurrence obstructions for matrix multiplication

In this last chapter we show that obstructions can indeed show complexity lower bounds. In

most parts we follow [20], [21], and [46].

We will construct occurrence obstructions that show the border rank lower bound

'(〈<, <, <〉) ≥ 3

2
<2 − 2.

Recall from the end of Chapter 14 that

'(〈<, <, <〉) ≤ = iff 〈<, <, <〉 ∈ GL3

= 〈=〉,
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which is equivalent to GL3

= 〈<, <, <〉 ⊆ GL3

= 〈=〉 (see Lemma 3.16). By Proposition 18.7 the

irreducible polynomial representations of GL3

= are given by triples � = (�(1) ,�(2) ,�(3)) of
partitions into at most = parts each. For odd < and = ≥ 3

2
<2 − 1 let � B <2−1

2
and set

�(1) = �(2) = �(3) = ((2� + 1) × 1) + (1 × �) and 3 = |�| = 3� + 1. We will show that

mult�(ℂ[GL3

= 〈=〉]3) = 0 (22.1)

< 1 = mult�(ℂ[GL3

= 〈<, <, <〉]3) (22.2)

The irreducible representation in the coordinate ring of the ambient space is unique:

mult�(ℂ[
⊗

3ℂ=]) = 1 ,

which is proved in [69, Thm. 2.1], see also [70, Thm. 3(4.)]. We construct the HWV of weight �

and evaluate it at a point in GL3

= 〈<, <, <〉 where the evaluation is nonzero, which proves (22.2),

see Section 22.3. For (22.1) we present two proofs. In the first one we examine the HWV that we

constructed (see Section 22.2), while in the second one (see Section 22.4) we use the approach

presented in (18.4), i. e., we study

mult�,�′,�′′(ℂ[GL3

= 〈=〉]) ≤ mult�,�′,�′′(ℂ[GL3

= 〈=〉]) = dim({�} ⊗ {�′} ⊗ {�′′})stab〈=〉 . (22.3)

After developing the general theory in Section 22.1 and the theory tailored to equations for

low border rank tensors in Section 22.2, the triple hook partitions � that we use here can be

found in small cases by hand. Proving that these specific HWVs vanish on GL3

= 〈=〉 then follows

from the general theory with a quick argument, see Section 22.2. One main problem with this

approach is to prove that the HWV that we construct is not the zero function. We do this be

evaluating at a point in the orbit of the matrix multiplication tensor. This point is carefully

chosen so that we can completely understand the evaluation of the HWV at this point and verify

that it is nonzero, see Section 22.3. There are many points that one could use here. Our analysis

of the nonvanishing of the evaluation is quite long, but we are not aware of a point for which

this part would be significantly shorter (and the evaluation still nonzero).

Remark 22.1. [57] proved '(〈<, <, <〉) ≥ 2<2 − <. [56] improved this to '(〈<, <, <〉) ≥
2<2 − log

2
< − 1. Barriers to these proof methods were discovered in [32, 37]. There are no

known barriers for using occurrence obstructions or multiplicity obstructions for the border

rank of matrix multiplication. [39] use representation theory in a different way to prove

'(〈<, <, <〉) ≥ 5

4
<2

.

22.1 Highest weight vectors in the tensor setting

In this section we describe the HWVs in

⊗
3(
⊗

3ℂ=), because each HWV in (H<3(
⊗

3ℂ=)
arises from one in

⊗
3(
⊗

3ℂ=) via symmetrization over S3. This is analogous to studying

semistandard tableaux with rectangular content in Section 19.3. The natural equivalent to

semistandard tableaux with rectangular content are triples of standard tableaux, but we want to

use a more graphical description via hypergraphs.
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22.1.1 Highest Weight Vectors

For a partition � ` 3 recall the definition of E� from (19.1). We want to use the convenient bra-ket

notation

〈�̂| B E�. (22.4)

We write � � ∗ 3 to denote that � = (�(1) ,�(2) ,�(3)) with �(1) � 3, �(2) � 3, and �(3) � 3. For a

partition triple � �
=
∗ 3 we define

〈�̂| B reorder3,=

(
〈�̂(1) | ⊗ 〈�̂(2) | ⊗ 〈�̂(3) |

)
, (22.5)

where for 0, 1 ∈ ℕ the linear isomorphism reorder0,1 :

⊗
0
⊗

1ℂ= →
⊗

1
⊗

0ℂ=
is defined on

rank 1 tensors as follows:

0⊗
8=1

©«
1⊗
9=1

E8 9
ª®¬ ↦→

1⊗
9=1

(
0⊗
8=1

E8 9

)
, E8 9 ∈ ℂ= . (22.6)

Since 〈�̂(8) | is a HWV of weight �(8) in
⊗

3ℂ=
, 〈�̂| is a highest weight vector of weight � in⊗

3
⊗

3ℂ=
. Moreover, since the 〈�̂(8) |�, � ∈ S3, generate HWV�(8)(

⊗
3ℂ=) as a vector space

(cf. Proposition 19.3), we also see following:

Claim 22.2. The highest weight vector space HWV�(
⊗

3
⊗

3ℂ=) is generated by 〈�̂|� with � ∈ S3

3
.

Embed S3 ↩→ S3

3
, � ↦→ (�,�,�). Let P3 :

⊗
3
⊗

3ℂ= → (H<3
⊗

3ℂ=
denote the sym-

metrization over S3. Since the actions of GL3

= and S3

3
commute, we draw the following

important conclusion.

Claim 22.3. The tensors 〈�̂|�P3 with � ∈ S3

3
span HWV�((H<3

⊗
3ℂ=).

These tensors span the HWV space, but they are rarely a basis, because the symmetrization

operator P3 has a nonzero kernel.

22.1.2 Set Partitions

In this subsection we start deriving a more graphical interpretation of the highest weight vectors.

Let ℘(() denote the powerset of a finite set (, i. e., the set of all subsets of (. Given a set (,

we call a subset Λ ⊆ ℘(() of the powerset ℘(() a set partition of (, if for all B ∈ ( there exists

exactly one set 4B ∈ Λ with B ∈ 4B . We call 4B the hyperedge corresponding to B. If |4B | = 1, then

4B is called a singleton hyperedge. The type of a set partition Λ is defined as the partition � � |( |
obtained from sorting the multiset {|4 | : 4 ∈ Λ} and transposing the partition afterwards. Let

+(Λ) B ⋃
4∈Λ 4 = ( denote the ground set.

For a given partition � �
3, we can define a canonical set partition Λ of {1, . . . , 3} as follows,

where � is the transpose of �: Let $8 B
∑8
9=1
|�9 | be the number of boxes in the first 8 columns

of �. We define the disjoint hyperedges

48 B {$8−1 + 1, $8−1 + 2, . . . , $8}
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and set Λ B {48 | 1 ≤ 8 ≤ �1}. For example, if � = (4, 3, 1), then � = (3, 2, 2, 1) and 41 = {1, 2, 3},
42 = {4, 5}, 43 = {6, 7}, 44 = {8}, corresponding to the superstandard tableauT� (see Section 19.2)

of shape �, see Figure 13.

1 4 6 8

2 5 7

3

↦→
3

2

1

5

4

7

6

8

Figure 13: The superstandard tableau T� of shape � = (4, 3, 1) and its set partition.

Analogously, from any standard Young tableau ) of � we obtain a set partition Λ) of

{1, . . . , 3} with type � by grouping together each column in a hyperedge.

The map ) ↦→ Λ) is not injective in general. Our aim is to classify the fibers. Two Young

tableaux ) and )′ are mapped to the same Λ) = Λ)′ , iff )
′
can be obtained from ) by permuting

entries inside of columns and by permuting whole columns of the same length. This observation

gives rise to the following definition (see the right hand side of Figure 14 for an example).

Definition 22.4. An ordered set partition Λ of a vertex set +(Λ) B {1, . . . , 3} of type � is a set

partition of +(Λ) of type � endowed with (1) linear orderings on each hyperedge 4 ∈ Λ and (2)

for each length 1 ≤ ℓ ≤ ℓ (�) a linear ordering on the set {4 ∈ Λ : |4 | = ℓ } of hyperedges with the

same cardinality ℓ .

(
1 2 3 4 5 6 7 8

2 6 5 1 7 8 3 4

)
!

4 8 2 6

1 3 5

7

!

7

1

4

3

8

5

2

6

Figure 14: The bĳections between permutations, Young tableaux, and ordered set partitions of

type � = (4, 3, 1). The orderings are shown with arrows pointing from the smaller element to

the bigger.

The above discussion gives an explicit bĳection between the set of Young tableaux ) of �
and the set of ordered set partitions of type � by grouping together each column of ) in one

hyperedge, ordered from top to bottom, and ordering hyperedges of equal length by their

appearance in ) from left to right, see Figure 14 for an example. The columns of ) are ordered

from left to right and this induces an additional linear ordering on the set of hyperedges of

an ordered set partition, which is consistent with the single linear orderings of hyperedges of

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 10 (2025), pp. 1–166 137

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


MARKUS BLÄSER AND CHRISTIAN IKENMEYER

the same length. In particular we can speak of the 8th hyperedge of Λ. Additionally, since the

hyperedges are linearly ordered, we have a linear order on the set of vertices+(Λ) and hence we

can write +(Λ)8 for the 8th element of +(Λ).
The permutations � ∈ S3 are in bĳection to the Young tableaux of type � via replacing the

entry 8 in T� with the integer �−1(8). Hence we get an explicit bĳection between S3 and the set of

ordered set partitions of type �. For a given ordered set partition Λ of type � we denote by �Λ
the corresponding permutation. We can state a first observation:

�Λ(+(Λ)8) = 8. (22.7)

The crucial property of our bĳection is shown in the upcoming Claim 22.5, for whose statement

we introduce some notation.

The group S3 acts naturally on (ℂ=)3 by permuting the positions as follows:

�(�1 , �2 , . . . , �3) B (��−1(1) , ��−1(2) , . . . , ��−1(3)).

Given a linearly ordered subset (4 , ≺) ⊆ {1, . . . , 3} with ℓ elements, ℓ ≤ 3, where the order ≺
is not necessarily consistent with the natural order on {1, . . . , 3}, we define the list elements

41 , . . . , 4ℓ via 4 = {41 , . . . , 4ℓ } satisfying 41 ≺ . . . ≺ 4ℓ . For example, for the leftmost hyperedge 4

in Figure 14 we have 41 = 4, 42 = 1, and 43 = 7. Given a vector � ∈ (ℂ=)3, we define the restriction
�
4
of � to 4 as

(�1 , �2 , . . . , �3)
4
B (�41 , . . . , �4ℓ ).

Claim 22.5. Fix � �
= 3 and let 48 denote the 8th column of T�. Let Λ be an ordered set partition. Then,

for the 8th hyperedge 4 of Λ, we have

(�1 , �2 , . . . , �3)
4
=

(
�Λ(�1 , �2 , . . . , �3)

)
48

for all � ∈ (ℂ=)3.

Proof. Note that �Λ(4 9) = (48)9 according to (22.7). Now the proof is straightforward as follows:

(�1 , . . . , �3)
4
= (�41 , . . . , �43 ) = (��−1

Λ
((48)1) , . . . , ��−1

Λ
((48)|48 |))

= (�Λ(�1 , . . . , �3))
48

�

From set partition triples to highest weight vectors Our main motivation for looking at set

partitions is the construction of highest weight vectors. For each ordered set partition Λ of type

� �
= 3 we have �Λ ∈ S3 and hence obtain a nonzero highest weight vector

5Λ B �C
Λ
(〈�̂|)

of weight �, provided = ≥ ℓ (�). We conveniently write 5Λ = 〈�̂|�Λ. This roughly corresponds to

E) in Chapter 20.
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We next want to determine the projective stabilizer .� ⊆ S3 of 〈�̂|, which is defined as

.� B {� ∈ S3 : 〈�̂|� = ±〈�̂|}. (22.8)

Consider the Young subgroup .inner

� B S(41) × · · · ×S(4�1
), where we recall that 48 denotes the

8th column of T�. For � ∈ .inner

� we have 〈�̂|� = sgn(�)〈�̂|, hence .inner

� ⊆ .�. Let .outer
denote

the group that interchanges columns of the same length in T� while preserving the order in each

column. For � ∈ .outer

� we have 〈�̂|� = 〈�̂|, hence .outer

� ⊆ .�. One can prove that the projective

stabilizer .� is the group generated by .inner

� and .outer

� .

We are interested in classifying the left cosets of .� ⊆ S3. The ordered set partition

corresponding to � and the ordered set partition corresponding to �� for � ∈ .inner

� are the

same up to reordering the elements in each hyperedge. For � ∈ .outer

� the ordered set partitions

corresponding to � and �� are the same up to reordering the hyperedges. All reorderings can be

obtained by applying elements of .�. If we forget about the orderings of ordered set partitions,

we obtain the following claim.

Claim 22.6. For a fixed partition � �
3 there is a bĳection between the left cosets of .� ⊆ S3 and the set

of set partitions of type �.

Hence a set partitionΛ of type� �
= 3 uniquely determines a highest weight vector of weight�

5Λ B ±〈�̂|�Λ ∈
⊗

3ℂ=

up to a sign, where �Λ is the permutation corresponding to some ordering of Λ.

Contraction We proceed as in Chapter 20. A finite sequence � = (�1 , . . . , �3) of vectors �8 in
ℂ=

is called a list. A map whose domain is a vertex set is sometimes called a labeling of the

vertex set. If a vertex set 4 is linearly ordered, then we can identify lists and labelings with

codomain ℂ=
. Given a list � = (�1 , . . . , �3), we write |�〉 B |�1〉 ⊗ · · · ⊗ |�3〉. We want to analyze

how the scalar product 〈�̂|�|�〉, for � ∈ S3 and |�〉 ∈
⊗

3ℂ=
, can be interpreted combinatorially

using set partitions.

For a fixed � ∈ S3 and a list � we define �̃ B �� to obtain

〈�̂|�|�〉 = 〈�̂|�̃〉 =
�1∏
8=1

〈Ĉ�8 |�̃
48
〉.

Note that for ℓ ≤ = and a list �̃ = (�̃1 , . . . , �̃ℓ ) with �̃8 ∈ ℂ= ℓ × ℓ -matrix

(
〈8 |�̃ 9〉

)
8 , 9
, see also (20.1).

Now fix an ordered set partition Λ. Given a hyperedge 4 ∈ Λ and a hyperedge labeling

�4 : 4 → ℂ=
, we can interpret �4 as a list (since 4 is linearly ordered) and write |�4〉. We define

the evaluation
val4(�4) B 〈̂ℓ |�4〉 ∈ ℂ.
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Note that the evaluation val4(�4) is, up to sign, invariant under changing the linear order of 4.

For a labeling � : +(Λ) → ℂ=
we define the evaluation of the ordered set partition Λ at the labeling �

by

valΛ(�) B
∏
4∈Λ

val4(�
4
).

Proposition 22.7. Let Λ be an ordered set partition. Let � : +(Λ) → ℂ= be a labeling. We have

valΛ(�) = 〈�̂|�Λ |�〉.

Proof. According to Claim 22.5, for the 8th hyperedge 4 of Λwe have

�
4
= (�Λ�)

48
.

Therefore, if 4 has size ℓ , then

val4(�
4
) = 〈̂ℓ |�

4
〉 = 〈̂ℓ |(�Λ�)

48
〉.

The claim follows by definition of 〈�̂| in (22.4). �

22.1.3 Obstruction Designs

We want to describe the highest weight vectors of

⊗
3
⊗

3ℂ=
with set partitions as we did for⊗

3ℂ=
. For this we make the following definition, analogously to Definition 22.4.

Definition 22.8. An ordered set partition tripleℋ consists of a vertex set +(ℋ) = {1, . . . , 3} and
three ordered set partitions �(:) B �(:)(ℋ), : ∈ {1, 2, 3}, of +(ℋ). The elements of each �(:) are
called hyperedges.

The ordered set partition tripleℋ is said to have type �, where � � ∗ 3 is a partition triple, if

the set partition �(:) has type �(:) for all 1 ≤ : ≤ 3.

Via our explicit bĳections between S3 and the set of set partitions of a fixed type, we get an

explicit bĳection between S3

3
and the set of ordered set partition triples of type �, see Figure 15.

The permutation triple corresponding to an ordered set partitionℋ is denoted by �ℋ .
Analogously to (22.8), for partition triples � � ∗ 3 we define the projective stabilizer .� of

〈�̂| = reorder3,=

(
〈�̂(1) | ⊗ 〈�̂(2) | ⊗ 〈�̂(3) |

)
, see (22.5), as

.� B {� ∈ S3

3
: 〈�̂|� = ±〈�̂|}.

One can show that .� = .�(1) ×.�(2) ×.�(3) , where .�(:) is the projective stabilizer defined in (22.8).

Therefore we can again forget about the orderings and arrive at the following definition.

Definition 22.9. A set partition tripleℋ consists of a vertex set +(ℋ) = {1, . . . , 3} and three set

partitions �(:), : ∈ {1, 2, 3} of +(ℋ).

The above discussion implies the following claim, analogously to Claim 22.6.
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�(1) =
(
1 2 3 4

1 2 3 4

)
�(2) =

(
1 2 3 4

1 3 4 2

)
�(3) =

(
1 2 3 4

1 2 4 3

) ! 1

4

2

3

Figure 15: A set partition triple ℋ of type (�,�,�), where � = (2, 1, 1) (and thus � = (3, 1)),
and its corresponding permutation triple �ℋ with inverse �. The solid lines represent the

first hyperedge set partition, the dashed lines represent the second one, and the dotted lines

represent the third one. To simplify the picture, the hyperedge orderings respect the natural

ordering on the natural numbers and are not depicted.

Claim 22.10. For a fixed partition triple � � ∗ 3 there is a bĳection between the left cosets of .� ⊆ S3 and
the set of set partition triples of type �.

So each set partition tripleℋ defines (up to sign) the highest weight vector

5ℋ B ±〈�̂|�ℋ ∈
⊗

3
⊗

3ℂ=

of weight �∗, where � �
=
∗ 3 denotes the type ofℋ .

Triple Contraction A finite sequence of vectors in (ℂ=)3 shall be called a triple list. Given a

triple list � containing 3 triples, we write

� =
©«
�(1)

1
, . . . , �(1)

3

�(2)
1
, . . . , �(2)

3

�(3)
1
, . . . , �(3)

3

ª®®¬ .
Moreover, we write �(:) B (�(:)

1
, . . . , �(:)

3
) and �8 B (�(1)8 , �

(2)
8
, �(3)

8
), and we write |�〉 B

reorder3,3(|�(1)〉 ⊗ |�(2)〉 ⊗ |�(3)〉) ∈
⊗

3
⊗

3ℂ=
, where reorder3,3 is the linear map defined in (22.6).

We want to analyze how the tensor contraction 〈�̂|�|�〉 can be interpreted combinatorially using

set partitions. For an ordered subset 4 ⊆ +(ℋ) of vertices we identiy triple lists (�1 , . . . , � |4 |)
with labelings on 4 whose codomain is (ℂ=)3.

We define the evaluation function for ordered set partition triples as follows: Given a labeling

� : +(ℋ) → (ℂ=)3, we set

valℋ (�) B val�(1)(ℋ)(�(1)) · val�(2)(ℋ)(�(2)) · val�(3)(ℋ)(�(3)).

Proposition 22.11. Let ℋ be an ordered set partition triple of type �. Let � : +(ℋ) → (ℂ=)3 be a
labeling. We have

valℋ (�) = 〈�̂|�ℋ |�〉.
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MARKUS BLÄSER AND CHRISTIAN IKENMEYER

Proof. By (22.5) we have 〈�̂| = reorder3,3

(
〈�̂(1) | ⊗ 〈�̂(2) | ⊗ 〈�̂(3) |

)
. The claim follows with Proposi-

tion 22.7. �

Symmetrization Let P3 :

⊗
3ℂ= � (H<3ℂ=

denote the symmetrization over S3. Since

�P3 = P3 for all � ∈ S3, we get 〈�̂|�P3 = 〈�̂|��P3 for all � ∈ S3. Hence the polynomial

described by a set partition triple is independent of the numbering of its vertices. This explains

the following definition.

Definition 22.12. An obstruction predesign is defined to be an equivalence class of set partition

triples under renumbering of the vertices. When depicting obstruction predesigns, we omit the

vertex numbering of the corresponding set partition triple.

So each obstruction predesign describes some polynomial 〈�̂|�P3 ∈ (H<3
⊗

3ℂ=
of degree 3

up to sign. Since we do not care about the sign, we abuse notation in the following way: For

every obstruction predesignℋ we implicity fix an ordered set partition tripleℋ ′ in a way such

thatℋ is obtained fromℋ ′ by forgetting about orderings and vertex numbers. Then we define

valℋ (�) B valℋ ′(�).

Corollary 22.13. Letℋ be an ordered set partition triple with 3 vertices. Let � : +(ℋ) → (ℂ=)3 be a
labeling. We have

1

3!

∑
�∈S3�

valℋ (�) = 〈�̂|�ℋP3 |�〉.

Proof. Follows from Proposition 22.11 and the definition of the symmetrization P3. �

It is straightforward to verify (see, e. g., [46, Lemma 7.2.7]) that the polynomials described by

obstructions predesigns are the zero function if they are not obstruction designs:

Definition 22.14. An obstruction designℋ is an obstruction predesignℋ which satisfies

|41 ∩ 42 ∩ 43 | ≤ 1 for all hyperedge triples (41 , 42 , 43) ∈ �(1) × �(2) × �(3).

Proposition 22.15. For a partition triple � we have

HWV�((H<3
⊗

3ℂ=) = span{ 5ℋ : ℋ is an obstruction design of type �}.

In particular
:(�) = dim span{ 5ℋ : ℋ is an obstruction design of type �}.

Proof. According to Claim 22.3, for � �
=
∗ 3, we have that

HWV�((H<3
⊗

3ℂ=) = span{〈�̂|�ℋP3 : � ∈ S3

3
}.

But since obstruction designsℋ determine 5ℋ = 〈�̂|�ℋP3 up to a sign, the first assertion follows.

The rest of the proposition follows from the fact that :(�) = dim HWV�((H<3
⊗

3ℂ=). �
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Polynomial Evaluation We now describe how to evaluate the polynomial 5ℋ corresponding

to an obstruction designℋ at a point |F〉 = ∑A
8=1
|F(1)

8
〉 ⊗ |F(2)

8
〉 ⊗ |F(3)

8
〉 ∈

⊗
3ℂ=

. We calculate

5ℋ (F) = 〈�̂|�P3 |F⊗3〉 = 〈�̂|�|F⊗3〉 =
∑

�∈{1,...,A}3
〈�̂|�|F�1F�2 · · ·F�3〉

Prop. 22.11

=
∑

�∈{1,...,A}3
valℋ (F�1 , F�2 , . . . , F�3 ). (22.9)

We can interpret � B (F�1 , F�2 , . . . , F�3 ) as a vertex labeling � : +(ℋ) → (ℂ=)3 and see that the

sum in (22.11) is over all vertex labelings � : +(ℋ) → (ℂ=)3 with �(H) ∈ {F8 | 1 ≤ 8 ≤ A} for all
H ∈ +(ℋ).

22.1.4 The obstruction design for the hook triple

The obstruction designℋ B ℋ� that we construct consists of 3 vertices divided into disjoint sets

+ (1) ¤∪ + (2) ¤∪ + (3) ¤∪ {H0}, where |+ (:) | = � for all 1 ≤ : ≤ 3. There are only three hyperedges

of size larger than 1, called 4(:) for 1 ≤ : ≤ 3. We set 4(:) B + (:+1) ∪ + (:+2) ∪ {H0}, where

+ (:) B + (:−3)
for : > 3. The obstruction designℋ is depicted in Figure 16.

H0

4(1)

4(2)

4(3)

· · ·︸           ︷︷           ︸
|+ (1) |=�

· · ·︸           ︷︷           ︸
|+ (2) |=�

· · ·︸           ︷︷           ︸
|+ (3) |=�

Figure 16: The family of obstruction designs corresponding to the hook partition triple.

22.2 Vanishing at low-rank points

In this subsection we prove (22.1), relying on our precise knowledge of the obstruction design

ℋ defined in Section 22.1.4. A second proof that only uses the invariance properties of the unit

tensor is presented in Section 22.4.
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Let � ∈ (ℂ3�×3�)3 be arbitrary. We define the triple list

F B
(
(�(1) |1〉, �(2) |1〉, �(3) |1〉), . . . , (�(1) |3�〉, �(2) |3�〉, �(3) |3�〉)

)
.

According to (22.9) we have

5ℋ (〈3�〉) =
∑

�∈{1,...,3�}3�+1

valℋ (�F�1 , . . . , �F�3�+1
). (∗)

The crucial property ofℋ is that for each pair of vertices {H1 , H2} there exists a hyperedge 4 ofℋ
containing both H1 and H2. By the pigeon-hole principle, for each labeling � : +(ℋ) → {1, . . . , 3�}
there exists a pair of vertices {H1 , H2} such that �(H1) = �(H2). The crucial property ofℋ implies

that H1 and H2 lie in a common hyperedge 4. Hence val4((�F�1 , . . . , �F�3�+1
)
4
) = 0, because it is

the determinant of a matrix with two equal columns. Therefore, each summand in (∗) vanishes,
which proves (22.1).

This argument is analogous to Section 20.2.3.

22.3 Nonvanishing at the matrix multiplication tensor

In this rather technical section we prove (22.2) by an explicit construction of a matrix triple � =

(�(1) , �(2) , �(3)) consisting of maps �(:) : ℂ<×< → ℂ<2

. We make use of the fact that < is odd.

For notational convenience, we define the triples

C8 9; B
(
|(8 9)〉, |(9;)〉, |(;8)〉

)
∈ (ℂ<×<)3 (22.10)

and the triple list F of length <3
obtained by concatenating all C8 9; for 1 ≤ 8 , 9 , ; ≤ < in any order.

Recall that

〈<, <, <〉 =
∑
8 , 9 ,;

C
(1)
8 9;
⊗ C(2)

8 9;
⊗ C(3)

8 9;
.

We put

� B {C8 9; | 1 ≤ 8 , 9 , ; ≤ <}.

5ℋ (�〈<, <, <〉) =
∑

�∈{1,...,<3}3
valℋ (�F�1 , . . . , �F�3 ). (∗)

Consider the polynomial ring Γ = ℂ[-1 , . . . , -# ], where -8 are indeterminates. According to

Lemma 1.9, if a function 5 ∈ Γ is nonzero, then there exist values 8 ∈ ℂ, 1 ≤ 8 ≤ # , such that

5 (1 , . . . , # ) ≠ 0. We will define the <2 × <2
matrix triple � with matrix entries being affine

linear in the indeterminates -8 . Hence we write the sum 5ℋ (�〈<, <, <〉) as an element of Γ.

We will provide a monomial of 5ℋ (�〈<, <, <〉) in the -8 with nonzero coefficient in (22.11).
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Invariance in each + (:) We use the short notation val4(�) B val4(�(:)
4
) for a hyperedge 4 ∈ �(:)

and a triple labeling �. We start out with the following easy claim.

Claim 22.16. Let � : +(ℋ) → +(ℋ) be a bĳection satisfying �(+ (:)) = + (:) for all 1 ≤ : ≤ 3. For
every triple labeling � : +(ℋ) → (ℂ<2)3 we have

valℋ (�) = valℋ (� ◦ �).

Proof. It suffices to show the claim for a transposition � = � exchanging two elements of + (1),
because the situation for + (2) and + (3) is completely symmetric. We have

∏
4∈�(1) val4(�) =∏

4∈�(1) val4(� ◦ �), because up to reordering both products have the same factors. For 2 ≤ : ≤ 3

we have val4(�) = val4(�◦�) for every singleton hyperedge 4 ∈ �(:) and val4(:)(�) = −val4(:)(�◦�).
Therefore

∏
4∈�(:) val4(�) = −

∏
4∈�(:) val4(�◦�). As a resultwe getvalℋ (�) = (−1)2valℋ (�◦�). �

Special structure of the matrix triple Recall that < is odd and � = <2−1

2
. Let 0 B <+1

2
. Define

the set $< B {1, . . . , <} × {1, . . . , <} \ {(0, 0)} consisting of <2 − 1 pairs. Fix an arbitrary

bĳection

! : $< → {2, . . . , <2}.
Let 8̄ B < + 1 − 8 for 1 ≤ 8 ≤ <. (We may think of the map 8 ↦→ 8̄ as a reflection at 0; note 0̄ = 0.)

Let

Γ B ℂ[{-(:)
8

: 1 ≤ : ≤ 3, 1 ≤ 8 ≤ <}]
denote the polynomial ring in 3< variables. For each 1 ≤ : ≤ 3 we define the linear map

�(:) : ℂ<×< → ℂ<2

by

�(:) |(8 9)〉 B


-
(:)
0 |1〉 if 8 = 9 = 0

|!(8 , 8̄)〉 + -(:)
8
|1〉 if 8 ≠ 9 and 9 = 8̄

|!(8 , 9)〉 if 9 ≠ 8̄

.

Hence �(:) looks as follows:

©«

-
(:)
0 -

(:)
1

-
(:)
2
· · · -

(:)
0−1

-
(:)
0+1
· · · -

(:)
<−1

-
(:)
<

1

1

. . .

1

0

1

. . .

1

1

0 83<2−<

ª®®®®®®®®®®®®®®®®®®®®®¬

, (∗∗)
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where we arranged the rows and columns as follows: The left < columns correspond to the

vectors |(8 8̄)〉, where the leftmost one corresponds to |(0, 0)〉. The top row corresponds to

the vector |1〉 and the following < − 1 rows correspond to the vectors |!(8 , 8̄)〉. Recall that

5ℋ (�〈<, <, <〉) is a sum of products of determinants of submatrices of �(:).
Note that this is just a identity matrix with some additional entries in the top row (and the

top left entry changed from a 1 to a variable). These top row entries are put there intentionally,

so that the inner product with a column vector and the first standard basis vector is nonzero.

The specific arrangement of the variables in the top row is not so crucial, but it helps in analyzing

the evaluation 5ℋ (�〈<, <, <〉) later. Many other choices of matrices work here. This specific

choice of � strikes a balance: It has a lot of zeros, so it is possible to calculate the evaluation

5ℋ (�〈<, <, <〉), but it has enough nonzero entries at the correct positions to actually ensure

5ℋ (�〈<, <, <〉) ≠ 0.

The sum 5ℋ (�〈<, <, <〉) is an element of Γ and we are interested in its coefficient of the

monomial X, where

X B
3∏
:=1

-
(:)
0

<∏
8=1

(
-
(:)
8

) |8−8̄ |
. (22.11)

We remark that the degree of X is 3(1 +∑<
8=1
|8 − 8̄ |). It is readily checked that

∑<
8=1
|8 − 8̄ | = �.

Fix any numbering of the vertices ofℋ . For � ∈ {1, . . . , <3}3 we abuse notation and define

the map � : +(ℋ) → � via �(H) B F�H . With this notation, (∗) becomes∑
�

valℋ
(
��(1), . . . , ��(3)

)
,

or

∑
� valℋ (��) in short notation. We call a triple labeling � : +(ℋ) → � nonzero, if the coefficient

of X in the polynomial valℋ (��) is nonzero. Note that the sum of the evaluations of all nonzero

triple labelings is the coefficient of X in the polynomial 5ℋ (�〈<, <, <〉). We will count and

classify all nonzero triple labelings and show that they evaluate to the same nonzero value. This

implies that the coefficient of X in 5ℋ (�〈<, <, <〉) is a sum without cancellations and is hence

nonzero.

Separate Analysis of the Three Layers Given a triple labeling � : +(ℋ) → �, we define

�(:) : +(ℋ) → {|(8 9)〉 | 1 ≤ 8 , 9 ≤ <} by composing � with the projection to the :th component.

Claim 22.17. Fix a nonzero triple labeling � and fix 1 ≤ : ≤ 3. For all H ∈ + (:) we have �(:)(H) = |(8 8̄)〉
for some 1 ≤ 8 ≤ <.

Proof. Let H ∈ + (:). Since {H} ∈ �(:) we have 〈1|�(:) |�(:)(H)〉 ≠ 0. From the definition of � it

follows that �(:)(H) = |(8 9)〉 and the third case 9 ≠ 8̄ is excluded. Hence 9 = 8̄. �

Claim 22.18. For every nonzero triple labeling � we have �(H0) = (|(00)〉, |(00)〉, |(00)〉).
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Proof. Let � be a nonzero triple labeling. Hence the coefficient of X in valℋ (��(1), . . . , ��(3)) is
nonzero. For the following argument it is important to keep the structure of the matrix �(:)

in mind, cf. (∗∗). Recall that 5ℋ (�〈<, <, <〉) is a sum of products of certain subdeterminants

of �(:) that are determined by the hyperedges in �(:)(ℋ). Since the degree of -
(:)
0 in X is 1,

we have that for all 1 ≤ : ≤ 3 there is exactly one vertex H: ∈ +(ℋ) with �(:)(H:) = |(00)〉.
Recall that the hyperedge 4(:) has size 2� + 1 = <2

. Since � is a nonzero triple labeling, �(:) is
injective on hyperedges and hence |{�(:)(H) : H ∈ 4(:)}| = <2

. But since the image �(:)(+(ℋ)) has
cardinality at most <2

, �(:) is actually bĳective on 4(:). Since there is only one vertex H satisfying

�(:)(H) = |(00)〉, namely the vertex H = H: , it follows H: ∈ 4(:). Since 4(1) ∩ 4(2) ∩ 4(3) = {H0}, it
remains to show that H1 = H2 = H3.

The structure of the matrix multiplication tensor implies that �(H1) = (|(00)〉, |(08)〉, |(80)〉) for
some 1 ≤ 8 ≤ <. If 0 = 8, then, by definition of H2 and H3 and uniqueness, we have H1 = H2 = H3

and we are done.

Now assume 0 ≠ 8 and H1 ≠ H0
. W.l.o.g. H1 ∈ + (3). Using Claim 22.17 we conclude that

�(3)(H1) = |8 8̄〉 for some 1 ≤ 8 ≤ <. Hence 8̄ = 0 contradicting 8 ≠ 0. Thus we have shown that

H1 = H
0
. Similarly, we show that H2 = H3 = H

0
. �

Claim 22.19. For each nonzero triple labeling � we have �(:)(+ (:)) = {|(8 8̄)〉 | 1 ≤ 8 ≤ <} \ {|(00)〉},
where the preimage of each |(8 8̄)〉 under �(:) has size |8 − 8̄ |.

Proof. According to Claim 22.18 we have �(H0) = |(00)(00)(00)〉. For the following look again

at the structure of �(:), cf. (∗∗). Since �(:) |(00)〉 is a multiple of |1〉, we have that val4(:)(�) is
a multiple of -

(:)
0 . Moreover, for 8 ≠ 0, the variable -

(:)
8

does not appear in the expansion

of val4(:)(�(:)). Since for a fixed 1 ≤ : ≤ 3 there are � =
∑<
8=1
|8 − 8̄ | many contributions of a factor

-
(:)
8

in the monomial X, these factors must be contributed at vertices in + (:). Since |+ (:) | = �,

the only possibility is that all H ∈ + (:) satisfy �(:)(H) = |8 8̄〉 for some 1 ≤ 8 ≤ <, 8 ≠ 0. The

specific requirement for the number of factors -
(:)
8

which are encoded in X in (22.11) finishes

the proof. �

Coupling the Analysis of the Three Layers Define the bĳective map

� : $< → $< , �(8 9) = (9 8̄),

which corresponds to the rotation by 90
◦
. Clearly, �4 = 83. The map � induces a map

℘($<) → ℘($<) on the powerset, which we also call �. Define the involution (taking the

complement)

� : ℘($<) → ℘($<), ( ↦→ $< \ (.

Clearly, we have � ◦ � = � ◦ �. We will only be interested in subsets ( ⊆ $< with exactly

|$< |/2 = � many elements and their images under � and �. The subsets ( ⊆ $< that satisfy

�(() = �(()will be of special interest. Geometrically, these are the sets that get inverted when

rotating by 90
◦
, see Figure 17 for examples.
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In the following we identify the sets �(:)(+ (:′)), for 1 ≤ :, :′ ≤ 3, with their corresponding

subsets of $< .

In Claim 22.19 we analyzed the labels �(:)(+ :). In the next claim we turn to �(:)(+ :′), where

: ≠ :′.

Claim 22.20. Every nonzero triple labeling � is completely determined by the image �(1)(+ (3)) (up to
permutations in the + (:), see Claim 22.16) as follows.

• �(2)(+ (3)) = �(�(1)(+ (3))),
• �(2)(+ (1)) = �(�(2)(+ (3))),
• �(3)(+ (1)) = �(�(2)(+ (1))),
• �(3)(+ (2)) = �(�(3)(+ (1))),
• �(1)(+ (2)) = �(�(3)(+ (2))).

Moreover, �(�(1)(+ (3))) = �(�(1)(+ (3))).

Proof. According to Claim 22.19 we have that each vertex H ∈ + (3) satisfies

�(H) =
(
|(8 9)〉, |(�(8 9))〉, |(8̄ 8)〉

)
for some 1 ≤ 8 , 9 ≤ <, 8 ≠ 0. In particular, using that � is injective, we have

�(�(1)(+ (3))) = �(2)(+ (3)).

Since � is nonzero, �(2) is injective on 4(2). We even have that �(2) is bĳective on 4(2), because
|4(2) | = <2

. Using that 4(2) = + (1) ¤∪ + (3) ¤∪ {H0} we see that

�(2)(+ (1)) = $< \ �(2)(+ (3)) = �(�(2)(+ (3))).

For the same reason, we can deduce �(3)(+ (1)) = �(�(2)(+ (1))) and �(3)(+ (2)) = �(�(3)(+ (1))). And

applying these arguments one more time we get �(1)(+ (2)) = �(�(3)(+ (2))) and �(1)(+ (3)) =
�(�(1)(+ (2))). Summarizing (recall � ◦ � = � ◦ �) we have

�(1)(+ (3)) = �3�3(�(1)(+ (3))) = �−1�(�(1)(+ (3))),

which is equivalent to �(�(1)(+ (3))) = �(�(1)(+ (3))). �

Additionally to the constraint �(�(1)(+ (3))) = �(�(1)(+ (3))) given in Claim 22.20, Claim 22.19

implies that in �(1)(+ (3)) there are |8 − 8̄ | many elements of the form |(8 8̄)〉 for each 1 ≤ 8 ≤ <.

This motivates the following definition.

Definition 22.21. A subset ( ⊆ $< is called valid, if

(1) |( | = <2−1

2
= �,

(2) �(() = �((),

(3) |?−1(8)| = |8 − 8̄ | for all 1 ≤ 8 ≤ <
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8

9

Figure 17: In each of the four pictures the vertices with solid border form a valid set for < = 5.

The vertex in row 8 and column 9 represents the tuple (8 9). The dotted vertices do not belong to

the valid sets. Note that each vertex that does not lie on one of the two diagonals either lies in

all valid sets or in no one. According to Lemma 22.23, there are no other valid sets for < = 5.

where ? : (→ {1, . . . , <} is the projection to the first component, see Figure 17 for an example.

Proposition 22.22. For all nonzero triple labelings � we have that �(1)(+ (3)) is a valid set. On the other
hand, for every valid set ( there exists exactly one nonzero triple labeling � with �(1)(+ (3)) = ( up to
permutations in the + (:).

Proof. For the first statement, property (2) of Definition 22.21 follows from Claim 22.20 and

property (3) of Definition 22.21 follows from Claim 22.19. The second statement can be readily

checked with Claim 22.18 and Claim 22.20. �

The next claim classifies all valid sets.

Lemma 22.23. A set ( ⊆ $< is valid iff the following conditions are all satisfied (see Figure 18 for an
illustration):

(1)
{
(8 9) | (8 < 9 and 8 < 9̄) or (8 > 9 and 8 > 9̄)

}
⊆ (, represented by solid vertices in Figure 18.

(2)
{
(8 9) | (8 > 9 and 8 < 9̄) or (8 < 9 and 8 > 9̄)

}
∩ ( = ∅, represented by dotted vertices in Figure 18.

(3) For all 1 ≤ 8 ≤ <−1

2
there are two mutually exclusive cases, (a) and (b), represented by the two

vertices G8 and the two vertices G8 , respectively, in Figure 18.

(a) {(88), (8̄ 8̄)} ⊆ ( and {(8 8̄), (8̄ 8)} ∩ ( = ∅,
(b) {(8 8̄), (8̄ 8)} ⊆ ( and {(88), (8̄ 8̄)} ∩ ( = ∅.

These choices results in 2

<−1

2 valid sets.

Proof. As indicated in Figure 18, for each tuple (8 9) we call 8 the row of (8 9). For ( to be valid,

according to Definition 22.21(3), ( must contain |8 − 8̄ | elements in row 8 and according to

Definition 22.21(2), �(B) ∉ ( for all B ∈ (.
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8

9

G1 G1

G2 G2

G3 G3

G4 G4

G4
G4

G3
G3

G2
G2

G1
G1

Figure 18: The case < = 9. Vertices that appear in all valid subsets are drawn with a solid border.

Vertices that appear in no valid subset are drawn with a dotted border. Vertices that appear in

half of all valid subsets are drawn with a dashed border. These contain a vertex label G8 or G8 .

Each valid set corresponds to a choice vector G ∈ {true, false}4 determining whether the G8 or

the G8 are contained in (. This results in 2
4 = 16 valid sets ( ⊆ $< .

In particular, ( must contain < − 1 elements in row 1. If (11) ∈ (, then (1<) ∉ (, because
�(11) = (1<). Hence there are only two possibilities: (a): {(19) | 1 ≤ 9 < <} ⊆ ( or (b):
{(19) | 1 < 9 ≤ <} ⊆ (. By symmetry, for row < we get (a’): {(<9) | 1 ≤ 9 < <} ⊆ ( or (b’):
{(<9) | 1 < 9 ≤ <} ⊆ (. But since �(1<) = (<<) and �(<1) = (11), the fact �(() = �(() implies

that (a) iff (b’) and that (a’) iff (b). We are left with the two possibilities

(
(a) and (b’)

)
or

(
(a’) and

(b)
)
.

Now consider row 2. We have �(21) = (1, < − 1) ∈ ( and hence (21) ∉ (. In the same manner

we see (2<) ∉ (. We are left to choose < − 3 elements from the < − 2 remaining elements in row

2. The same argument as for row 1 gives two possibilities: (a): {(29) | 2 ≤ 9 < < − 1} ⊆ ( or (b’):
{(29) | 2 < 9 ≤ <−1} ⊆ (. Analogously for row<−1wehave (a): {((<−1), 9) | 2 ≤ 9 < <−1} ⊆ (
or (b’): {((< − 1), 9) | 2 < 9 ≤ < − 1} ⊆ (. With the same reasoning as for the rows 1 and < we

get (a) iff (b’) and that (a’) iff (b). Again we are left with the two possibilities

(
(a) and (b’)

)
or(

(a’) and (b)
)
.

Continuing these arguments we end up with 2

<−1

2 possibilities. It is easy to see that each of

these possibilities gives a valid set. �

The following claim finishes the proof of (22.2).

Claim 22.24. All nonzero triple labelings � have the same coefficient of X in the polynomial valℋ (��).

Proof. Take two nonzero triple labelings � and �′. According to Proposition 22.22, both sets
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�(1)(+ (3)) and �′(1)(+ (3)) are valid sets. Because of Lemma 22.23, it suffices to consider only the

case where �(1)(+ (3)) and �′(1)(+ (3)) differ by a single involution � : $< → $< , where for some

fixed 1 ≤ 8 ≤ <−1

2
we have �(88) = (8 8̄) and �(8̄ 8̄) = (8̄ 8), and � is constant on all other pairs. We

remark that � restricted to the four pairs {(88), (8̄ 8), (8 8̄), (8̄ 8̄)} corresponds to a reflection in the

second component.

We analyze the labels that are affected by this reflection. We only perform the analysis for

one of the two symmetric cases, namely for {|(88)〉, |(8̄ 8̄)〉} ⊆ �(1)(+ (3)). Note that this implies{(
|(88)〉, |(8 8̄)〉, |(8̄ 8)〉

)
,
(
|(8̄ 8̄)〉, |(8̄ 8)〉, |(8 8̄)〉

)}
⊆ �(+ (3)), (†)

according to Claim 22.19. We adapt the notation from (22.10) to our special situation and

write C000 B C 8̄ 8̄ 8̄ , C001 B C 8̄ 8̄ 8 , . . ., C111 B C888 . Using this notation, (†) reads as follows:

{C110 , C001} ⊆ �(+ (3)). Using Claim 22.20 we get

{C110 , C001} ⊆ �(+ (3)), {C101 , C010} ⊆ �(+ (2)), {C011 , C100} ⊆ �(+ (1)).

Applying the involution � to �(1)(+ (3)), we can use Claim 22.19 again to get{(
|(8 8̄)〉, |(8̄ 8̄)〉, |(8̄ 8)〉

)
,
(
|(8̄ 8)〉, |(88)〉, |(8 8̄)〉

)}
⊆ �′(+ (3)).

Applying Claim 22.20 and using our short syntax, we get:

{C100 , C011} ⊆ �′(+ (3)), {C001 , C110} ⊆ �′(+ (2)), {C010 , C101} ⊆ �′(+ (1)).

We see that exactly the same triples occur in �(+(ℋ)) as in �′(+(ℋ)). We focus now on �(1) and
�′(1) and see the following:

{(88), (8̄ 8̄)} ⊆ �(1)(+ (3)) and {(8 8̄), (8̄ 8)} ⊆ �(1)(+ (2))

and

{(8 8̄), (8̄ 8)} ⊆ �′(1)(+ (3)) and {(8̄ 8̄), (88)} ⊆ �′(1)(+ (2)).
This gives exactly two switches of positions in 4(1) = + (2) ¤∪ + (3) ¤∪ {H0}, hence

val4(1)(��) = (−1)2val4(1)(��′) = val4(1)(��′).

Analogously we can prove that val4(:)(��) = val4(:)(��′) for all 2 ≤ : ≤ 3 and therefore

valℋ (��) = valℋ (��′). �

(22.2) is completely proved.

22.4 The coordinate ring of the unit tensor orbit

In this section we determine the multiplicities in the coordinate ring of the unit tensor. This

proves (22.1) via (22.3). As a warm-up we study the closely related case of the power sum

polynomial.
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22.4.1 Warm-up: The coordinate ring of the power sum orbit

We use the notation from [20]: < is now the number of variables and � is the degree. The

formulas in this subsection are unpublished calculations by Ikenmeyer and Panova. Parts also

appear in the unpublished preprint [66].

The power sum is the polynomial G�
1
+ · · · + G�< . Let � B ℤ<

�
oS< denote its stabilizer (see,

e. g. [26, Ch. 2]). Let � ` �3.
If * �

< 3 is a partition, then the frequency notation � ∈ ℕ<
is defined via

�8 = |{ 9 | * 9 = 8}|.

E. g., the frequency notation of * = (3, 3, 2, 0) is (0, 1, 2, 0). We observe that |* | = ∑
8 8�8 .

The group S< acts on ℕ<
by permuting the positions. Note that under this action we have

stab* = S�1
×S�2

× · · · ×S�< .

Theorem 22.25. dim{�}� = ∑
*
�
< 3

∑
�1 ,�2 ,...,�3

�8`�8�8
2�
�1 ,�2 ,...,�3

∏3
8=1

0�8 (�8 , 8�), where � is the frequency

notation of * , and 2�
�1 ,�2 ,...,�3

is themulti-Littlewood-Richardson coefficient that denotes the multi-
plicity of {�} in the tensor product {�1} ⊗ . . . ⊗ {�3}.

Proof.

{�}� = ({�}ℤ<
� )S< =

©«
⊕
�∈ℕ<
|� |=3

[�]��
ª®®¬
S<

where for � ∈ ℕ< , |� | = 3, �� ⊆ S3� is defined as the Young subgroup S�1� × · · · ×S�<� . The

last equality can be seen using the tableau bases on both sides: While a basis of {�} is given
by semistandard tableaux, by symmetrizing the basis over ℤ<

�
we see that a basis of {�}ℤ<

� is

given by semistandard tableaux in which each entry 1, . . . , < occurs a multiple of � times, i. e.,

the content is �� for � ∈ ℕ< , |� | = 3. On the other hand, a basis of [�] is given by standard

tableaux. Symmetrizing this basis over �� the images of basis vectors are sums in which each

summand can be obtained from another by applying an element of ��. We assign to this sum a

basis vector from {�}ℤ<
� in the following way. All numbers that can be exchanged with each

other under the action of �� get replaced with a single number: The first �1� numbers are

replaced by a 1, the next �2� numbers are replaced by a 2, and so on. This results in a tableau

with content ��. This map is a bĳection between basis vectors (and maps zero vectors to zero

vectors). This process is very similar to the situation in [46, Sec. 4.3(A)].

For a partition * �
< 3 let S<* ⊆ ℕ<

denote the orbit of * . Note that * is the only partition in

its orbit, while the other lists are not in the correct order. Grouping the right-hand side in the

previous equation we obtain

⊕
*
�
< 3

©«
⊕
�∈S<*

[�]��ª®¬
S<

,
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so we can study each * independently.

Let stab* ≤ S< denote the stabilizer of * .

Claim 22.26. dim

(⊕
�∈S<*

[�]��

)S<

= dim

(
[�]�*

)
stab*

.

Proof. We construct an isomorphism of vector spaces.

Let ,* B [�]�*
and ,* B

⊕
�∈S<*

,�
. Let �1 , . . . ,�A be a system of representatives

of left cosets for stab* ≤ S< with �1 = id, i. e., S< = �1stab* ¤∪ · · · ¤∪ �Astab* and we have

S<* = {�1* , . . . ,�A*}. Therefore we have the decomposition

,* =

A⊕
9=1

� 9,
* .

Let ? : ,* �,*
be the projection according to this decomposition. We claim that the restriction

? :

(
,*

)S< → (,* )stab*

is an isomorphism of vector spaces. This then finishes the proof. We verify well-definedness,

injectivity, and surjectivity of ?.

Well-definedness: The spaces �1,
* , . . . ,�A,*

are permuted by S< . Every � ∈ stab* fixes

,*
, thus �E1 = E1 if E1 ∈,*

. Thus the map E =
∑A
9=1
E 9

?
↦→ E1 maps,* to (,* )stab*

.

Injectivity: If E ∈ (,* )S<
, then E = �E =

∑
9 �E 9 . Therefore E 9 = � 9E1. If ?(E) = 0, then

E1 = 0, thus all E 9 = 0, which proves injectivity.

Surjectivity: Let E1 ∈ (,* )stab*
. Set E 9 B � 9E1 and put E B

∑
9 E 9 . Clearly ?(E) = E1. It

remains to verify that E is S<-invariant.

E =

A∑
9=1

� 9E1 =

A∑
9=1

1

|stab* |

∑
�∈stab*

� 9�E1 =
1

|stab* |

∑
�∈S<

�E1 ,

which is S<-invariant. �

We are left with determining dim

(
[�]�*

)
stab*

.

dim

(
[�]�*

)
stab*

= dim HWV�({�} ⊗ ([�]�* )stab* ) = dim HWV�((⊗3�+)�*ostab* )

(⊗3�+)�*ostab* = ((H<�*1+ ⊗ · · · ⊗ (H<�*<+)stab*

= (
�1⊗

(H<�+ ⊗
�2⊗

(H<2�+ ⊗ · · · ⊗
�3⊗

(H<3�+)stab*

= (H<�1(H<�+︸            ︷︷            ︸
=
⊕

�1 {�1}
⊕0

�1
(�

1
,�)

⊗(H<�2(H<2�+ ⊗ · · · ⊗ (H<�3(H<3�+︸              ︷︷              ︸
=
⊕

�3 {�3}
⊕0

�3
(�3 ,3�)

(†)
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where � is the frequency notation of * . The multiplicity of {�8} in (H<�8(H< 8�+ is 0�8 (�8 , 8�).
Let 2�

�1 ,�2 ,...,�3
denote the multiplicity of {�} in the tensor product {�1} ⊗ . . . ⊗ {�3}. Using

distributivity we obtain that the multiplicity of {�} in the representation (†) equals∑
�1 ,�2 ,...,�3

�8`�8�8

2�
�1 ,�2 ,...,�3

3∏
8=1

0�8 (�8 , 8�)

We conclude

dim{�}� =
∑
*
�
< 3

∑
�1 ,�2 ,...,�3

�8`�8�8

2�
�1 ,�2 ,...,�3

3∏
8=1

0�8 (�8 , 8�).

�

22.4.2 From the power sum to the unit tensor

The stabilizer of 〈=〉 in GL3

< is � B �< oS< , where

�< B {(diag((1)
1
, . . . , (1)< ), . . . , diag((3)1

, . . . , (3)< )) | ∀8 : (1)
8
(2)
8
(3)
8
= 1},

see [20, Prop. 4.1].

As a straightforward generalization of Gay’s theorem (Lemma 19.10) we define the generalized
plethysm coefficient 0�(�, :) for a partition � ` <:, a partition � ` < and a natural number : via

the decomposition

{�}<×: =
⊕
�`<
[�]⊕0�(�,:).

We obtain the classical plethysm coefficients 0�(<, :)when � = (<) is a single row.

Theorem 22.27. dim{�,�′,�′′}� =
∑

*
�
< 3

∑
�,�′,�′′ 9�,* (�)9�′,* (�′)9�′′,* (�′′)

(∏<
8=1

:(�8 , �′8 , �′′8)
)
,

where for � being the frequency notation of *
• the sum for � is over all lists of partitions such that �8 ` �8 and analogously for �′ and �′′, and
• 9�,* (�) B

∑
�1 ,...,�<

�8`8�8

2�
�1 ,...,�<

(∏<
8=1

0�8 (�8 , 8)
)
,

Proof. {�,�′,�′′} = {�} ⊗ {�′} ⊗ {�′′}.
{�,�′,�′′} has a basis given by triples of tableaux and �< rescales basis vectors. Thus a

vector is invariant if all basis vectors in its support are invariant.

�< contains the subgroup

{(diag(, 1, 1, . . . , 1), diag(−1 , 1, 1, . . . , 1), id)}

and all other such subgroups where  and −1
are both on position 8 on two different diagonals.

A basis vector is invariant under these groups if all three tableaux have the same content. Since
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�< is generated by these groups, this precisely characterizes the invariants: {�,�′,�′′}�< has

as a basis those triples of tableaux in which all three tableaux share the same content � ∈ ℕ<
,

|� | = 3:

{�,�′,�′′}�< =
⊕
�∈ℕ< ,
|� |=3

{�}� ⊗ {�′}� ⊗ {�′′}� ,

where {�}� denotes the vector space of tableaux of shape � and content �.⊕
�∈S<�

{�}� is an S<-representation. As seen in the proof for the power sum, we group

together with respect to the content:

({�,�′,�′′}�< )S< =
⊕
*
�
< 3

(
⊕
�∈S<*

{�}� ⊗ {�′}� ⊗ {�′′}�)S<

Completely analogously to the proof for the power sum, we can take stab*-invariants instead
of S<-invariants:

dim(
⊕
�∈S<*

{�}� ⊗ {�′}� ⊗ {�′′}�)S< = dim({�}* ⊗ {�′}* ⊗ {�′′}* )stab*

We analyze the action of stab* separately on each of the three tableau spaces, i. e., we de-

compose {�}, {�′}, and {�′′} as stab*-representations. Once this is done, Kronecker coefficients

determine the stab*-invariant space dimension.

As seen in the proof for the power sum:

Claim 22.28.

{�}*
stab*-repr
'

⊕
�1 ,...,�<

�8`�8

∑
�1 ,...,�<

�8`8�8

2�
�1 ,...,�<

(
<∏
8=1

0�8 (�8 , 8)
)

︸                               ︷︷                               ︸
=:9�,* (�)

[�1] ⊗ · · · ⊗ [�<],

where � is the frequency notation of * .

Proof. Recall that {�}<×: =
⊕

�`< 0�(�, :)[�].

We first prove (∗):
⊗8

(H< 9+ = (
⊗8 9

+)S
8
9 =

⊕
�`8 9{�} ⊗ [�]

S8
9 =

⊕
�`8 9{�} ⊗ {�}8×9 =⊕

�`8 9 ,!`9 0�(!, 9){�} ⊗ [!], where for the last equality we use the generalized Gay’s theorem.

Now we can calculate:
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⊕
�`3
{�} ⊗ {�}* =

⊕
�`3
{�} ⊗ [�]�* = (

⊗3
+)�* = (H<*1+ ⊗ · · · ⊗ (H<*<+

=
⊗�1(H<1+ ⊗ · · · ⊗

⊗�3(H<3+

(∗)
=

⊕
�1`1�

1

�`�
1

0�1(�1 , 1){�1} ⊗ [�1] ⊗ · · · ⊗
⊕
�3`3�3
�`�3

0�3 (�3 , 3){�3} ⊗ [�3]

=
⊕
�,�

(
<∏
8=1

0�8 (�8 , 8))({�1} ⊗ · · · ⊗ {�<}) ⊗ [�1] ⊗ · · · ⊗ [�<].

Taking HWVs of weight � on both sides we obtain

{�}* =
⊕
�,�

2�
�1 ,...,�<

(
<∏
8=1

0�8 (�8 , 8))[�1] ⊗ · · · ⊗ [�<].

�

Since the dimension of theS�8 -invariant space of [�8] ⊗ [�′8] ⊗ [�′′8] is given by the Kronecker

coefficient :(�8 , �′8 , �′′8), we obtain:

dim({�}* ⊗ {�′}* ⊗ {�′′}* )stab* =
∑

�,�′,�′′
9�,*(�) 9�′,* (�′)9�′′,* (�′′)

(
<∏
8=1

:(�8 , �′8 , �′′8)
)
,

where the sum for � is over all lists of partitions such that �8 ` �8 and analogously for �′ and
�′′. �

The following second proof for (22.1) is taken from the lecture notes [11]:

Corollary 22.29. As at the beginning of Chapter 22, let � = �′ = �′′ be the hook partition with 3: + 1

boxes and 2: + 1 rows. Then mult(�,�′,�′′)(GL3

3:
〈3:〉) = 0.

Proof. We use the formula in Theorem 22.27. Since it has no signs, we can assume (for the

sake of contradiction) that the formula yields a is positive result and derive conditions on the

partitions that are involved in positive summands.

We use a few standard facts about Littlewood-Richardson coefficients, plethysm coefficients,

and Kronecker coefficients, each marked with a †.
First observation: �1 = �1

, because of the plethysm 0�1(�1 , 1) = mult�1((�1((H<1+)︸         ︷︷         ︸
={�1}

).
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A multi-LR-coefficients can only be positive if all small partitions are contained in the large

partition, i. e., the small Young diagrams are subsets of the large Young diagram (†10). In our

case, all large partitions are hooks, so all �8 are hooks. Thus also �1
, �′1, �′′1 are hooks.

Let 3 be the number of boxes. For a hook �1
define the inner leg length as ℓ (�1) − 1. For hook

triples with inner leg lengths 01, 02, 03, Kronecker positivity requires (†, see, e. g., [70, Pf. of
Thm. 3(4.)]):

23 − 01 − 02 − 03 − 2 ≥ 0.

Thus not all three 01 , 02 , 03 can be large. Indeed, let 0 = min{01 , 02 , 03}, then 23 − 30 − 2 ≥ 0

and thus 0 ≤ 23−2

3
. In particular this holds for :(�1 , �′1 , �′′1) = :(�1 , �′1 , �′′1) > 0. W.l.o.g. �1

is

the shortest of �1 , �′1 , �′′1. Then

ℓ (�1) − 1 ≤ 2|�1 | − 2

3

=
2

3

|�1 | − 2

3

and thus

ℓ (�1) ≤ 2

3

|�1 | + 1

3

.

All partitions appearing in

⊗0
(H<1+ have at most 0 rows, as the basis of HWVs is given

by semistandard tableaux with content (1, 1, . . . , 1). Therefore the positive plethysm coefficients

in the formula imply

ℓ (�8) ≤ |�8 | = �8 =
�8

8

Adding up the lengths we obtain

ℓ (�1) + · · · + ℓ (�ℓ ) ≤ 2

3

|�1 | + 1

3

+ 1

2

(|�2 | + · · · + |�ℓ |︸            ︷︷            ︸
=3:+1−|�1 |

)

=
2

3

|�1 | + 1

3

+ 3

2

: + 1

2

− 1

2

|�1 | = 3

2

: + 1

6

|�1 | + 5

6

We now use that for a positive multi-LRC the lengths of the small partitions add up to at

least the length of the large partition (†11):

ℓ (�1) + · · · + ℓ (�ℓ ) ≥ ℓ (�) = 2: + 1.

Therefore

3

2

: + 5

6

+ 1

6

|�1 | ≥ 2: + 1⇔ −1

2

: − 1

6

+ 1

6

|�1 | ≥ 0⇔ |�1 | ≥ 3: + 1.

10 2�
�1 ,...,�<

equals the multiplicity of {�} in the tensor product {�1} ⊗ · · · {�<}. [36, §5.2, Prop. 3] treats the case
< = 2. Expanding the tensor product {�1} ⊗ · · · ⊗ {�<} via the two-factor Littlewood-Richardson rule show that

all {�} that occur in {�1} ⊗ · · · ⊗ {�<} must have �8 ⊆ �. see, e. g., [36, §8.3, Cor. 2(c)] for this interpretation of

LR-coefficients.

11 This can be seen directly from a combinatorial description of the LR-coefficient, see, e. g., [36, §5.2, Prop. 3] and

it readily generalizes to more than 2 factors.
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Since |�1 | = �1, this means that *1 = (13:+1), but the sum is only over *1
with at most 3:

rows. �

Occurrence obstructions for matrix multiplication

The tensor setting is analogous polynomial setting, but the group GL=2 is replaced by

GL= × GL= × GL= .
One can explicitly construct occurrence obstructions that show border rank lower

bounds on the matrix multiplication tensor. Obstruction designs help visualizing the

arguments.

A Some basic algebraic vocabulary

This appendix contains some basic notions from algebra.

Amonoid (�, ·, 4) is set with a binary operation · : �×�→ � and a so-called neutral element

4 ∈ � such that the following conditions hold:

1. Associativity: For all 0, 1, 2 ∈ � we have 0 · (1 · 2) = (0 · 1) · 2.
2. Existence of identity: For all 0 ∈ � we have 4 · 0 = 0 = 0 · 4.

We omit the multiplication dot if there is no possibility of confusion. For example, the set ℂ=×=

of complex = × = matrices with binary operation the matrix multiplication is a monoid. A

subset of a monoid � which contains the identity element and satisfies associativity is called a

submonoid of �. For example, the set of upper triangular complex = × = matrices is a submonoid

of the monoid of complex = × = matrices. A monoid � is called commutative if for all 0, 1 ∈ � we

have 01 = 10. A monoid homomorphism from a monoid (�, ·, 4) to a monoid (�′, ·′, 4′) is a map

! : �→ �′ which satisfies !(, · ℎ) = !(,) ·′ !(ℎ) for all (, , ℎ) ∈ � × � and !(4) = 4′.
A group is a monoid in which for each element 0 ∈ � we have an element 0−1 ∈ � such

that 0−1 · 0 = 4 = 0 · 0−1
. The element 0−1

is called the inverse element of 0. For example, the

set of invertible (i. e., nonzero determinant) complex = × = matrices with operation the matrix

multiplication is a group, the so called general linear group GL= , where 0−1
is the matrix inverse.

Another example is the symmetric group on = letters S= , which consists of all bĳective maps from

the set {1, 2, . . . , =} to {1,2,. . . ,n} and the operation is the composition of maps, where 0−1
is the

inverse permutation. Amonoid homomorphism between groups is called a group homomorphism.

A group � is called abelian if it is commutative as a monoid. For example the set (ℂ,+, 0) of
complex numbers with addition is an abelian group. Moreover, the set (ℂ \ {0}, ·, 1) of complex

numbers (without zero) with multiplication is an abelian group. Also the set (ℂ=×< ,+, 0) of
= × < matrices with addition is an abelian group.

A field (F ,+, ·, 0, 1) is a set with two binary operations and two specific elements that satisfies:

1. (F ,+, 0) and (F \ {0}, ·, 1) are abelian groups, and

2. distributivity holds, i. e., for all 0, 1, 2 ∈ F we have 0 · (1 + 2) = (0 · 1) + (0 · 2).
For example, the complex numbers ℂ form a field.

If we do not require the existence of multiplicative inverse elements, then our algebraic

structure is called a ring, more precisely: A ring (',+, ·, 0, 1) is a set with two binary operations
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and two neutral elements that satisfies:

1. (',+, 0) is an abelian group,

2. (', ·, 1) is a monoid,

3. distributivity holds, i. e., for all 0, 1, 2 ∈ ' we have 0 · (1 + 2) = (0 · 1) + (0 · 2).
If the monoid (', ·, 1) is commutative, then we call the ring ' a commutative ring. For example,

the set ℂ[-1 , -2 , . . . , -=] of polynomials in = variables is a commutative ring. The set ℂ=×=
of

= × = matrices with matrix multiplication and addition is a noncommutative ring for = > 1. A

ring homomorphism between two rings '1 and '2 is a map from '1 to '2 which at the same

time is a group homomorphism for the additive structure and a monoid morphism for the

multiplicative structure. A bĳective ring homomorphism is called a ring isomorphism.

An ideal � of a commutative ring (',+, ·, 0, 1) is a subset � ⊆ ' that forms an abelian group

(� ,+) with the rings addition and moreover is closed under ring multiplication, i. e., for all

0 ∈ ', 1 ∈ � we have 0 · 1 ∈ �. For example, the set of polynomials 5 in ℂ[-1 , -2 , . . . , -=] that
are divisible by -2 form an ideal of ℂ[-1 , -2 , . . . , -=].

If F is a field,  ∈ F , and 0 is an element in a vector space over F , then we write .0 for the
scalar multiplication. A vector space over the complex numbers is also called a ℂ-vector space.

A ring (�,+, ·, 0, 1) that is also ℂ-vector space (with the same addition) is called a ℂ-algebra, if
� satisfies (.1) · 0 = .0 for all  ∈ ℂ and all 0 ∈ �. If the ℂ-algebra � is a commutative ring,

then we call � a commutative ℂ-algebra. For example the set ℂ[-1 , -2 , . . . , -=] of polynomials in

= variables is a commutative ℂ-algebra.

A vector space + is a direct sum of linear subspaces +8 ⊆ + , written + =
⊕

8 +8 , if the union⋃
8 +8 spans + and each intersection +8 ∩

∑
9≠8 +9 is the zero space. If + =

⊕
8 +8 , then each

element in + has a unique representation as a sum of elements from the +8 .

A ℂ-algebra � is called graded, if the vector space � is a direct sum � =
⊕

3∈ℕ≥0

�3 such

that the ring multiplication satisfies 0 · 0′ ∈ �3+3′ for all 0 ∈ �3 and 0′ ∈ �3′. For example

the algebra ℂ[-1 , -2 , . . . , -=] is graded as follows: The linear subspace ℂ[-1 , -2 , . . . , -=]3 is
spanned by the monomials of degree 3, where the degree is the sum of exponents, e. g., the

monomial -2

1
-3

2
has degree 5. We call ℂ[-1 , -2 , . . . , -=]3 the homogeneous degree 3 component of

ℂ[-1 , -2 , . . . , -=] and elements of ℂ[-1 , -2 , . . . , -=]3 are said to be homogeneous of degree 3. For
example -2

1
-3

2
− -1-

3

2
is not homogeneous. The degree of a nonhomogeneous polynomial is

defined to be the maximal degree of its monomials. We define ℂ[-1 , -2 , . . . , -=]≤3 to be the

vector space of (not necessarily homogeneous) polynomials of degree at most 3. A homomorphism
of ℂ-algebras is a linear map that is a ring homomorphism. An isomorphism of ℂ-algebras is a
linear map that is a ring isomorphism. An isomorphism of graded ℂ-algebras 5 : �→ � is defined

to be an isomorphism of ℂ-algebras such that the restriction of 5 to each homogeneous degree 8

part �8 is a vector space isomorphism to �8 .
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