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Abstract: Geometric complexity theory is an approach towards proving lower
bounds in algebraic complexity theory via methods from algebraic geometry and
representation theory. It was introduced by Mulmuley and Sohoni and has gained
significant momentum over the last few years. Since deep methods from several
different areas of mathematics are involved, geometric complexity theory has a steep
learning curve. There are great survey articles on geometric complexity theory, but
those require a significant level of mathematical background or often only sketch
many of the proofs, see e.g., Regan (Bull. EATCS 2002), Mulmuley (J. ACM 2011),
Bürgisser, Landsberg, Manivel, Weyman (SIAM J. Comput. 2011), Grochow (PhD
thesis, U. of Chicago 2012), Ikenmeyer (PhD thesis, Paderborn U., 2012), Landsberg
(Ann. U. di Ferrara, 2015). This survey tries to be a gentle introduction for graduate
students and even advanced undergraduate students in computer science that requires
almost no background knowledge except for the usual knowledge in linear algebra
and some basic knowledge in analysis. All the necessary concepts from algebraic
geometry and representation theory are introduced and almost all proofs are given.
We focus on two questions, the permanent versus determinant problem and the
border rank problem for matrix multiplication. There have been many more results
in the past few years, which we cannot cover, however, this survey should give the
reader the neccessary background to understand them. The survey culminates in
two recent results, a negative one for the permanent versus determinant question
and a positive one for the matrix multiplication problem. We present the proof that
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occurrence obstructions essentially cannot resolve the permanent versus determinant
question. However, occurence obstructions are only the most basic tool of geometric
complexity theory and it might be well possible that the more general concept of
multiplicity obstructions will resolve the problem. On the other hand, as a proof of
concept, we show that occurrence obstructions indeed can give lower bounds for the
border rank of matrix multiplication.
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1 Boolean circuits and arithmetic circuits

1.1 Introduction

Computational complexity theory is concerned with the study of the inherent complexity of
computational problems. Its flagship conjecture is the famous P 6= NP conjecture, which is one of
the seven Millenium Problems of the Clay Mathematics Institute [26], ranking this conjecture as
the most important one at the intersection of mathematics and theoretical computer science. To
this day several thousand computational problems are classified as NP-complete, i.e., they have
a polynomial time algorithm iff P = NP1. The practical importance of the P 6= NP conjecture
is at least twofold: First of all, many NP-complete problems are of high practical relevance
and have to be solved every day in commercial and scientific applications, for example the
traveling salesperson problem, integer programming, facility location, subset sum, knapsack,
longest path, multiprocessor scheduling, tensor rank. Secondly, all current security notions in
cryptography heavily rely on P 6= NP. Indeed, P = NP would break all existing cryptographic
ciphers. A lot of effort by many researchers has been put into resolving the P 6= NP conjecture,
but progress has been slow; see for example [33] for a survey, and [1] for a more recent survey that
includes geometric complexity theory, in particular its recent revision [2]. Complexity questions
in algebraic models date back at least to [66]. Valiant [79] argued that algebraic complexity is at
the heart of our issues with Boolean complexity, introduced algebraic complexity classes, and
highlighted the importance of the determinant for understanding efficient computation. Mulmuley
and Sohoni [62, 63] realized that it is natural to use algebraic geometry and representation
theory to study Valiant’s questions. Some of these geometric ideas date back to Strassen [76]
who discovered them in his study of the rank of the matrix multiplication tensor. Mulmuley and
Sohoni’s approach is now called geometric complexity theory.

Geometric complexity theory is an approach towards computational complexity lower bounds
questions via methods from algebraic geometry and representation theory. It has gained
significant momentum over the last few years, but it has a steep learning curve which is a result
of the many different areas of mathematics involved. This course tries to be a gentle introduction
that requires almost no background knowledge. There are great survey articles on geometric
complexity theory, but those require a significant level of mathematical maturity and often only
sketch many of the proofs, see e.g. [67, 61, 23, 39, 45, 52].

1we use the standard shorthand notation “iff” for “if and only if”
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1.2 The non-uniform P 6= NP question: NP 6⊆P/poly

To make our lives easier we will not directly discuss the P vs NP question, but its so-called
non-uniform analogue, i.e., its circuit complexity version. If the non-uniform analogue is true,
then also P 6= NP.

We start with the basic definition of a circuit.

Definition 1.1 (Circuit). Fix a set F (in our case F will be F2 = {0,1} or the set C of complex
numbers) and a set S = {si} of functions si of arbitrary arity ai, i.e., si maps from Fai to F,
where each ai ∈ N≥1. (For example, for Boolean circuits, choose F = F2 and S = {and,or,not}).
A circuit C is a directed graph (abbreviated digraph) that contains no directed cycle such that
the following properties hold (see Figure 1):

• A subset of the vertices with indegree 0 is labeled by indeterminates. These vertices
are called the input gates. The other vertices with indegree 0 are labeled with elements
of F and are called constant gates. All other vertices are called computation gates. A
computation gate with outdegree 0 is called an output gate.

• Each computation gate g is labeled with a function si ∈ S with arity ai coinciding with
the indegree of g.

X Y Z

and or

not

and

Figure 1: A circuit of size 7 computing the function {0,1}3→{0,1} given by (X and Y ) and not(Y or Z).
Here F = F2 and S = {and,or,not}. The circuit has 3 input gates, no constant gate, 4
computation gates, one of which is an output gate.

Let m be the number of input gates of a circuit C. Since by definition circuits contain
no directed cycle, for each gate g we can define a function Cg : Fm→ F in the natural way by
induction over the structure of the digraph as follows: For each input gate g labeled with a
constant α we define Cg to be the constant function α. For each input gate g labeled with a
variable Xj we define Cg(x1, . . . ,xm) = xj . For a computation gate g with label s and parents
g1, . . . ,ga we define Cg(x1, . . . ,xm) = s(Cg1(x1, . . . ,xm), . . . ,Cga(x1, . . . ,xm)).

We say that the functions Cg on the output gates g of C are computed by C. We call a
circuit a single-output circuit, if it has only one output gate and in this case C : Fm→ F denotes
the function of the output gate. The size |C| of a circuit C is defined to be the number of its
vertices. The depth of a circuit is defined as the largest number of edges from an input gate to
an output gate.
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Definition 1.2. The circuit complexity cF,S(h) of a function h : Fm→ F is the minimal size of a
circuit C computing h.

Remark 1.3. In the literature, sometimes the number of edges or the number of computation
gates is used as the definition of circuit complexity. In most contexts this does not make a
significant difference.

A Boolean circuit is defined to be a circuit with F = F2 and S = {and,or,not}. When we
speak of a univariate polynomial, we mean a polynomial in one variable with real coefficients.
The polynomials which we discuss in later chapters will be multivariate and will have complex
coefficients. Those serve a completely different purpose and need to be distinguished from their
univariate namesakes.

Definition 1.4. A sequence (nm)m∈N of natural numbers is called polynomially bounded if there
exists a univariate polynomial q such that for all m ∈ N we have nm ≤ q(m).

For a sequence of functions (hm) we obtain a sequence of natural numbers cF,S(hm). Formally
a family of objects is the same as a sequence of objects. We use the word family when we are
interested in the sequence of complexity values.

Definition 1.5. Fix F := F2 and S = {and,or,not}. The class P/poly consists of all function
families (hm) with hm : Fm→ F whose complexity sequence cF,S(hm) is polynomially bounded.

Example 1.6. Let hm : {0,1}m→ {0,1} denote the palindrome function: hm(w) = 1 iff wi =
wm+1−i for all 1≤ i≤m. It is easy to construct a Boolean circuit that computes hm whose size
is polynomially bounded in m.

More generally, for computer scientists, take any language L ⊆ {0,1}∗ in P. Then define
the function hm : {0,1}m→{0,1} to be the indicator function of L restricted to input words of
length exactly m. Then (hm) ∈P/poly. In other words P⊆P/poly. This result is a bit technical
and we will not discuss it any further.

1.2.1 SAT and NP

We do not define the class NP here, but we define the NP 6⊆P/poly conjecture via the satisfiability
function. The technical details in this subsection are only used locally.

A Boolean formula is a finite character string consisting of variables x(1),x(2),x(3), . . . and
parantheses symbols (, ), as well as the classical logical junctors and, or, not. For example:

(x(1) and not x(3)) or not(x(1) or x(4)) or x(2)

is a Boolean formula. A Boolean formula is called satisfiable if we can replace every variable x(i)
by either true or false such that the resulting statement is true. In our example, one of these
assignments would be x(1)=true, x(2)=true, x(3)=true, x(4)=false, and hence the Boolean
formula is satisfiable. We fix any reasonable way of encoding Boolean formulas as finite bit
strings, so, for example, we could choose 0000 = 0, 0001 = 1, 0010 = 2, . . ., 1001 = 9, 1010 = x,
1011 = (, 1100 = ), 1101 = and, 1110 = or, 1111 = not. For example the Boolean formula
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MARKUS BLÄSER AND CHRISTIAN IKENMEYER

x(2) and x(3) is represented by 101010110010110011011010101100111100. Using this encoding
we can interpret the set of satisfiable Boolean formulas as a subset of the set of finite length
bit strings. Now we are ready to define the satisfiability problem. Let (hm) be the sequence of
functions hm : {0,1}m→{0,1} defined by the property

hm(w) = 1 iff w ∈ {0,1}m encodes a satisfiable Boolean formula.

The NP 6⊆ P/poly conjecture can be stated as (hm) /∈ P/poly, or equivalently as

the sequence of Boolean circuit complexities cF2,S(hm) is not polynomially bounded.

Remark 1.7. One would usually choose the name SATm for the function hm. hm stands for
a hard function, i.e., a function for which we want to prove complexity lower bounds. We will
encouter this usage of hm more often in the following chapters

1.3 From Boolean circuits to arithmetic circuits

If we interpret the set F2 = {0,1} as the set of cosets modulo 2, then we see that besides the
Boolean operations the set F2 is also a ring (even a field) and hence has an addition and a
multiplication operation. The operation tables look as follows:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

The following rephrased version of Definition 1.5 has a more algebraic flavor.

Proposition 1.8 (Arithmetic characterization of P/poly). Let F := F2 and let S := {+,×},
where “+” and “×” have arity 2 and represent addition and multiplication. The class P/poly
consists of all families (hm) of functions hm : Fm→ F whose circuit complexity sequence cF,S(hm)
is polynomially bounded.

Proof. For F = F2, a circuit using S = {and,or,not} can be converted into a circuit using
S = {+,×} and vice versa by replacing gates with subcircuits of constant size, as follows:

• X and Y =X×Y

• not X =X+ 1

• X or Y =X×Y +X+Y

• X+Y =X xor Y = (X or Y ) and not(X and Y )

Circuits where F is a field and S is the set {+,×} of arithmetic operations are called
arithmetic circuits over F. Computation gates labeled with + are called addition gates and
computation gates labeled with × are called multiplication gates.

Given the characterization from Proposition 1.8, it is straightforward to work over other
rings than F2. Infinite fields for example have a big advantage, as we will see in Lemma 1.9. For

THEORY OF COMPUTING 8

http://dx.doi.org/10.4086/toc


INTRODUCTION TO GEOMETRIC COMPLEXITY THEORY

−1 Y X

×

+

+

×

×

Figure 2: A circuit computing the polynomial X3 +X2Y −XY 2−Y 3. Here F = C and S = {×,+}.
The circuit has 2 input gates, one constant gate, 5 computation gates, and 1 output gate.

a fixed ring F, single-output arithmetic circuits with m input gates not only naturally compute a
function Fm→ F, but they also compute a polynomial in the polynomial ring F[X1, . . . ,Xm] in m
variables by induction on the circuit structure, see Figure 2. Two polynomials are consirered to
be equal if for each monomial their corresponding coefficients coincide. Single-output arithmetic
circuits over F2 that compute different polynomials can compute the same function, as the
following small example shows: Let h1(X,Y ) =X2Y and h2(X,Y ) =XY 2. Clearly h1 and h2
are different polynomials, but as functions they coincide:

∀x ∈ (F2)2 : h1(x) = h2(x).

This is a cumbersome subtlety which does not arise over infinite fields.

Lemma 1.9. Let F be an infinite field. Then for two polynomials h1,h2 ∈ F[X1,X2, . . . ,Xm] we
have

h1 = h2 as polynomials iff for all x ∈ Fm we have h1(x) = h2(x).

Proof. We show by induction that a polynomial that vanishes on the whole Fm is the zero
polynomial. For m= 1 the result follows easily from successive polynomial division by linear
factors: A nonzero degree d polynomial cannot have more than d zeros. For m > 1 we can
decompose every h that vanishes on Fm as h=∑degh

i=0 giX
i
m ∈ F[X1, . . . ,Xm−1][Xm]. Fix a point

(x1, . . . ,xm−1) ∈ Fm−1. Define p(y) := h(x1, . . . ,xm−1,y) =∑degh
i=0 gi(x1, . . . ,xm−1)yi ∈ F[y]. Note

that p(y) vanishes on F and hence p is the zero polynomial. But the coefficients of p are the
gi(x1, . . . ,xm−1). Thus equating coefficients of p yields that for all i we have gi(x1, . . . ,xm−1) = 0.
Since the point (x1, . . . ,xm−1) was chosen arbitrarily, all gi vanish on the whole Fm−1. By the
induction hypothesis each gi is the zero polynomial. Therefore h is the zero polynomial.

In the light of Lemma 1.9 we see that if we are working over an infinite field we can focus on
the polynomials computed by arithmetic circuits instead of the functions computed by them.

Our field of choice will be the complex numbers C from now on.

Definition 1.10. The arithmetic complexity L(h) of a polynomial h is the size of the smallest
single-output arithmetic circuit computing h.
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The notation L(h) stands for the length of a straight-line program computing h, which is the
same as the arithmetic circuit complexity.

Example 1.11. L(∏m
i=1Xi) = O(m).

Example 1.12. L(∑m
i=1(Xi)m) = O(m log2(m)) using the repeated squaring algorithm.

LetSm denote the symmetric group onm letters, i.e., the group of bijective maps {1, . . . ,m}→
{1, . . . ,m}. We define the permanent polynomial as follows:

perm :=
∑
π∈Sm

m∏
i=1

Xi,π(i) ∈ C[X1,1,X1,2, . . . ,Xm,m]

Notice the striking similarity to the determinant:

detm :=
∑
π∈Sm

sgn(π)
m∏
i=1

Xi,π(i) ∈ C[X1,1,X1,2, . . . ,Xm,m],

where sgn(π) ∈ {−1,1} denotes the sign of the permutation π.
Computing the permanent of a matrix is NP-hard [81], while determinants of matrices can

be efficiently computed using Gaussian elimination. We postpone the definition of the Valiant’s
complexity classes VP and VNP, but Valiant’s famous VP 6= VNP conjecture can be stated as

the sequence L(perm) is not polynomially bounded.

Remark 1.13. It is known [5] that L(∑n
i=1X

n
i Y

n
i ) = Ω(n logn), which is the best known lower

bound for L.

A simplification via algebra

Proving circuit complexity lower bounds for Boolean functions is difficult. Replacing
the base field F2 with C lets us study polynomials instead. Valiant’s famous conjecture,
a conjecture similar to P 6= NP, says that L(perm) is not polynomially bounded.
This is a first step towards a rich set of algebraic tools that will become available in
later chapters.

2 Waring rank and border Waring rank

2.1 Waring rank

We start our study of arithmetic circuits with a very special case of circuits. For this we use a
new gate in our arithmetic circuits: raising a polynomial to some fixed power d. We call these
gates degree d powering gates. A circuit is layered if we can assign to each gate a natural number
(its layer) so that edges from gates in layer i only go to gates in layer i+1. Also for our addition
gates we allow arbitrarily high arities.
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Definition 2.1. A layered arithmetic circuit C is called a ΣΛdΣhom-circuit if C is a tree of
depth 3 (not counting leaf vertices) whose leaves are variables and constants, the next layer
consists of multiplication gates whose parents are exactly one variable and one constant, the
next layer consists of addition gates with arbitrary arity, the next layer consists of degree d
powering gates, the last layer consists of a single summation gate of arbitrary arity. The size of
C is defined as the number of powering gates.

A polynomial in many variables is called multivariate. To each monomial we assign a degree,
which is the sum of its exponents. For example deg(XY 2) = 3 and deg(X2Y 3Z) = 6. If all
monomials of a polynomial h have the same degree d, then we say that h is homogeneous of degree
d. For example, XY + 3X2 is homogeneous (of degree 2), but XY +X+ 1 is not homogeneous.
Constants are homogeneous of degree 0. The zero polynomial is homogeneous of all degrees.
The permanent perm is homogeneous of degree m.

Homogeneous polynomials of degree d are sometimes called forms. In particular homogeneous
degree-1 polynomials are called linear forms, but it is less ambiguous to say homogeneous linear
form.

For any fixed set of variables, the set of homogeneous degree d polynomials forms a vector
space that we denote by C[X1, . . . ,XN ]d. Moreover, the degree function makes the polynomial
ring C[X1, . . . ,XN ] a graded algebra (see Appendix A).2 We observe that each ΣΛdΣhom-circuit
computes a homogeneous degree d polynomial.

Claim 2.2. Equivalently, we can allow the leaves of the circuits in Definition 2.1 to be labeled
with homogeneous linear forms, followed by degree d powering gates and then a single addition
gate. Explicitly writing these linear forms as sums of scalar multiples of variables does not change
the size of the circuit.

Proof. The complexity is defined as the number of powering gates, which does not change when
replacing the computation of the homogeneous linear forms with just a leaf whose label is the
homogeneous linear form or vice versa.

Definition 2.3. For a homogeneous degree d polynomial h, the Waring rank is defined as
the smallest size of a ΣΛdΣhom-circuit computing h. Alternatively, the Waring rank of h is
the smallest number of summands such that h can be expressed as a sum of d-th powers of
homogeneous linear forms.

The Waring rank is an important quantity in classical algebraic geometry, also called
symmetric rank.

Example 2.4. XY = (X2 + Y
2 )2 + (iX2 − i

Y
2 )2, therefore the Waring rank of XY is at most 2.

2A graded algebra basically means that we have a well-defined notion of a degree of an element. The polynomial
ring is our main example of a graded algebra. Another important example is the quotient ring of a polynomial
ring divided by an ideal generated by homogeneous polynomials. In the non-homogeneous case however, the
situation is different. For example, in the ring C[X1]/(X2

1 −X1) we have X3
1 =X2

1 , therefore C[X1]/(X2
1 −X1)

does not inherit the degree function from C[X1].
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Example 2.5 (taken from a presentation by Luke Oeding in 2017). Let h :=X2Y ∈ C[X,Y ]3.
Then

6h= (X+Y )3 + (−X+Y )3 + ( 3√−2Y )3.

A direct calculation can show that there is no better way: The Waring rank of 6h is 3. The
following lemma shows that indeed the Waring rank of h is 3.

Remark 2.6. Over fields that are not algebraically closed the Waring rank is usually defined
as the smallest number of nonzero coefficients in a linear combination of powers.

Lemma 2.7. Waring rank is invariant under nonzero rescaling: h and αh have the same Waring
rank for α 6= 0.

Proof. Let h be of degree d with Waring rank n and let C be the smallest ΣΛΣhom-circuit
computing h. Let 0 6= α ∈ C. We rescale all the homogeneous linear forms at the leafs with d

√
α

to obtain a circuit of the same size computing αh. For the other direction we apply the same
argument, but we rescale by d

√
α−1.

Here we see again how convenient the choice of C as a base field is: dth roots of numbers are
guaranteed to exist.

Proposition 2.8. Waring rank is always finite.

Proof. We can apply Fischer’s formula [32] to each monomial separately:

γnX1X2 · · ·Xn =
∑

bi∈{−1,1}
2≤i≤n

(∏n
`=2b`)(X1 + b2X2 + b3X3 + · · ·+ bnXn)n, (2.1)

where γn := n! ·2n−1.

2.2 The discriminant

How can we prove a Waring rank complexity lower bound for specific h? We study homogeneous
degree 2 polynomials in two variables X and Y . The set of these polynomials is denoted by
C[X,Y ]2. Every h ∈ C[X,Y ]2 can be written as

h= aX2 + bXY + cY 2.

Recall the case when Y = 1: The polynomial aX2 + bX+ c has a double root iff b2−4ac = 0.
Note that aX2 + bX+ c has a double root α iff aX2 + bX+ c= (X−α)2. The same holds here:

There exist scalars α,β ∈ C with aX2 + bXY + cY 2 = (αX+βY )2 iff b2−4ac= 0.

Thus to prove that the Waring rank of h is at least 2, we simply can verify that b2−4ac 6= 0.
This is a first example of a general method to prove complexity lower bounds.

For instance, expressing XY = aX2 + bXY + cY 2 we obtain a = c = 0 and b = 1, so that
b2 − 4ac = 1 6= 0. Therefore the Waring rank of XY is at least 2. This means that the
ΣΛΣhom-circuit in Example 2.4 is optimal.
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Proving lower bounds means that we have a set of polynomials W (the “easy” functions,
here the set of polynomials of Waring rank 1) and we want to prove that some polynomial h is
not in W (a “hard” polynomial). One approach is to find a function f—defined on the space of
polynomials that we consider—that vanishes on W but f(h) 6= 0. Such f are called separating
functions or obstructions against h ∈W . Obstructions are a very general concept and we will
see specialized types of obstructions based on representation theorey in Sections 10, 11, and 12.
In Sections 2.3 and 2.4 we discuss the case where the separating functions are continuous.

2.3 Border Waring rank

As in Example 2.5, let h :=X2Y ∈ C[X,Y ]3. The Waring rank of h is 3, but:

lim
ε→0

( 1
3εX

3 + 1
3ε(εY −X)3

)
= lim
ε→0

(
X2Y −εXY 2 + 1

3ε
2Y 3

)
=X2Y. (2.2)

So there is a curve of polynomials of Waring rank ≤ 2 that converges to h.
Let us formally define what this means. Let A := C[X1, . . . ,XN ]n. This is a finite dimensional

vector space with dimA =
(N+n−1

n

)
. Every element h ∈ A can be written as

h=
∑

λ∈NN ,|λ|=n
αλX

λ1
1 · · ·X

λN
N (2.3)

for some constants αλ. We define the norm or length of a polynomial h

|h| :=
∑

λ∈NN ,|λ|=n
|αλ|. (2.4)

It is easy to check that this satisfies the axioms of a norm (|h| ≥ 0, |h|= 0 iff h= 0, |αh|= |α| · |h|,
|h1 +h2| ≤ |h1|+ |h2|).

The distance between h1 ∈ A and h2 ∈ A is defined as dist(h1,h2) := |h1−h2|. This satisfies
the axioms of a metric.

In particular, the triangle inequality holds:

dist(h1,h3)≤ dist(h1,h2) +dist(h2,h3). (2.5)

For example,

dist(2X2
1 ,2X2

1 + 1
100X1X2) = |2−2|+ |0− 1

100 |=
1

100 .

Definition 2.9. Let A be a finite dimensional complex vector space and let h ∈A. We say that
a sequence (hi)i with all hi ∈ A converges to h ∈ A, if

∀ε ∈ R>0 ∃i0 ∈ N ∀i > i0 : dist(h−hi)< ε.

In this case we write limi→∞hi = h and say that h is the limit of the sequence (hi)i. A sequence
for which a limit exists is called convergent.
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(2.2) is an example of a convergent sequence if we set ε := 1
i . It is easy to see that every

convergent sequence has a unique limit.

Remark 2.10. Choosing different norms in (2.4) has no effect on the convergence behaviour of
sequences. The limits stay the same.

Definition 2.11. For a homogeneous degree d polynomial h the border Waring rank is defined
as the smallest n such that h is the limit of a sequence of polynomials of Waring rank ≤ n.

In Example 2.3 we see that the border Waring rank of X2Y is at most 2. Clearly, the border
Waring rank of h cannot exceed the Waring rank of h, because for all h the constant sequence
(h,h, . . .) converges to h.

2.4 Closures and continuous separating functions

We want to show complexity lower bounds by using the nonvanishing of separating functions
such as the discriminant. But in this section we see that continuous functions cannot distinguish
between Waring rank and border Waring rank. On the other hand we discover that if we search
for functions that prove lower bounds on border Waring rank, then we can restrict our search to
continuous functions only. We will see later that we can restrict our search space significantly
further using algebraic geometry and representation theory.

We will use a very simple definition of continuity:

Definition 2.12. A function f : A→ A′ between two finite dimensional metric spaces spaces is
called continuous if for every convergent sequence (hi)i in A, the sequence f(hi) converges in A′
to f(limi→∞hi).

Claim 2.13. Functions defined by multivariate polynomials are continuous. (“Multivariate
polynomials are continuous”).

Proof sketch. It is easy to see that for all 1 ≤ k ≤ N the coordinate function fk : CN → C,
(T1, . . . ,TN ) 7→ Tk is continuous. Moreover, it is not hard to derive the facts that finite products
and finite sums of continuous functions are continuous (here the proof for products is only slightly
more involved). It follows by induction that all multivariate polynomials f ∈ C[T1, . . . ,TN ] are
continuous.

Example 2.14. Claim 2.13 implies that the discriminant b2−4ac is continuous.

We will now see that if we use continuous functions to prove Waring rank lower bounds,
then we actually prove border Waring rank lower bounds. Moreover, if we want to prove border
Waring rank lower bounds, then we can restrict our search for separating functions to continuous
functions. As a first step we reformulate border Waring rank in the language of C-closures.

Definition 2.15. Given a (not necessarily linear) subsetW ⊆A, the C-closure W in A is defined
as the set of the limits of all convergent sequences whose elements are taken from W .

Example 2.16. Consider C\{0} ⊆ C. Then C\{0}= C.
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Clearly, W ⊆W , because for all h ∈W , the constant sequence (h,h, . . .) converges to h.
Moreover, if V ⊆W , then V ⊆W , because every sequence with elements from V is also a
sequence with elements from W . Using the definition above, we see that the set of border Waring
rank ≤ n polynomials is the C-closure of the set of Waring rank ≤ n polynomials, that is,

{h∈C[X1, . . . ,XM ]m |border Waring rank(h)≤n}= {h ∈ C[X1, . . . ,XM ]m |Waring rank(h)≤ n}.

Definition 2.17. A subset W ⊆ A is called C-closed in A, if W = W , i.e., the limit of every
convergent sequence (hi)i with hi ∈W is contained in W .

Lemma 2.18. Let W ⊆ A be any subset. After taking the C-closure in A once, taking the
C-closure in A again has no additional effect: W = W . In particular, C-closures in A are
C-closed in A.

Proof. Clearly W ⊆W . Let h ∈W be arbitrary and let (hi)i denote a sequence converging to h
with hi ∈W , i.e., for each i there exists a sequence (hi,j)j such that limj→∞hi,j = hi and the
hi,j are elements of W . Let hi(ε) denote the first entry in (hi,j)j such that the distance between
hi,j and hi is less than ε. Taking ε= 1

i , it follows that the sequence (hi(1
i ))i converges to h and

all elements hi(1
i ) are taken from W . Therefore h ∈W .

The next Proposition 2.19 shows that continuous functions cannot distinguish between a
set and its C-closure. We will see in Lemma 2.20 that continuous functions are exactly those
functions that can be used to distinguish points from C-closed sets. Note that this is exactly
what we need for proving border Waring rank lower bounds.

Proposition 2.19. A continuous function f : A→ C vanishes on a set W ⊆ A iff f vanishes
on the C-closure W .

Proof. Since W ⊆W , one direction is clear. Let h ∈W \W . Let hi be a sequence in W with
limi→∞hi = h. Then f(hi) = 0 and since f is continuous we have f(limi→∞hi) = limi→∞ f(hi) =
limi→∞ 0 = 0.

Lemma 2.20. Let W ⊆A be a C-closed set. Then there exists a continuous function f : A→C
that vanishes on W and nowhere else.

Remark 2.21. Note that the statement of Lemma 2.20 is trivial if we drop the requirement of
f being continuous. However, it is also absolutely useless then.

Proof. For the easy direction, we see that the existence of an f that vanishes on W with f(h) 6= 0
clearly implies h /∈W . For the other direction we need to construct a separating function f
vanishing on W but not on h. Intuitively f is the distance function to W . We define the distance
f of h to W to be the infimum

f(h) := inf{dist(h,h1) | h1 ∈W},

which is the largest α ∈ R such that for all h1 ∈W we have dist(h,h1)≥ α. Clearly if h ∈W ,
then f(h) = 0. Therefore if f(h) 6= 0 we have h /∈W . For the other direction we have to show
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that every h with f(h) = 0 lies in W . Let h satisfy f(h) = 0. This means that there exists
a sequence (hi) of elements of W such that the distance sequence dist(h,hi) converges to 0.
Therefore limi→∞hi = h, but since W is C-closed in A it follows that h ∈W .

It remains to show that f is continuous. It is sufficient to show that for all h and h1, we have

|f(h)−f(h1)| ≤ dist(h,h1),

because for a sequence hi converging to h this implies limi→∞ f(hi) = f(h).
Let h2 ∈W be arbitrary. Then by (2.5) we have dist(h,h2)≤ dist(h,h1) +dist(h1,h2) and

therefore f(h)≤ dist(h,h1)+dist(h1,h2) or in other words dist(h,h1)≥ f(h)−dist(h1,h2). Since
h2 was arbitrary we obtain dist(h,h1) ≥ f(h)− f(h1). Note that we here used the fact that
if a non-strict inequality holds for a subset of the real numbers, then it also holds for its
infimum. Reversing the roles of h and h1 we obtain dist(h,h1) ≥ f(h1)− f(h) and therefore
dist(h,h1)≥ |f(h)−f(h1)|.

If we want to prove border Waring rank lower bounds, then we can restrict our search for
separating functions to continuous functions. The proofs did not involve anything specific about
Waring rank, so this holds in far higher generality. Using some algebraic geometry we will
see later that we can restrict our search further to homogeneous polynomials (for example the
discriminant is a homogeneous polynomial). Using some representation theory we will restrict
the search space even further to homogeneous polynomials in irreducible representations.

A general approach to lower bounds

Proving lower bounds means that we have a set of functions W (the “easy” functions)
and we want to prove that some function h is not in W (a “hard” function). One
approach is to find a function f—defined on the space of functions that we consider—
that vanishes on W but f(h) 6= 0. While finding any such f is as hard as showing that
h /∈W , we can restrict our search to “nice” functions f . Here “nice” means continuous.
You should be aware that with this approach, we can only prove that h /∈W . If we are
unlucky, h ∈W \W and we will never be able to prove this with this approach.

Example: Waring rank

The Waring rank of a homogeneous polynomial h of degree d is the smallest number
of summands such that h can be expressed as a sum of d-th powers of homogeneous
linear forms.
The smallest r such that h is the limit of a sequence of polynomials of Waring rank
≤ r is the border Waring rank.
The discriminant b2− 4ac is a polynomial that vanishes on all polynomials aX2 +
bXY + cY 2 ∈ C[X,Y ]2 of border Waring rank 1.
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3 Actions, orbits, and orbit closures

Complexity lower bounds are about separating points h from C-closures W by using functions f
that vanish on W but not on h. In the previous chapter we saw that since W is C-closed, we
can restrict our search to continuous functions f only. In this chapter we find more properties
of W that will help to reduce the search space for f even further: Our sets W are group orbit
closures. As our main example we consider the Waring rank problem: We express the Waring
rank problem as a monoid orbit problem and the border Waring rank problem as an orbit closure
problem.

3.1 Monoid actions

For a set V , let V → V denote the set of maps from V to V . If V is a vector space, then let
End(V ) denote its monoid of endomorphisms, i.e., the monoid of linear maps V → V (recall
Appendix A). For V = CN we can identify End(V ) = CN×N , i.e., the space of N ×N complex
matrices. We use the shorthand EndN := End(CN ). Here, we are interested in V =C[X1, . . . ,Xn]d,
the space of homogeneous polynomials of degree d, as we will see in Section 3.2.

Definition 3.1. Let G be a monoid and V be a set.

1. An action of G on V is a monoid homomorphism % :G→ (V → V ).

2. If V is a vector space, then a linear action of G on V defined as a monoid homomorphism
% :G→ End(V ).

We say that G acts on V and we write gv as a shorthand for (%(g))(v), g ∈G,v ∈ V .

Recall that the axiom for a monoid homomorphism in this case is %(g · g̃) = %(g)◦%(g̃), where
“·” is the monoid operation and “◦” is the composition of maps. You can think of the monoid
elements moving the points of V around. The identity element fixes all points.

Caveat: The monoids that we are mainly interested in are also endomorphism spaces, so
G= Endn for some n. This might be a source of confusion.

Example 3.2. Let G= Endn, let V = Cn, and let %(g) = g. In this case gv can be interpreted
as the usual matrix-vector product.

A more interesting example is obtained by lifting the action to the function space, as we
explain in the following section.

3.2 Lifting the action to the function space

Using this action we define the action of Endn on V = C[X1, . . . ,Xn]d. For a polynomial
h ∈ C[X1, . . . ,Xn]d, g ∈ Endn, x ∈ Cn, define

(gh)(x) := h(gTx), (3.1)
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MARKUS BLÄSER AND CHRISTIAN IKENMEYER

where gT is the transpose and gTx is the monoid action of Endn on x∈Cn, i.e., the matrix-vector
multiplication (see Example 3.2). You can also think of Endn acting on V by replacing the
variables X1, . . . ,Xn by homogeneous linear forms in X1, . . . ,Xn.

We verify that the definition in (3.1) satisfies (gg̃)h= g(g̃h) as follows:

(g(g̃ ·h))(x) (3.1)= (g̃ ·h)(gTx) (3.1)= h(g̃T (gTx))
3.2= h((g̃T ·gT ) ·x) = h((g · g̃)T ·x) (3.1)= ((g · g̃)h)(x).

Note that we take the transpose since G acts “from the left” on V and transposing reverses
the order of the two monoid elements. Another way to define this action is to use g−1 instead
of gT , but that only works if G is a group. On the other hand, if G is an arbitrary group and
g ∈G, then it is unclear what gT means. In all the cases we encounter it is just a matter of taste
which definition to use.

Example 3.3. We have 
1 1 · · · 1
0 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0


︸ ︷︷ ︸

=:g

(X1X2 · · ·Xn) =Xn
1 .

The following calculation may seem unnecessary, as g sends each Xi to X1, so it sends
X1 · · ·Xn to Xn

1 . However, we go through it carefully to illustrate the importance of the
transpose in the definition (g ·f)(x) = f(gTx).

Calculation: Let h := X1 · · ·Xn. Then (g ·h)(x) = h(gTx). For x = (x1, . . . ,xn), we have
gTx = (x1,x1, . . . ,x1), so then h(gTx) = h(x1,x1, ...,x1) = xn1 . Since (g ·h)(x) agrees with the
polynomial Xn

1 at all points x, the two must be equal. Note that if we had written h(gx) instead,
we would have that gx= (x1 +x2 + · · ·+xn,0,0, . . . ,0), and then h(gx) = 0, clearly not what we
wanted.

Example 3.4. Let g ∈ Cn×n and let `= (`1, . . . , `n) ∈ Cn be the first column of g.

g(Xd
1 ) = (`1X1 + `2X2 + · · ·+ `nXn)d.

Calculation: Let x := α1e1 + · · ·+αnen. We have (g(Xd
1 ))(x) := (Xd

1 )(gTx). But

gTx= (`1α1 + `2α2 + · · ·+ `nαn)e1 +β2e2 + · · ·+βnen

for some β2, . . . ,βn ∈ C. Thus,

(Xd
1 )(gTx) = (`1α1 + `2α2 + · · ·+ `nαn)d = ((`1X1 + `2X2 + · · ·+ `nXn)d)(x).
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More generally, Example 3.4 shows that

g(Xd
i ) = (`′1X1 + `′2X2 + · · ·+ `′nXn)d, (3.2)

where (`′1, . . . , `′n) is the ith column of g.
We will combine these insights with the following two structural properties. This lifted action

is linear and an algebra homomorphism, as the following two lemmas show. Let A = CN and
define C[A] := C[X1, . . . ,XN ].

Lemma 3.5. Let h,h′ ∈ C[A] and let g ∈G. For all complex numbers α,α′ we have

g(αh+α′h′) = α(gh) +α′(gh′).

Proof. Let x ∈ A be arbitrary. We calculate

(g(αh+α′h′))(x) (3.1)= (αh+α′h′)(gTx) (∗)= αh(gTx) +α′h′(gTx)
(3.1)= α((gh)(x)) +α′((gh′)(x))
(∗)= (α(gh) +α′(gh′))(x),

where (∗) uses the fact that C[A] is a vector space.

More generally, Lemma 3.5 holds by induction for arbitrary finite linear combinations of
functions in C[A].

Lemma 3.6. Let h,h′ ∈ C[A] and let g ∈G. Then

g(h ·h′) = (gh) · (gh′).

Proof. Let x ∈ A be arbitrary. We calculate

(g(h ·h′))(x) (3.1)= (h ·h′)(gTx) (∗)= h(gTx) ·h′(gTx)
(3.1)= (gh)(x) · (gh′)(x)
(∗)= ((gh) · (gh′))(x),

where (∗) follows from the definition of the product of two functions.

Note that Lemma 3.5 and Lemma 3.6 imply that gh can be calculated by taking products
and linear combinations of gXi, but gXi is just the homogeneous linear form given by the ith
column of g. For example(

1 2
1 0

)
(X1X2 +X2

1 ) = (X1 +X2)(2X1) + (X1 +X2)2

= 2X2
1 + 2X1X2 +X2

1 + 2X1X2 +X2
2 = 3X2

1 + 4X1X2 +X2
2 ,

where the action replaces X1 by the linear form X1 +X2 given by the first matrix column, and
the action replaces X2 by 2X1 given by the second matrix column.
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Corollary 3.7. Let g ∈Cn×n and let `i ∈Cn be the ith column of g. Let Li := `i1X1 + · · ·+`inXn ∈
C[X1, . . . ,Xn]1.

g(Xd
1 + · · ·+Xd

n) = Ld1 + · · ·+Ldn.

Proof. Combine (3.2) with Lemma 3.5.

Example 3.8. We can rewrite Example (2.2) as

lim
ε→0

(
1
3ε

(
1 −1
0 ε

)
(X3 +Y 3)

)
=X2Y.

3.3 Orbits

In this section we express the Waring rank problem as a problem on orbits of monoids. We’ll
see later that border Waring rank is a corresponding problem on orbit closures.

Definition 3.9. For a monoid G acting on a set V define Gh := {gh | g ∈G} for h ∈ V . We call
Gh the orbit of h.

Example 3.10. For G = CN×N the orbit GXd
1 ⊆ C[X1, . . . ,XN ]d is the set of Waring rank 1

homogeneous degree d polynomials in N variables.

Proof. For g ∈G let ` := g1,1X1 +g2,1X2 + · · ·+gN,1XN . Then gXd
1 = `d by Example 3.4.

For the other direction, let `d have Waring rank 1, ` ∈ CN . Let g ∈ CN×N with first column
`. Then by Example 3.4 we have gXd

1 = `d.

We can now phrase the Waring rank problem in the language of monoid orbits as follows.
For n≤N we embed C[X1, . . . ,Xn]d ⊆ C[X1, . . . ,XN ]d in the natural way.

Proposition 3.11. Let N ≥ n and N ≥m. Let G := EndN .

{h ∈ C[X1, . . . ,Xm]d |Waring rank of h is at most n}=G(Xd
1 + · · ·+Xd

n)∩C[X1, . . . ,Xm]d.

Proof. If h= g(Xd
1 + · · ·+Xd

n) for some g ∈ CN×N , then h= (g1,1X1 +g2,1X2 + · · ·+gN,1XN )d+
· · ·+ (g1,nX1 +g2,nX2 + · · ·+gN,nXN )d by Cor. 3.7 and thus the Waring rank of h is at most n.
(Note that we could also have set all gi,j to zero for which j > n or i > m.)

Conversely, if the Waring rank of h ∈ C[X1, . . . ,Xm] is at most n, then

h= (g1,1X1 +g2,1X2 + · · ·+gm,1Xm)d+ · · ·+ (g1,nX1 +g2,nX2 + · · ·+gm,nXn)d.

Since N ≥ n and N ≥m, we can construct a matrix g ∈ CN×N by filling the remaining cells
with zeros. Then h= g(Xd

1 + · · ·+Xd
n) by Cor. 3.7.

In the proposition above, we have to intersect the orbit on the right-hand side by C[X1, . . . ,Xm]d,
since the G-action can introduce variables with index >m, which cannot occur on the left-hand
side.

We now want to go one step further and look at the inclusion of monoid orbits than of just
point membership. In this way we could use properties of the point h to show h /∈W .
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Lemma 3.12. The orbit Gh is the smallest set that contains h and is closed under the monoid
action.

Proof. If a set contains h and is closed under the monoid action, then it contains all gh with
g ∈G, so by definition it contains Gh.

Moreover, Gh is closed under the monoid action: Let g ∈G be arbitrary and let h′ ∈Gh be
arbitrary. By definition there exist g′ ∈G such that h′ = g′h. Thus gh′ = g(g′h) (∗)= (gg′)h ∈Gh,
where (∗) follows from the axioms of a monoid action.

Corollary 3.13. Let N ≥ n and N ≥m. Let G := EndN . Let h ∈ C[X1, . . . ,Xm]d. The Waring
rank of h is at most n iff Gh⊆G(Xd

1 + · · ·+Xd
n).

Proof. h ∈G(Xd
1 + · · ·+Xd

n) iff Gh⊆G(Xd
1 + · · ·+Xd

n) by Lemma 3.12. Prop. 3.11 says that the
Waring rank of h is at most n iff h ∈G(Xd

1 + · · ·+Xd
n), which finishes the proof.

3.4 Orbit closures

In this section we express the border Waring rank problem as a problem on monoid orbit closures.
The vector space EndN = CN×N is endowed with the standard metric

dist(g,g′) =
N∑

i,j=1
|gi,j−g′i,j |,

g,g′ ∈ EndN .
Consider the metric space EndN×C[X1, . . . ,Xm]d via dist((g,h),(g′,h′)) := dist(g,g′)+dist(h,h′).

We postpone the proof of the following simple technical lemma to Section 3.6.

Lemma 3.14. The map EndN ×C[X1, . . . ,Xm]d → C[X1, . . . ,XN ]d, (g,h) 7→ gh given by the
action in Section 3.2 is continuous.

Corollary 3.15.

1. For a fixed h ∈ C[X1, . . . ,Xm]d the map EndN → C[X1, . . . ,XN ]d, g 7→ gh is continuous.

2. For a fixed g ∈ EndN the map C[X1, . . . ,Xm]d→ C[X1, . . . ,XN ]d, h 7→ gh is continuous.

Proof. Both maps are restrictions of the continuous map in Lemma 3.14.

Lemma 3.16. The monoid orbit closure Gh is the smallest set that contains h, is closed under
the monoid action, and C-closed.

Proof. Let X be a set that contains h, is closed under the monoid action, and is C-closed. We
have

h ∈X ⇔Gh⊆X ⇔Gh⊆X.

For the last equivalence we used that if A⊆B, then A⊆B and that B =B for C-closed sets B.
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One subtlety remains: A priori it is unclear that Gh is closed under the monoid action. We
prove this as follows. Let h′ ∈Gh, h′ = limi→∞ gih with gi ∈G. Let g ∈G be arbitrary. Then
gh′ = g limi→∞ gih= limi→∞ g(gih) = limi→∞(ggi)h ∈Gh, because the map h 7→ gh is continuous
for every g ∈G (Cor. 3.15).

Corollary 3.17. Let N ≥ n and N ≥m. Let G := EndN . Let h ∈ C[X1, . . . ,Xm]d. The border
Waring rank of h is at most n iff Gh⊆G(Xd

1 + · · ·+Xd
n).

Proof. Using Prop. 3.11 we see that the border Waring rank of h is at most n iff h∈G(Xd
1 + · · ·+Xd

n).
But since G(Xd

1 + · · ·+Xd
n) is C-closed and closed under the action of G, from Lemma 3.16 it

follows that h ∈G(Xd
1 + · · ·+Xd

n) iff Gh⊆G(Xd
1 + · · ·+Xd

n).

3.5 Group orbit closures

It is more common to talk about group orbit closures instead of monoid orbit closures. The
reason is that we can replace EndN in Cor. 3.17 by the general linear group GLN := {g ∈ EndN |
det(g) 6= 0}.

Lemma 3.18 (Density of GLN ⊆ EndN ). For every g ∈ EndN there exists a sequence (gi) with
each gi ∈ GLN such that limi→∞ gi = g.

Proof. Consider det(g+ εIdN ), which is a nonzero univariate polynomial in ε of degree ≤ N .
Thus it has at most N zeros. From the sequence (gi), gi := g+ 1

i IdN we remove those gi with
zero determinant (these are at most N many). Then (gi) converges to g with all gi ∈ GLN .

Proposition 3.19. Let N ≥ n and N ≥m. Let G := GLN . Let h ∈ C[X1, . . . ,Xm]d. The border
Waring rank of h is at most n iff Gh⊆G(Xd

1 + · · ·+Xd
n).

Proof. We prove that in general, GLNh= EndNh. According to Cor. 3.15 the map ϕ : g 7→ gh is
continuous. In general, for any continuous map ϕ and any set G we have ϕ(G)⊆ϕ(G). The proof
of this fact is short: let g ∈G with g = limi→∞ gi. Then ϕ(g) = ϕ(limi→∞ gi) = limi→∞ϕ(gi) ∈
ϕ(G).

Using ϕ(G) ⊆ ϕ(G), we take closures on both sides: ϕ(G) ⊆ ϕ(G) (Lemma 2.18). Since
clearly ϕ(G) ⊆ ϕ(G), we have ϕ(G) = ϕ(G). Setting G = GLN and using that G = EndN by
Lemma 3.18, the statement follows.

Remark 3.20. Although EndN = GLN , we often have the strict inclusion EndNh$ GLNh. For
example, the set End2X

3 +Y 3 is the set of all Waring rank ≤ 2 polynomials in C[X,Y ]3 (see
Corollary 3.13), whereas GL2X3 +Y 3 is the set of all border Waring rank ≤ 2 polynomials in
C[X,Y ]3. The example in (2.2) shows that the former is strictly contained in the latter. A more
complicated example is discussed in [44]: End9det3 is strictly contained in GL9det3.
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3.6 The orbit map

In this section we prove Lemma 3.14. Indeed, we prove the following more general statement.
Proposition 3.21. Let ϕ : EndN ×C[X1, . . . ,XN ]d → C[X1, . . . ,XN ]d, ϕ(g,h) = gh. Let η :=
dimC[X1, . . . ,XN ]d =

(N+d−1
d

)
. For 1 ≤ i ≤ η define ϕi to be the ith coordinate function of ϕ.

Then each ϕi is given by a polynomial in the N2 +η coordinate variables of EndN×C[X1, . . . ,XN ]d.
Since polynomials are continuous and combining continuous coordinate functions gives a

continuous function, Proposition 3.21 implies Lemma 3.14.

Proof of Prop. 3.21. Let the entry in row i and column j of g be denoted by gij .
For a list (i1, i2, . . . , id) of numbers let S(i1, i2, . . . , id) denote the set of all lists that have the

same entries as (i1, i2, . . . , id), but where the positions are permuted. Let si
1,i2,...,id

i1,i2,...,id
denote the

sum
si

1,i2,...,id

i1,i2,...,id
:=

∑
(j1,...,jd)∈S(i1,i2,...,id)

gj
1

i1
gj

2

i2
· · ·gj

d

id
.

For 1≤ i1 ≤ i2 ≤ ·· · ≤ id ≤N we have

g(Xi1 · · ·Xid) = (g1
i1X1 + · · ·+gNi1XN ) · · ·(g1

id
X1 + · · ·+gNidXN )

=
∑

1≤i1≤i2≤···≤id≤N
si

1,i2,...,id

i1,i2,...,id
Xi1 ·Xi2 · · ·Xid

and thus

g

 ∑
1≤i1≤i2≤···≤id≤N

αi1,...,idXi1 · · ·Xid


=

∑
1≤i1≤i2≤···≤id≤N

 ∑
1≤i1≤i2≤···≤id≤N

αi1,...,ids
i1,i2,...,id

i1,i2,...,id

Xi1 ·Xi2 · · ·Xid .

The term in parantheses is homogeneous of degree d+1 in the η variables αi1,...,id and the N2

variables gij .

Orbits and orbit closures

Recall from the previous section that we want to prove that a particular polynomial h is
not contained in a set of polynomials W . The monoid G= Endn acts on C[X1, . . . ,Xn]
or C[X1, . . . ,Xn]d by replacing the variables by homogeneous linear forms. Instead of
showing that h /∈W , we try to prove that h is not contained in a certain G-orbit.
In the case of Waring rank, this works particularly well, since the set of all polynomials
of Waring ≤ n has a complete polynomial, namely Xd

1 + · · ·+Xd
n.

If we want to prove that h /∈W , then we replace the orbit by the corresponding orbit
closure. This has the nice effect that we can replace Endn by GLn, which is a group
(and very well understood).

THEORY OF COMPUTING 23

http://dx.doi.org/10.4086/toc
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4 First algebraic geometry

We explain the crucial link of our observations so far to algebraic geometry, namely that our
orbit closures are actually Zariski-closed, so that we can restrict our search for obstructions f
to separating polynomials f , which we call polynomial obstructions. This is formally stated in
Definition 4.16. The proof of this insight requires a good amount of algebraic geometry and thus
we only provide the necessary definitions and examples to understand the referenced theorem
statements.

4.1 Zariski-closure

Recall Lemma 2.20: If a setW is C-closed, then there is a continuous function vanishing precisely
on W . Moreover, in the other direction Prop. 2.19 shows that if a continuous function vanishes
precisely on W , then W is C-closed. It follows that we could define C-closed sets to be exactly
those sets which can be separated from arbitrary points by continuous functions vanishing on
the sets. In Definition 4.1 we use exactly this approach to define what a Zariski-closed set is:
Those are the sets that can be separated from arbitrary points by multivariate polynomials
vanishing on the sets.

Let A = C[X1, . . . ,Xm]d with dimA = η and let T1, . . . ,Tη be the variables corresponding
to the coefficients of the monomials in A. For example, in the discriminant setting we have
T1(aX2 + bXY + cY 2) = a.

In the following, we will have two polynomials c,h ∈ A. (c is not the variable appearing in
the discriminant above!) h is the polynomial for which we search complexity lower bounds, for
example, we want to prove a lower bound on its border Waring rank (the name “h” stands for
hard, as it is the polynomial we want to show is hard, i.e., not in W ). The variable name “c”
stands for complexity or complete polynomial. In the case of the Waring rank, think of c being
the power sum c=Xd

1 + · · ·+Xd
m.

Definition 4.1. A subset W ⊆A (think of W =Gc) is called Zariski-closed in A iff there exists
a natural number r ∈ N and polynomials f1, . . . ,fr ∈ C[T1, . . . ,Tη] such that

h ∈W ⇔ f1(h) = f2(h) = · · ·= fr(h) = 0.

We say that the polynomials f1, . . . ,fr cut out W or define W .

Example 4.2. Let A = C[X,Y ]2, so every element h can be written as aX2 +bXY +cY 2. Then
h 7→ b2−4ac cuts out the (border) Waring rank 1 polynomials.

Example 4.3. Consider A = C2 and let the Zariski-closed set W ⊆ A be cut out by the
polynomial (T1)2 +(T2)2−1. Those points in W that have real coordinates form a circle with
radius 1 in R2 ⊆ C2.

Example 4.4. If A = Cn×n, then the set GLn of singular n×n matrices (i.e., matrices with
determinant zero) is Zariski-closed. It is cut out by the determinant polynomial.
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Example 4.5. If A = Cn×n, then the set of n×n matrices that have rank at most n− 2 is
Zariski-closed. It is cut out by the determinants of all (n−1)× (n−1) submatrices.

In order to prove complexity lower bounds we would like to know a set of polynomials cutting
out the set Gc, but unfortunately this kind of analysis is only feasible for some very small cases.

From now on we use the short notation

C[A] := C[T1, . . . ,Tη]

and call C[A] the coordinate ring of the ambient space. Note that this replaces the clumsy
C[A] = C[ C[X1, . . . ,Xm]d ].

We will see in Theorem 4.15 that our orbit closures Gc are Zariski-closed. This is perfect
for our purposes, because for Zariski-closed sets non-membership of a point is equivalent to
nonvanishing of a single polynomial f as the following straightforward lemma highlights. This is
much stronger than separation by merely continuous functions.

Lemma 4.6. LetW be Zariski-closed in A. For h∈A we have h /∈W iff there exists a polynomial
f ∈ C[A] such that f vanishes on W and f(h) 6= 0.

Proof. Let W be cut out by f1, . . . ,fr, i.e., h ∈W ⇔ f1(h) = · · · = fr(h) = 0. Then h /∈W iff
∃1≤ i≤ r : fi(h) 6= 0.

The following lemma shows a first property of Zariski-closed sets, namely that they are
C-closed.

Lemma 4.7. If W ⊆ A is Zariski-closed in A, then W is C-closed in A.

Proof. Let W be cut out by the polynomials f1, . . . ,fr. Let (hi)i be a sequence in W that
converges to some h ∈ A. Then fj(hi) = 0 for all i, j. Since the fj are continuous, it follows that
fj(h) = 0. Therefore h ∈W . We conclude that W is C-closed.

4.2 Algebraic geometry of orbit closures

In this section we write G := GLN . Lemma 4.7 says that Zariski-closed sets are C-closed. The
crucial point is that in our case the converse of Lemma 4.7 holds: Orbit closures Gc are not only
C-closed but also Zariski-closed.

Definition 4.8. A map Ca→ Cb is called a polynomial map if all its b coordinate functions are
multivariate polynomials in the a standard basis vectors.

Example 4.9. Using Prop. 3.21 we see that for a fixed c ∈ A, the map G→ A, g 7→ gc is a
polynomial map. Its image is the orbit Gc.

Definition 4.10. We use the following definitions with respect to the Zariski topology.

1. A subset W ⊆ A to be open if its complement A\W is closed.
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2. A subset W ⊆ A is called locally closed if W is an intersection of an open and a closed set.
Equivalently (for those who know a little bit of topology) W is locally closed iff W is open
in its closure.

3. A subset W ⊆ A is called constructible if W is a finite union of locally closed sets. (Equiv-
alently, the collection of constructible sets is the smallest collection that contains all closed
sets and is closed under taking complements and finite unions.)

Example 4.11. The set {A ∈ EndN | det(A) = 0} is Zariski-closed in EndN . Thus G⊆ EndN is
open and hence locally closed (and hence constructible).

We state the following theorem without proof.

Theorem 4.12 (Chevalley’s Theorem, see e.g [50, AI.3.3 Folgerung 2] or [78, Prop. 15.4.3]).
The image of a constructible set under a polynomial map is again constructible.

Corollary 4.13. For any c ∈ A the orbit Gc is constructible.

Proof. Combine Example 4.9 and Example 4.11.

Remark 4.14. One can even prove that Gc is locally closed, see e.g. [50, II.2.2 c].

We state the following result without proof.

Theorem 4.15 ([50, AI.7.2 Folgerung] or [64, Thm. 2.33]). For constructible sets, Zariski
closure and C-closure coincide.

We can use Theorem 4.15 and Lemma 4.6 to draw the following immediate crucial conclusion
that states that polynomials can always be used to separate points in A from Gc⊆A. This greatly
reduces the search space for obstructions and is one of the key ideas in geometric complexity
theory. In fact, this insight dates back all the way to Strassen, see [76, the 2nd paragraph on
p. 132].

Definition 4.16 (Polynomial Obstruction). We call the polynomials f that separate h from
Gc by satisfying f(Gc) = {0} and f(h) 6= 0 polynomial obstructions.

From our previous discussions we see that polynomial obstructions are guaranteed to exist if
h /∈Gc. The hard task is to find them.

4.3 Cones

In this section we write G := GLN . We will now use the additional structure of Gc being a cone
to restrict our search for obstructions to homogeneous polynomials only.

Proposition 4.17. For f ∈C[A], if f(Gc) = {0} and f(h) 6= 0, then there exists a homogeneous
polynomial fhom ∈ C[A] such that fhom(Gc) = {0} and fhom(h) 6= 0.
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Note that for example the discriminant b2−4ac is homogeneous.
The rest of this section is devoted to formalizing the necessary background in order to prove

this result.

Definition 4.18. Recall that A = Cη is a complex vector space and hence is endowed with a
scalar multiplication. For a vector c ∈ A and α ∈ C let αc denote the scalar multiple of c. A
subset W ⊆ A is called a cone if it is closed under scalar multiplication, i.e.,

∀α ∈ C, c ∈W : αc ∈W.

Lemma 4.19. For any polynomial c ∈ C[X1, . . . ,XN ]d the orbit closure Gc is a cone.

Proof. Let h ∈Gc and let α ∈ C be arbitrary. Let (hi)i be a sequence in Gc that converges to h.
Let gi ∈G such that hi = gic. Choose β ∈ C such that βd = α and let βgi denote the product
of the scalar β and the matrix gi, i.e., the matrix gi in which all entries are scaled with β. We
observe that (βgi)c= α(gic). Since scaling with α is continuous, the sequence ((βgi)c)i converges
to αh and hence αh ∈Gc.

Remark 4.20. Usually in algebraic geometry one makes the transition to projective geometry
whenever cones are encountered, but here, it is not necessary to do so.

Proposition 4.21. Let W ⊆ A be a cone. If a polynomial f ∈ C[A] vanishes on W , then all its
homogeneous parts vanish on W .

Proof. The statement is clear for W = ∅. Let h ∈W be arbitrary. Let fi be the ith homogeneous
part of f , i.e., fi(αh) = αifi(h). We interpret f(αh) as a univariate polynomial f̃ in α. We have

f̃(α) = f(αh) =
d∑
i=0

fi(αh) =
i∑
i=0

αifi(h).

The coefficient of the monomial αi in f̃ is fi(h) ∈ C. Since f vanishes on W and W is a cone we
have that f̃ vanishes everywhere on C, so f̃ = 0. Therefore all coefficients fi(h) of f̃ are zero.
Since h ∈W was arbitrary, we get that fi vanishes on W .

Proof of Prop. 4.17. Let S ⊆ N≥0 denote the finite set of degrees i such that the homogeneous
degree i part of f is nonzero. Since f(h) 6= 0 we have that f 6= 0 and therefore S 6= ∅. Decompose
f into its nonzero homogeneous parts f =∑

i∈S fi. Since Gc is a cone and f(Gc) = {0}, using
Proposition 4.21 we see that all fi vanish on Gc. Since 0 6= f(h) =∑

i∈S fi(h), it follows that
there exists i ∈ S such that fi(h) 6= 0. Choose fhom to be such an fi.

For a subset W ⊆ A let

I(W ) := {f ∈ C[A] | f(w) = 0 ∀w ∈W}

denote the vanishing ideal of W . This is clearly a complex vector space and is closed under
multiplication with arbitrary polynomials, thus I(W ) is an ideal in the ring C[A]. Proposition 4.21
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implies that ifW is a cone, then I(W ) is a graded C-algebra, i.e., every element can be decomposed
into a unique sum of homogeneous parts, where each part is in I(W ). We denote by I(W )i the
ith homogeneous part of I(W ). We have I(W )i ·I(W )j ⊆ I(W )i+j . (This is the crucial property
of a graded algebra.)

Search space reduction via algebraic geometry

• For orbit closures Zariski closure equals C-closure.
Consequence: If h /∈Gc, then it is separated by polynomial (instead of simply a
continuous function).

• Orbit closures are cones
Consequence: If h /∈Gc, then it is even separated by a homogenous polynomial.

5 Algebraic complexity classes

While the Waring rank is a very instructive and important example, we also want to define
complexity measures that are more powerful and closer to actual computations. These are the
so-called Valiant’s classes.3 This chapter, Chapter 6, and Chapter 7 introduce classical results
about algebraic complexity classes that lead to questions about group orbit closures in Chapter 8.
Our observations in this and some following chapters work over other fields F than the complex
numbers. We will go back to the complex numbers when rephrasing Valiant’s classes in terms of
orbit closures in Chapter 8.

We denoted by f a separating function and by g a group element, but traditionally in the
field of algebraic complexity theory both f and g denote polynomials. We stick with this classical
notation.

5.1 VP

Let X = (X1,X2, . . .) be an infinite family of indeterminates over some field F.

Definition 5.1. A sequence of polynomials (fn) ∈ F[X] is called a p-family4 if for all n,

1. fn ∈ F[X1, . . . ,Xp(n)] for some polynomially bounded function p and

2. degfn ≤ q(n) for some polynomially bounded function q.

Recall Definition 1.10.
3They are usually all called Valiant’s classes, although the more recent ones like VPws were not defined by

Valiant.
4This is a problematic naming, because it contains the singled out letter p, which can easily be mistaken as a

variable. Unfortunately, the name is completely standard in the literature. “poly-family” would have been a much
better name.
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Definition 5.2. The class VP consists of all p-families (fn) such that L(fn) is polynomially
bounded.

Example 5.3. Let fn = Xn
1 +Xn

2 + · · ·+Xn
n . It is easy to see that L(fn) ≤ n2 and hence

(fn) ∈VP.

Example 5.4. Let detn = ∑
π∈Sn sgn(π)X1,π(1) . . .Xn,π(n). We will see soon that detn has

polynomial-sized arithmetic circuits. Therefore, (detn) ∈VP.

In the above example, the indeterminates have two indices instead of one. Of course we
could write detn as a polynomial in X1,X2, . . . by using a bijection between N2 and N. However,
we prefer the natural naming of the variables (and will do so with other polynomials).

Let f ∈ F[X] be a polynomial and s :X → F[X] be a mapping that maps indeterminates to
polynomials. s can be extended in a unique way to an algebra endomorphism F[X]→ F[X]. We
call s a substitution. (Think of the variables replaced by polynomials.)

Definition 5.5. 1. Let f,g ∈ F[X]. f is called a projection of g if there is a substitution
r :X →X ∪F such that f = r(g). We write f ≤p g in this case. (Since g is a polynomial,
it only depends on a finite number of indeterminates. Therefore, we only need to specify a
finite part of r.)

2. Let (fn) and (gn) be p-families. (fn) is a p-projection of (gn) if there is a polynomially
bounded function q : N→ N such that fn ≤p gq(n). We write (fn)≤p (gn).

Remark 5.6. Definition 5.5 captures Valiant’s original notion of projection. Many authors
nowadays allow variables to be replaced by arbitrary linear combinations of variables and
constants. This rarely makes a difference.

Projections are very simple reductions. Therefore, we can also use them to define hardness
for “small” complexity classes like VP. Projections fulfill the usual requirements of a reductions:

Lemma 5.7. (1) If (fn)≤p (gn) and (gn) ∈VP, then (fn) ∈VP.

(2) ≤p is a transitive relation.

Proof. 1. Let q be a polynomially bounded function and sn be a projection such that
fn = sn(gq(n)) for all n. Let Cm be a circuit computing gm. We get a circuit computing fn
by replacing every variable Xi in Cq(n) by sn(Xi). This circuit has the same size as Cq(n).

2. The composition of two polynomially bounded functions is polynomially bounded and the
composition of two substitutions is a substitution again.

Definition 5.8. 1. A p-family (fn) is called VP-hard (under p-projections) if (gn)≤p (fn)
for all (gn) ∈VP.

2. It is called VP-complete if in addition (fn) ∈VP.
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Lemma 5.9. If (fn) is VP-hard and (fn)≤p (gn), then (gn) is VP-hard, too.

Proof. Let (hn) ∈ VP be arbitrary. Since (fn) is VP-hard, (hn) ≤p (fn). By transitivity,
(hn)≤p (gn). Since (hn) was arbitrary, the VP-hardness of (gn) follows.

Example 5.10. Let X(`)
i,j , 1 ≤ i, j, ` ≤ n, be indeterminates and let M` = (X(`)

i,j )1≤i,j≤n for
1≤ `≤n. The polynomial immn is a polynomial in n3 variables and is the (1,1) entry of the matrix
product M1 · · ·Mn. The p-family imm = (immn) is the called iterated matrix multiplication.

By using the trivial algorithm for matrix multiplication, it is easy to see that imm ∈VP. We
will see in the next chapter that imm and det are equivalent under p-projections. We do not know
whether the determinant (or the iterated matrix multiplication polynomial) is VP-complete.
However, there are generic problems that are VP-complete. But also more natural complete
problems are known, see [30, 58, 24].

Question 5.11. Is det VP-complete?

Remark 5.12. When we replace polynomial upper bounds by quasipolynomial upper bounds
(of the form O(nlogc(n)) for constant c) in the definition of VP and p-projections, then the
determinant is complete for this class usually called VQP, see [16] and [9] for more complete
families. Here, “QP” stands for “quasi-polynomial”.

5.2 VPe
We call an arithmetic circuit a formula if the underlying graph structure is a tree. In this case,
every computation gate has fanout one, that is, there is only one edge leaving every node and
therefore, every intermediate result can only be used once.

Definition 5.13. A p-family (fn) is contained in the class VPe if there is a family of formulas
(Fn) such that Fn has polynomial size in n and computes fn.

The “e” in the subscript stands for expression, another word for formula. Since every formula
is a circuit, we have VPe ⊆ VP. It is not known whether this inclusion is strict, but many
researchers believe it is.

Question 5.14. Is VPe a strict subset of VP?

Corollary 5.15. If there exists a VP-complete function in VPe, then VPe = VP.

Proof. This follows from the transitivity of ≤p (Lemma 5.7(2)) and the the fact that if (gn)∈VPe
and (fn)≤p (gn), then (fn) ∈VPe, analogously to Lemma 5.7(1).

Definition 5.16. 1. A p-family (fn) is in the class VNCi if there is a family of circuits (Cn)
computing fn such that the size of Cn is polynomially bounded in n and the depth of Cn
is bounded by O(login).5

5Here login denotes the ith power of logn and not the iterated logarithm.
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2. VNC :=⋃
i∈NVNCi.

It turns out that VPe = VNC1, that is, every p-family that is computable by formulas of
polynomial size has efficient parallel algorithms, and that VP = VNC2 (see [80]). We will now
prove the first of these two statements.

Theorem 5.17. VPe = VNC1.

This theorem is a direct consequence of a depth-reduction theorem of Brent’s (see Theo-
rem 5.19). We will first prove a lemma that helps balancing binary trees.

Lemma 5.18. Let T be a rooted binary tree with n nodes. Then there is an edge e in T such
that removing e separates T into two trees both having between n/3 and 2n/3 nodes.

Proof. We construct a path u1, . . . ,um starting from the root as follows: We set u1 to be the
root of the tree. Let ui be the current end node of the path and let ui+1 be the child of ui that
is the root of the larger subtree (if the two subtrees rooted at the children of ui are of equal size,
we may let ui+1 be either child). We stop when the size of the subtree with root ui is < 2/3n
and set m= i. The edge e is the edge (um−1,um). The subtree with root um has size < 2/3n by
construction. The subtree with root um−1 has size ≥ 2/3n. Since um is the root of the larger
subtree, the subtree with root um has size at least n/3. The size of the remaining tree is between
n−2/3n= n/3 and n−n/3 = 2n/3.

Theorem 5.19 (Brent [14]). Let F be a formula of size s. Then there is a formula F ′ of size
poly(s) and depth O(logs) computing the same polynomial as F .

Proof. By Lemma 5.18, there is an edge in F such that when removing e, we get two parts,
each of size between s/3 and 2s/3. The part not containing the output gate of F is again a
formula, which we call H. The part containing the output gate is not a formula, since one of
the gates has fanin one after removal of e. We add a new child to this gate, which is labeled
with a new input variable Y . Call the resulting formula G. G computes a linear form aY + b,
since Y appears only once in G. (a and b are polynomials in the original input variables.) If
we substitute the polynomial h computed by H for Y , then we get the polynomial f computed
by F . If we substitute 1 for Y , then we get a+ b, and if we substitute 0 for Y , then we get b.
Therefore, there are formulas of size ≤ 2s/3 computing a+ b, b and h. With these formulas, we
can proceed recursively. We get formulas G′1, G′0, and H ′ computing a+ b, b, and h, respectively.
We can combine them to a formula computing ah+ b= f as depicted in Figure 3: For the size
σ(s) of this new formula, we get the recursion

σ(s) = 4 ·σ(2s/3) + 3

and for the depth d(s), we get the recursion

d(s) = d(2s/3) + 3.

It is a routine check that σ(s) = poly(s) and d(s) =O(logs).

THEORY OF COMPUTING 31

http://dx.doi.org/10.4086/toc
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Figure 3: The formula F with the edge (um−1,um), the two formulas G and H, and the new formula
computing f

5.3 Constant size iterated matrix multiplication

For some c ∈ N, we define the family (imm(c)
n ) like the family (immn), except that every

polynomial is an iterated matrix product of c× c-matrices (instead of n×n-matrices), so imm(c)
n

is a polynomial in c2n variables.

Theorem 5.20 (Ben-Or & Cleve [6]). Let F be a formula of depth d computing a polynomial f ,
then f is a projection of imm(3)

4d .

Proof. We will prove by induction on d that we can find 4d many 3×3-matrices whose entries
are either indeterminates or constants such that the product of these matrices is 1 f 0

0 1 0
0 0 1

 .
Note that f is not in position (1,1). But we can move it into the (1,1)-entry at the end by
applying appropriate permutation matrices. The statement above is obviously true for depth
zero formulas, since these formulas compute constants or single variables.

If the depth d is larger than zero, we either have f = g+h or f = gh and g and h are both
computed by formulas of depth ≤ d−1. By the induction hypothesis, there are two sets of 4d−1

3×3-matrices each such that their products are 1 g 0
0 1 0
0 0 1

 and

 1 h 0
0 1 0
0 0 1

 ,
respectively. In the case of an addition gate we have 1 g 0

0 1 0
0 0 1


 1 h 0

0 1 0
0 0 1

=

 1 g+h 0
0 1 0
0 0 1


Therefore we can write f as a projection of a 3× 3-iterated matrix multiplication of length
2 ·4d−1 ≤ 4d.
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In the case of a multiplication gate, we have 1 g 0
0 1 0
0 0 1


 1 0 0

0 1 h
0 0 1

=

 1 g gh
0 1 h
0 0 1

 .
Note that h is standing in the “wrong” position. But we can easily fix this by applying
permutation matrices from the left and the right. This just corresponds to exchanging the rows
or columns of the first and last matrix of the corresponding matrix product, respectively. We
proceed with  1 0 0

0 1 −h
0 0 1


 1 g gh

0 1 h
0 0 1


 1 −g 0

0 1 0
0 0 1

=

 1 0 gh
0 1 0
0 0 1


Note that we now have a −g and −h instead of a g and h. But this can be easily fixed by
multiplying the second row and column by −1, which can be achieved by adjusting the first
and last matrix of the 4d−1 matrices. Altogether, we get that f is a projection of a product of
4 ·4d−1 = 4d matrices.

Corollary 5.21. imm(3) is VPe-complete.

Proof. Let f = (fn) ∈ VPe. Let Fn be a formula of polynomial size computing fn. By Theo-
rem 5.19, there is an equivalent formula of polynomial size and depth O(logn). By Theorem 5.20,
fn is a projection of imm(3)

poly(n). This proves the hardness.

To construct a formula of polynomial size for imm(3)
n , we recursively construct formulas for

the nine entries of the product M1 · · ·Mn. W.l.o.g. we can assume that n is a power of 2. To this
aim, we divide the product into two products M1 · · ·Mn/2 and Mn/2+1 · · ·Mn of size n/2 each.
We need two recursive calls of half the size to compute these products. From these two results,
we can compute the product M1 · · ·Mn by a constant size formula, a single matrix multiplication.
Since each entry of the two resulting matrices is used three times, we need three distinct copies
of the formulas for each entry. Therefore, we get the following recursion for the overall size s(n)
of the formulas:

s(n) = 6s(n/2) +O(1).

Therefore, s(n) = poly(n).

Obviously, imm(c) is VPe-complete for any c≥ 3. On the other hand, imm(1) is not, since
it only computes a single monomial. Allender and Wang [4] prove that imm(2) is also not
VPe-complete by exhibiting a polynomial that is not the projection of imm(2)

n for any n! When
we consider approximate computations, however, then imm(2)

n is complete [15] (analogous to
border Waring rank, see Chapter 2. Also see Chapter 8).
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5.4 Orbit problems

Historically, p-projections have been the reduction of choice in algebraic complexity theory,
because they are very simple reductions yet sufficiently powerful to prove hardness results (as
we will see in the next two chapters).

Let (fn) be a p-family. Then there is a polynomially bounded function p such that fn ∈
F[X1, . . . ,Xp(n)]. We saw how to let Endm act on F[X1, . . . ,Xm]. We let endomorphisms act on
the sequence (fn) by letting Endp(n) act on fn. An element g ∈ Endp(n) replaces each variable by
a homogeneous linear combination of the variables. In particular, it preserves the degree, that is,
deggfn = degfn. P-projections, on the other hand, do not preserve the degree. We can use the
following “trick” called padding. We only need it for homogeneous polynomials, since all our
polynomials under consideration will be homogeneous, but it also works for non-homogeneous
polynomials in the obvious way. Assume that a≤p b for two homogeneous polynomials a and b
and let s be the corresponding substitution. We define a new substitution ŝ that whenever s(Xi)
is a constant α, then we set ŝ(Xi) = αT for some new indeterminate T instead. When s(Xi)
is a variable, then ŝ(Xi) = s(Xi). We have ŝ(b) = T degb−dega ·a. Note that ŝ is a very special
endomorphism, replacing every variable by a scalar multiple of some other variable. Assume
b ∈ F[X1, . . . ,Xn], then we will now consider it as a polynomial in F[T,X1, . . . ,Xn] and let Endn+1
act on it. Since T does not appear in b, we can restrict ourselves to endomorphisms that leave T
fixed.

Definition 5.22. Let (fn) and (hn) be homogeneous p-families. Let p(m) be minimal such that
that hm ∈ F[X1, . . . ,Xp(m)]. We write (fn)≤end (hn) if there is a polynomially bounded function
q such that

T deghq(n)−degfn ·fn ∈ Endp(q(n))+1hq(n).

Note that since p is minimal, it is polynomially bounded by the definition of p-family. We
have chosen a fresh variable T for padding. In the literature, X1 or Xp(q(n)) has frequently been
used for padding (but also arbitrary linear forms have been used). Taking a new variable turns
out to be simpler, in particular, ≤end will be transitive. We will see below that in our situation,
it actually does not matter which variable we will take.

Lemma 5.23. Let (fn) and (hn) be homogeneous p-families.

1. If (fn)≤p (hn), then (fn)≤end (hn).

2. If (fn) ≤end (hn) and (hn) ∈ VP, then (fn) ∈ VP. The same statement is true if VP is
replaced by VPe.

3. ≤end is transitive.

Proof. Let p and q be defined as in Definition 5.22.

1. Let sn is the substitution mapping fn to hq(n). As above, we define ŝn to be the substitu-
tion that whenever sn(Xi) = α, then ŝn(Xi) = αT . Then ŝn(hn) = T deghq(n)−degfn . The
substitution obviously defines an endomorphism.
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2. It is very easy to see that for gn ∈ Endn, the sequence (gp(n)+1hn) is in VP or VPe,
respectively, since gp(n)+1 is just a linear transformation of the variables, which can be
implemented by formulas of polynomial size. Therefore, the sequence (T deghq(n)−degfn ·fn)
is in VP or VPe, respectively. Since T does not appear in fn, we can set T = 1.

3. Let (fn)≤end (hn) and (hn)≤end (an). There is an endomorphism gp(q(n))+1 such that

T deghq(n)−degfn ·fn = gp(q(n))+1hq(n). (5.1)

Furthermore, there are polynomially bounded functions p′ and q′ such that

T degaq′(m)−deghm ·hm ∈ Endp′(q′(m))+1aq′(m).

Thus, there is an endomorphism g′p′(q′(m))+1 such that

T degaq′(m)−deghm ·hm = g′p′(q′(m))+1aq′(m). (5.2)

We set m= q(n), apply gp(q(n))+1 to (5.2), and plug in (5.1), where we interpret gp(q(n))+1
as an endomorphism in Endp′(q′(q(n))+1 (setting further variables to zero for instance).
Therefore,

T degaq′(q(n))−degfn ·fn = gp(q(n))+1g
′
p′(q′(q(n))+1aq′(q(n)),

since we can assume that gp(q(n))+1(T ) = T .

The rest of this section is rather technical. It can be skipped at a first reading. We deal with
the question under what conditions it does not matter to take a fresh variable or an existing one
for padding. We assume F to be large enough.

The next lemma shows that it does not matter too much, whether we take a fresh variable T
for padding or an existing one. We generalize ideas by Ikenmeyer and Panova [46].

Lemma 5.24. Let f,h ∈ F[X1, . . . ,Xm] be homogeneous polynomials.

1. If T degh−degff ∈ Endm+1h, then Xdegh−degf
i f ∈ Endmh (where we interpret h in the first

equation as a polynomial in F[T,X1, . . . ,Xm]).

2. If Xdegh−degf
i f ∈ Endmh for some i, then there is a circuit of size polynomial in L(h),

degh, and m computing f .

Proof. 1. Since T does not appear in h, we can simply replace T by Xi.

2. Write f = ∑degf
j=0 Xj

i fj . As above, there is a circuit of size polynomial in L(h) and m

computing Xdegh−degf
i f =∑degh

j=degh−degfX
j
i fj . We now take degh+1 copies of this circuit,

and in each of them, we plug in a different value from F for Xi. From the results, we can
obtain the polynomials f0, . . . ,fdegf by interpolation (see e.g. [18]). Once we have these
polynomials, we can easily compute f .
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Let C be a class of p-families. We call C closed under interpolation if for every (fn) ∈ C,
fn =∑degfn

j=0 Xj
1fn,j with fn,j ∈ F[X2,X3, . . . ], the family (∑degfn

j=0 Yjfn,j) ∈C, where Y0,Y1,Y2, . . .
are new variables. So essentially, given fn and considering it as a univariate polynomial in X1,
we can compute the coefficients of fn. The new variables Yi are introduced for book-keeping
purposes to have again only one polynomial.

We call the class C closed under substitutions, if for two p-families (fn),(hn) ∈ C, the family
obtained by substituting some of the variables Xi in fn by hj(i) for some p-bounded function j
is again in C.

The next lemma is a strengthening of Lemma 5.24, part (2).

Lemma 5.25. Let C be a class of p-families that is closed under interpolation and substitutions.
Let (fn),(hn) ∈ C such that

1. Xdeghq(n)−degfn
i fn ∈ Endp(q(n))hq(n) for some i (here p and q are as in Definition 5.22),

2. every sequence (mi) of monomials of p-bounded degree is in C, and

3. (hn) is C-hard (under p-projections).

Then there is a polynomially bounded function q′ such that T deghq′(n)−degfnfn ∈ Endp(q′(n))+1hq′(n).

Proof. Write Xdeghq(n)−degfn
i fn =∑degfn

j=0 X
deghq(n)−degfn+j
i fn,j , where fn,j does not depend on

Xi. Since C is closed under interpolation, the family (∑deghq(n)
j=deghq(n)−degfn Yjfn,j)∈C, too. Renam-

ing the indices we see that also (∑degfn
j=0 Yjfn,j)∈C. Now consider the family (T deghq(n)−degfnXj

i )
and substitute it for the Y -variables into the former family. We get that (T deghq(n)−degfnfn) ∈C.
Now since (hn) is C-complete, the statement of the lemma follows.

Valiant’s classes

Objects: families of polynomials of polynomial degree
Computational model: Arithmetic circuits
Reductions: p-projections

• VP is characterized by circuits of polynomial size.

• VPe is characterized by formulas of polynomial size.

• imm(3) is complete for VPe.

6 VP and the determinant

Constant size iterated matrix multiplication imm(3) is complete for VPe. For VP, we do not
know a nice complete polynomial, but the first natural families have been found in [30, 58, 24].
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For instance, it is not known whether general iterated matrix multpliation or the determinant
are complete for VP. We first prove some normal forms for circuits for VP. Then we look for a
subclass of VP such that the determinant and iterated matrix multiplication are complete for it.

6.1 Homogeneous circuits

Recall that a polynomial is homogeneous if all its monomials have the same total degree. A
circuit is called homogeneous if at every gate it computes a homogeneous polynomial. Of course,
nonhomogeneous polynomials cannot be computed by homogeneous circuits. However, we have
the following result.

Lemma 6.1. If f is a polynomial of degree d that is computed by a circuit of size s, then there
is a homogeneous circuit of size O(d2s) computing the homogeneous parts of f . Furthermore, at
every gate we only compute a polynomial of degree at most d.

Proof. We replace every gate g by d+1 gates. If g computes a polynomial f , then the new gates
will compute the homogeneous components of f . We do this in a bottom up fashion. If g is an
input gate, then there is nothing to do. We just have to add d dummy gates computing the
zero polynomial in every degree other than degree zero or one. Let g be a gate with children h1
and h2 in the original circuit. Assume that h1 and h2 have been replaced by gates h1,0, . . . ,h1,d
and h2,0, . . . ,h2,d computing polynomials p1,0, . . . ,p1,d and p2,0, . . . ,p2,d, respectively. If g is an
addition gate, then we will introduce new gates g0, . . . ,gd and gi computes p1,i+p2,i. If g is a
multiplication gate, then gi computes∑i

j=0 p1,jp2,i−j . We only need to compute the homogeneous
parts of degree d, since potential higher degree parts in intermediate results will cancel each
other in the end, as f has degree d.

Corollary 6.2. If f is a polynomial of degree d that is computed by an arithmetic circuit of size
s, then there is a circuit C of size poly(s,d) computing f such that every node in C computes a
polynomial of degree at most d. Furthermore, for every multiplication gate, at least one of the
inputs is not a constant.

Proof. We homogenize the given circuit as above. This immediately gives the upper bound on
the degree. When two constants are multiplied, then either two degree zero components are
multiplied or one of the higer degree homogeneous parts became zero. In the first case, we can
replace the multiplication gate by an input gate labeled with the product of the two constants.
(Remember that we can use every constant from F.) In the second case, we simply can remove
the gate that outputs 0. (Note that we do not have to construct the circuit, we just need to
prove it existence.)

6.2 Multiplicatively disjoint circuits

Families in VP are computed by polynomial size circuits. In this section, we show that we can
assume that these circuits have an additional property: they are multiplicatively disjoint [60].

Definition 6.3. An arithmetic circuit is multiplicatively disjoint if for all multiplication gates,
the subcircuits induced by its two children are disjoint.
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Multiplicatively disjoint circuits are between circuits and formulas. In a formula, the
subcircuits of addition gates are also disjoint. Note that in a multiplicative disjoint circuit, only
the induced subcircuits are disjoint. Nodes of these subcircuits can be connected to arbitrary
nodes outside these circuits.

Definition 6.4. Let C be an arithmetic circuit. The formal degree of a gate g is defined
inductively: A leaf has formal degree 1 (even if it is labelled with a constant). If g is a
multiplication gate, then its formal degree is the sum of the formal degrees of its two children.
If g is an addition gate, then the formal degree of g is the maximum of the formal degrees of its
children. The formal degree of C is the formal degree of its output gate.

The formal degree of a circuit disregards that the degree at gate might drop when there are
cancellations. Multiplications with constants might also increase the formal degree.

If we have a bound on the formal degree of a circuit, we can turn the circuit into a
multiplicatively disjoint one without increasing the size by too much. The naive approach
would be to work from the inputs towards the output, and whenever a multiplication gate is
encountered that does not have disjoint children, make a separate copy of the subcircuit rooted
at one of the children to force them to be disjoint. In general, the increase in size will be
exponential in the degree. Using depth reduction, one can thus get a multiplicatively disjoint
circuit of quasi-polynomial size from any poly-size circuit with polynomial degree bound. But
since we have a bound on the formal degree, we can do better using a clever indexing technique.

Lemma 6.5. If a circuit has size s and formal degree d, then there is a multiplicatively disjoint
circuit C ′ of size ≤ sd computing the same polynomial.

Proof. Each gate g of formal degree e≤ d will be replaced by d+ 1−e copies g1, . . . ,gd+1−e. Let
gi be one of these copies. We call i the index of the copy. We will make sure that all gates of
the subcircuit with output gi are copies with an index lying between i and i+e−1. In this way
we ensure that we will get multiplicatively disjoint circuits.

Inductively, we construct a circuit Ce with the following property: For each gate g of formal
degree f ≤ e in C, there are copies of the gates g1, . . . ,gd+1−f in Ce computing the same function
as g and all the gates of the subcircuit with root gi have indices lying between i and i+f −1.

The nodes of formal degree one are all input nodes and sums of formal degree one nodes.
C1 consists of d copies of the formal degree 1 nodes. Since C is acyclic, we can order the
addition gates in such a way, that whenever we deal with a gate g, all its predecessors have been
processed. For each addition gate g of formal degree one, we add copies g1, . . . ,gd. Let g′ and g′′
be the children of g in C with formal degrees one. We connect gi with the copy g′i and g′′i . The
restriction on the ranges is fulfilled by construction.

Assume that we constructed Ce−1 (induction hypothesis). To obtain Ce, we now add copies
of all gates g of formal degree e in C. Let g′ and g′′ be the children of such a gate g of formal
degrees e′ and e′′, respectively.

We start with the multiplication gates. In this case e = e′ + e′′ with e′,e′′ < e. This
means that the copies g′1, . . . ,g′d+1−e′ and g′′1 , . . . ,g

′′
d+1−e′′ were constructed in a previous step.

We add the copies g1, . . . ,gd+1−e and connect gi with g′i and g′′i+e′ . These copies exist, since
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i≤ d+1−e≤ d+1−e′ and i+e′ ≤ d+1−e+e′ = d+1−e′′. The indices of the copies of the
subcircuit with root g′i lie between i and i+e′−1, the indices of the copies in the subcircuit with
root g′′i+e′ lie between i+e′ and i+e′+e′′−1 = i+e−1. The two subcircuts of gi are disjoint,
because they contain gates with indices from two disjoint intervals. Therefore the condition on
the indices of the subcircuits is fulfilled.

Next come the addition gates of formal degree e. Note that an addition gate of formal
degree e might have a predecessor of formal degree e. As in the base case, we can order the
addition gates in such a way, that whenever we deal with a gate g, all its predecessors have been
processed. For each addition gate g of formal degree e, we add copies g1, . . . ,gd+1−e. Let g′ and
g′′ be the children of g in C with formal degrees e′ ≤ e and e′′ ≤ e, respectively. We connect gi
with the copy g′i and g′′i . The indices of the copies in these subcircuits lie in the range from i to
i+e′−1≤ i+e−1 and i+e′′−1≤ i+e−1, respectively.

The circuit Cd is the circuit we are looking for. It contains a copy of the output gate of C.
The circuit is multiplicatively disjoint by the way we chose the indices when connecting the
copies of the children to the multiplication gate.

Lemma 6.6. Let f be a polynomial of degree d computed by a circuit C of size s. Then there is
a circuit of size polynomial in d and s computing f such that its formal degree is bounded by
sd+ 1.

Proof. Let C be the given circuit and C ′ be the circuit constructed in Corollary 6.2. Recall that
the circuit C ′ is a simulation of the circuit C. Every node is replaced by d+1 nodes, one for each
homogeneneous component. Then every operation in C is simulated by several operations in C ′.
Let the depth of a gate in C be the length of a longest path from any leaf to this gate. The depth
of the nodes in C ′ that compute the homogeneous components is defined as the depth of their
corresponding node in C. We do not define depth for the other nodes in C ′. We will now prove
by induction on the depth that the formal degree of any gate g of C ′ of depth δ computing a
homogeneous component of degree i is bounded by δ · i+1. For the base case note that every leaf
has formal degree 1. Now let g be a gate in C ′ of depth δ computing a homogeneous component
of degree i. If i= 0, then note that g has formal degree 1 by construction. So we assume that
i≥ 1. We first treat the case when g corresponds to an addition gate in C. In C ′, g is an addition
gate, its two inputs are gates g′ and g′′ both computing homogeneous polynomials of degree i.
The formal degree of these two gates is bounded by δ′ · i+1 and δ′′ · i+1 where δ′ and δ′′ are the
depth of g′ and g′′, respectively. The formal degree of g is max{δ′ · i+ 1, δ′′ · i+ 1} ≤ δ · i+ 1.

If g is a multiplication gate, then

g =
i∑

j=0
g′jg
′′
i−j

where g′j and g′′i−j are the homogeneous components of the predecessors of g. By the induction
hypothesis, the formal degrees of g′j and g′′i−j are bounded by δ′j+1 and δ′′(i−j)+1, respectively.
The formal degree of g′jg′′i−j is bounded by δ′j+1+ δ′′(i− j)+1≤ δi+1, when 0< i < j. Note
for the upper bound that δ > δ′, δ′′ and i ≥ 1. The formal degree of g′0g′′i is bounded by
1 + δ′′i+ 1≤ δi+ 1. The same argument works for g′jg′′0 . This concludes the inductive step.
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From the claim the bound on the formal degree of the new circuit follows immediately.

Theorem 6.7 (Malod & Portier [60]). A p-family (gn) is in VP if and only if there is a family
of polynomial size multiplicative disjoint circuits (Cn) computing (gn).

Proof. If (gn) ∈ VP, then by Lemma 6.6, there is a sequence of circuits (Cn) of size poly(n)
computing (gn) such that the formal degree of Cn is polynomially bounded. Now we can apply
Lemma 6.5.

For the other direction, note that it can be easily proven by induction that the degree of a
multiplicatively disjoint circuit of size s is bounded by s.

Circuits for VP

The following models characterise VP:

• arithmetic circuits of polynomial size (and the degree of the family is polynomially
bounded)

• multiplicative disjoint circuits of polynomial size

• homogeneous circuits of polynomial size (when the family is homogeneous of
polynomial degree)

6.3 Combinatorial interpretation of the determinant

Interpretation via cycle covers: Let M = (mi,j) be an n×n matrix. We can interpret M
as the weighted adjacency matrix of some directed graph over the node set {1, . . . ,n}. For every
(i, j), there is an edge (i, j) of weight mi,j . A cycle cover in a directed graph is a collection of
node-disjoint directed cycles such that every node is contained in exactly one cycle. Permutations
in Sn stand in a one-to-one correspondence with cycle covers. Every permutation σ yields a
cycle cover consisting of the edges (i,σ(i)). On the other hand, the edges of a cycle cover encode
a permutation of the nodes with the intepretation that an edge (i, j) means that i is mapped
to j. Note that this is precisely the cycle decomposition of a permutation. The sign of the
permutation is −1 if the number of even-length cycles is odd, and 1 if it is even. The weight
w(C) of a cycle cover C is the product of the weights of the edges in it. Therefore,

detM =
∑

cycle covers C
(−1)n+number of cycles in Cw(C)

Conceptually, it is often easier to think of an edge of weight zero as not being present in the
graph. Since the weight of a cycle cover is the product of its edge weights, this does not make
any difference in the above equation for detM .

THEORY OF COMPUTING 40

http://dx.doi.org/10.4086/toc


INTRODUCTION TO GEOMETRIC COMPLEXITY THEORY

Interpretation via biparatite matchings: Instead of interpreting M as the adjacency
matrix of some directed graph, we can also interpret it as the adjacency matrix of some bipartite
graph. We have nodes {1, . . . ,n} on the lefthand side and “copies” {1′, . . . ,n′} on the other side.
For every (i, j), there is an edge {i, j′} with weight mi,j . A matching N in a graph is a set of
edges such that every node is incident with at most one edge from N . It is called perfect, if
every node is incident with exactly one edge from N . Permutations in Sn stand in a one-to-one
correspondence with perfect matchings in bipartite graphs: Every permutation σ yields a perfect
matching consisting of the edges {i,σ(i)′}. This construction can be reversed. If we set the sign
of a perfect matching in a bipartite graph to be the sign of the corresponding permutation, we
get the following expression:

detM =
∑

perfect matchings N
sgn(N)w(N).

The weight w(N) is the product of the weights of the edges in N .

6.4 Weakly skew circuits and algebraic branching programs

A weakly connected component in a digraph is defined as a connected component in the corre-
sponding undirected graph that is obtained from forgetting the edge directions.

Definition 6.8. A circuit is called weakly skew if every multiplication gate g has at least one
child g′ such that after removing the edge (g′,g), the graph consists of two weakly connected
components.

In a formula, this is true for every child of a gate. In a formula, no intermediate result is
reusable, that is, the output of every gate can only be used as the input of exactly one other
gate. In a weakly skew circuit, one child of every gate can be reused, but not both. Weakly skew
is however stronger than multiplicatively disjoint, since in the latter case, while the subcircuits
need to be disjoint, they can be connected to the rest of the circuit.

Definition 6.9. Let F be a field and X1, . . . ,Xn be indeterminates.

1. An algebraic branching program A is an acyclic graph with two distinguished nodes s and
t and an edge labeling with labels from F∪{X1, . . . ,Xn}.6

2. The weight w(P ) of a path P from s to t is the product of the labels of the edges in the
path.

3. The polynomial computed by A is ∑
s-t path P

w(P ).

4. The size of an algebraic branching program is the number of edges in it.
6Some authors allow affine linear forms, but this will not make any difference.
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5. A is called layered if for every node v in A, all s-v paths have the same length.

If A is layered, then we can think of the nodes of A being grouped into layers: two nodes u
and v are in the same layer i if the lengths of all paths from s to u and from s to v is i. In a
layered branching program, edges only go from one layer to the next.

Lemma 6.10. Let A be a branching program of size s. Then there is a layered branching
program of size O(s2) computing the same function.

Proof. For a node v in the branching program, let d(v) be the length of a longest path from s
to v. The node v will be put into layer d(v). By construction, for every edge {u,v}, we have
d(u)< d(v). Therefore, we only have edges from layers with smaller index to larger index. If
there is an edge e from layer i going to layer j with i+ 1< j, then we replace this edge by a
path of length j− i and put the nodes of this path into the layers inbetween. One (arbitrary)
edge of the path gets the weight of e and all other edges get the weight 1.

We formalize the notion of being reusable. Intuitively, a gate in a weakly skew circuit is
reusable if it is not in the subcircuit of a multiplication gate that is not connected to the rest of
the circuit.

Definition 6.11. Let C be a weakly skew arithmetic circuit. The set of reuseable gates in C is
inductively defined as follows: Every gate of outdegree zero is reusable. (We consider circuits
with multiple output gates to simplify some proofs in the following.) We remove every gate g of
outdegree zero from C and for each such multiplication gate, we also remove the subcircuit of
that child g′ that is only connected to the rest of the circuit via the edge (g′,g). If both children
of g have this property, we only remove one child. (It does not matter which one.) Let C ′ be
the resulting circuit. Every gate that is reusable in C ′ is reusable in C, too.

Theorem 6.12. Let f ∈ F[X1, . . . ,Xn] with degf = poly(n). The following statements are
equivalent:

1. f is computed by a weakly skew circuit of size poly(n).

2. f is computed by an algebraic branching program of size poly(n).

3. f is a projection of immp(n) for some polynomially bounded function p.

4. f is a projection of detp(n) for some polynomially bounded function p.

Proof. (1)⇒ (2): Assume that f is computed by a weakly skew circuit C of size m. We now
prove by induction on m that there is a algebraic branching program computing A of size ≤ 2m
such that for every reusable gate g in C there is a node vg such that the sum of the weights of
all paths from s to vg is the same polynomial as computed at g. The construction is illustrated
in Figure 4.

Let g be some output node. If g is also an input node, then A consists of a single edge. (This
is the induction basis.)
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For the induction hypothesis, assume that g is not an input gate. If g is an addition gate,
then we remove g from C, let C ′ be the resulting circuit. By the induction hypothesis, there is
an algebraic branching program A′ such that for every gate g′ that is reusable in C ′, there is a
node vg′ in C ′ such that the sum of the weights of all path from s to vg′ equals the polynomial
computed at g′. Let h and h′ be the children of g. They are both reusable. We add a new node
vg and connect the nodes vh and vh′ to it. Both edges get weight one. If h= h′, then we add
only one edge with weight two. By construction, the sum of the weights of all paths from s to vg
is the sum of the polynomials computed at h and h′. The resulting algebraic branching program
has two more edges than A′. For all reusable nodes g′ of C ′, the node vg′ is still present in A
and the sum of the weights of all path from s to vg′ equals the polynomial computed at g′.

If g is a multiplication gate, then after removal of g, we get two separate circuits C1 and C2.
Let g1 and g2 be the children of g. Only the gates of one of them, say C2, can be reusable in C.
Let m1 and m2 be the sizes of C1 and C2. From the induction hypotheses, we get corresponding
algebraic branching programs A1 and A2 with sources s1 and s2. In A1, there are vertices s1 and
vg1 such that the sum of the weights of all path from s1 to vg1 equals the polynomial computed
at g1. We connect the node vg2 in A2 with the node s1 of A1 by an edge of weight 1. Then the
sum of the weights of all path from s2 to vg1 is the product computed at g. For all gates h in
C2, the sum of the weights of all paths from s2 to vh paths equals the polynomial computed at
h. The size of the new branching program is 2m1 + 2m2 ≤ 2m.7

(2)⇒ (3): Let A be an algebraic branching program computing f . By Lemma 6.10 we can
assume that A is layered. Let ` be the maximum size of a layer and let m be the number of
layers. We order the nodes in each layer arbitrarily. We will inductively construct `× `-matrices
M1, . . . ,Mm with entries from F∪ {X1, . . . ,Xn} such that the first row of M1 · · ·Mi are the
polynomials computed at the nodes in the ith layer, that is, the sum of the weights of all path
from s to each node in this layer. M1 has a 1 in position (1,1) and zeros everywhere else. This
single 1 corresponds the the source node s. Assume we constructed M1, . . . ,Mi. Let (a1, . . . ,a`)
be the first row of M1 · · ·Mi. A node v in the (i+1)th layer receives edges from the nodes of the
ith layer. Let (b1, . . . , b`) be the labels of these edges (if an edge is not present, the corresponding
bj = 0.) The polynomial computed at v is given by

(a1, . . . ,a`) ·

 b1
...
b`

 .
The matrix Mi+1 simply consists of the corresponding columns (b1, . . . , b`)T . If the (i+1)th layer
has less than ` nodes, we append zero rows to Mi+1.

Since we can embed a product of m `× `-matrices into a product of d d×d-matrices with
d= max{m,`}, we get that f is a projection of immpoly(n).

(3)⇒ (4): Note that an iterated matrix product can be easily computed by a layered algebraic
branching program, you just have to “reverse” the construction of the previous step. Therefore

7This construction does not work if the circuit is only multiplicatively disjoint, since in this case, while the
subcircuits of every multiplication gate are disjoint, they might both be connected to the rest of the circuit.
However, the nodes of A1 cannot be used any more, once s1 is identified with vg2 .
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Figure 4: Transforming weakly skew circuits into algebraic branching programs. (Top: addition gate,
bottom: multiplication gate)

it suffices to prove that every polynomial that is computed by a layered algebraic branching
program A is a projection of a determinant of polynomial size. We modify A as follows: add an
edge of weight one from t to s and add a self loop of weight one to every node except s and t.
Let M be the weighted adjacency matrix of this modified program A′. detM is the sum of the
weights of all cycle covers in A′. All cycle covers in A′ consist of one big cycle through s and t
and the remaining nodes are covered by self-loops. Since the program is layered, all cycle covers
have the same number of cycles and therefore the same sign. The weight of a cycle cover equals
the weight of the corresponding path from s to t, potentially with an opposite sign (but this sign
is the same for all cycle covers). Therefore, f is a projection of a determinant of a polynomially
large matrix.

(4)⇒ (1): One way to evaluate the determinant by a weakly skew circuit is known as
Csanky’s algorithm [29]. Another one is due to Mahajan and Vinay [59].

Remark 6.13. For a polynomial f , the smallest n such that f can be written as a projection
of detn is called the determinantal complexity dc(f) of f .

Definition 6.14. A p-family (fn) is in VPws if it is computed by weakly skew circuits of
polynomial size.

Theorem 6.12 gives us further, equivalent definitions of VPws. In particular, a p-family (fn)
is in VPws if it is a p-projection of the determinant family. Note that imm can be computed by
very restricted weakly skew circuits, namely for every multiplication gate, one of the inputs is a
variable or a constant. We call such circuits skew. This is achieved by sequentially multiplying the
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matrices using the trivial methods. Since by Theorem 6.12, every polynomial that is computed
by a weakly skew circuits of polynomial size is a p-projection of imm, we get the following
corollary.

Corollary 6.15. If a polynomial is computed by a weakly skew circuit of size s, then it is
computed by a skew circuit of size poly(s).

The determinant

VPws describes the complexity of the determinant.
Equivalent models are: algebraic branching programs and projections of iterated matrix
multiplication.

7 The permanent

In this chapter we define the class VNP and prove the VNP-completeness of the permanent
polynomial.

7.1 VNP and formulas

A language L is in NP if there is a deterministic polynomial time relation R such that for all
x, x ∈ L iff there is a polynomially long bit string y such that R(x,y) = 1. Think of x being a
formula in 3-CNF and y being an assignment. R(x,y) = 1 means that y satisfies x. While NP
can be defined as the class of functions that assign to each x the Boolean value∨

y

R(x,y),

the class #P is the class of functions that assign to each x the number of y such that R(x,y) = 1,
that is, we compute ∑

y

[R(x,y) = 1].

Here, the bracket is the Iverson bracket, which is one if the Boolean expression is true and zero
otherwise. So in our example, we want to count the number of satisfying assignments.

Definition 7.1. 1. A p-family (fn) is in VNP, if there are polynomially bounded functions
p and q and a sequence (gn) ∈ VP of polynomials gn ∈ F[X1, . . . ,Xp(n),Y1, . . . ,Yq(n)] such
that

fn =
∑

e∈{0,1}q(n)

gn(X1, . . . ,Xp(n),e1, . . . ,eq(n)).

2. A family of polynomials fn is in VNPe if in the definition of VNP, the family (gn) is in
VPe.
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You can think of the X-variables representing the input and the Y -variables the witness.
With this interpretation, VNP is more like #P. In particular, we will see that the permanent
polynomial

pern =
∑
σ∈Sn

X1,σ(1) · · ·Xn,σ(n)

is complete for VNP.
With the help of so-called parse trees we will now show VNP = VNPe.

Definition 7.2. Let C be an arithmetic circuit.

1. A parse tree of C is defined recursively as follows: Every circuit consisting of one node is a
parse tree. If the size of C is larger than one, let g be the output gate and g1 and g2 be its
children. Let C1 and C2 be the subcircuits rooted at g1 and g2, respectively. If g is an
addition gate, then we get the set of all parse trees by either taking a parse tree of C1 or a
parse tree of C2 and connecting it to g. If g is a multiplication gate, then we get the set of
all parse trees by taking a parse tree of C1 and a parse tree of C2 and connecting both to
g.

2. The set of all parse trees of C is denoted by pt(C).

3. The weight w(T ) of a parse tree T is the product of the labels of its leaves.

For every multiplication gate, we have to include both children in the parse tree, for every
addition gate we have to choose one of them. Note that a gate may occur several times in a
parse tree, since it is reused in the circuit several times. For each occurrence in the parse tree,
we introduce a new copy. (Otherwise, it would not be a tree.)

Exercise 7.3. Let C be a circuit and p be the polynomial computed by C. Prove (for instance
by structural induction) that

p=
∑

T∈pt(C)
w(T ).

Lemma 7.4. A circuit C is multiplicatively disjoint if every parse tree of C is a subcircuit of C.

Proof. Assume that C is not multiplicatively disjoint. Then there is a node v in C such that
there are two node disjoint paths to some multiplication gate g. Since g is a multiplication gate,
these two paths can be extended to a parse tree.

Conversely, if there is a parse tree T that is not a subcircuit of C, then there are gates g and
h in C such that there a two node disjoint paths from g to h. Since T is a parse tree, h is a
multiplication gate. Thus, C is not multiplicatively disjoint.

Lemma 7.5. Let C be a multiplicatively disjoint circuit with edge set E. For each edge e ∈ E,
let Xe be an indeterminate. There is a formula F in the Xe’s of size polynomial in the size of C
such that for every a ∈ {0,1}|E|, F (a) is the weight of the parse tree, if the edges “selected” by
the vector a form a parse tree in C, and zero otherwise.
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Proof. Since by Lemma 7.4, every parse tree is a subcircuit of C, it is sufficient to consider
subtrees of the given circuit. For every node v in C, we introduce an additional variable Yv. Note
that for {0,1} valued variables X and Y , we can simulate Boolean AND by XY and Boolean
NOT by 1−X. We can write the fact that a given vector encodes a parse tree by the following
Boolean expressions: ∧

(i,j)∈E
X(i,j)⇒ Yi∧Yj

ensures that whenever an edge is selected, its end points are selected, too. Let g be the output
gate of C. Then

Yg

ensures that the output gate is selected. For a gate g, let `(g) and r(g) be its children. The
following expression ensures that for every multiplication gate g that is selected, both incoming
edges are selected, too. ∧

multiplication gate g
Yg⇒X(`(g),g)∧X(r(g),g).

If we replace the Boolean AND on the righthand side by a Boolean XOR, we get an expression
that checks for every selected addition gate whether exactly one of the incoming edges is chosen.
Finally, we have to check that every selected gate has at least one outgoing edge. This is done
by the following expression: ∧

v∈V

Yv⇒ ∨
(v,u)∈E

X(v,u)

 .
We can eliminate all occurences of the newly introduced variables by replacing Yv by the
expression ∨

(v,u)∈E
X(v,u)

and Yg by 1. The Boolean AND of these expressions is a Boolean formula that is true iff the
vector a encodes a parse tree. By the considerations above, it can be replaced by an arithmetic
formula.

If a encodes a parsetree, we can get the corresponding weight by the following expression:∏
v∈V

(Yv ·wv + 1−Yv).

Here wv is the label of v if it is an input gate and 1 otherwise. Again, we can eliminate the Yv’s
as above. The product of the two expressions, one for checking whether a is a parse tree and
one for computing its weight, is the formula F .

Corollary 7.6. Let f be a polynomial computed by an arithmetic circuit of size s. Then there
is an arithmetic formula F of size polynomial in s and a polynomially bounded p such that

f(X) =
∑

a∈{0,1}p(s)
F (X,a).

THEORY OF COMPUTING 47

http://dx.doi.org/10.4086/toc
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Proof. This follows from combining Theorem 6.7, Exercise 7.3, and Lemma 7.5.

Theorem 7.7. VNP = VNPe.

Proof. Let (fn) be in VNP and (gn) ∈VP such that

fn(X) =
∑

e∈{0,1}q(n)

gn(X,e).

Using Corollary 7.6, there is a formula Fn of polynomial size such that

gn(X,Y ) =
∑

a∈{0,1}p(n)

Fn(X,Y,a).

Therefore,
fn(X) =

∑
e∈{0,1}p(n),a∈{0,1}q(n)

Fn(X,e,a).

While the statement of the theorem sounds astonishing at a first glance, it just uses the
fact that we can write the result of a polynomially large circuit by an exponential sum over a
polynomially large formula and then combines the two exponential sums into one.

On a very high level, Theorem 7.7 is similar in nature to the different but equivalent definitions
of NP via a verifier from P or from NC1.

7.2 Hardness of the permanent

In this section, we prove that the permanent family is complete for VNP. Let G = (V,E)
be an edge weighted graph. Recall that a cycle cover C of G is a selection of node disjoint
directed cycles such that every node is contained in exactly one cycle. The weight w(C) of C
is the product of the weight of the edges in C. Cycle covers can be viewed as the graph of a
permutation. The cycles in the cycle cover correspond to the cycles in the cycle decomposition of
a permutation. If we also write G for the weighted adjacency matrix of G (by abuse of notation),
then

per(G) =
∑

cycle cover C of G
w(C).

Let G be a graph and e= (u,v) and e′ = (u′,v′) be two edges in G. As a first step, we want
to replace G by a graph Ĝ such that per(Ĝ) is the sum over all w(C) such that C is a cycle
cover of G that either contains both e and e′ or none of them. This is achieved by subdividing
the edges and connecting them by an equality gadget as depicted in Figure 5.

Let C be a cycle cover of G that takes both edges. Then there is one way to extend this to
a cycle cover of Ĝ. The only new edges and nodes in Ĝ are the internal ones of the equality
gadget. When both e and e′ are taken, then we only need to cover the internal node. The weight
of this new cycle cover is 2 ·w(C), see Figure 6. When C does not take any of the two edges,
then there are six ways to extend C. These six ways sum up to weight 2 ·w(C).
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Figure 5: The equality gadget. The pair of edges (u,v) and (u′,v′) of the left-hand side is connected as
shown on the right-hand side.
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Figure 6: First row: The one possible configuration if both edges are taken. It has weight −1 · (−2) = 2.
Second row: The six possible configurations if none of the edges is taken. They have weights
−1, −1, 1, 1, 1, and 1, respectively.

If C is a cycle cover of G that takes only one edge of e and e′, say e, then there are two ways
to extend C to Ĝ, see Figure 7. The weight of these covers is the same, but they differ in sign,
therefore the contributions of these two covers cancel each other.

Finally, there are inconsistent ways to cover the equality gadget in Ĝ, that is, covers of Ĝ
that do not correspond to any cover in G, see Figure 7. Again, we can form pairs of these covers
such that the contribution of these covers cancel each other.

This construction proves the following lemma.

Lemma 7.8. Let F be a field of characteristic distinct from 2. Let G be a graph and e and e′ be
edges in G. Then there is a graph Ĝ such that

1
2per(Ĝ) =

∑
C

w(C),

where the sum is taken over all cycle covers C of G that either use both of e and e′ or none of
them.

Let (fn) ∈VNP and let (gn) ∈VP such that

fn(X1, . . . ,Xp(n)) =
∑

e∈{0,1}q(n)

gn(X1, . . . ,Xp(n),e1, . . . ,eq(n)).
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Figure 7: First row: The two covers of the equality gadget when only one edge is taken. Second row:
Inconsistent covers of the equality gadget. (In both rows, there is a corresponding symmetric
case).

By Theorem 7.7 we may assume that (gn) ∈ VPe. We proved that every polynomial that is
computed by a formula of size s is a projection of a determinant of polynomial size. The same
proof yields that it is also a projection of a polynomially large permanent, since the cycle covers
of the arithmetic branchning program occuring in the proof all had the same sign. It follows that
we can write fn as an exponential sums of permanents. The permanent itself is an exponential
sum. So we are done if we can “squeeze” the outer exponential sum into the inner one.

The rosette graph of size t consists of a directed cycle of size t. The edges c1, . . . , ct of this
cycle are called connector edges. The head and the tail of each connector edge are connected by
a path of length two. Every node has a self-loop. All edges have weight one in the rosette graph.
The following fact is easily verified:

Lemma 7.9. Let S be a subset of the connector edges.

1. If S is nonempty, then there is exactly one cycle cover of the rosette graph containing the
edges in S and no other connector edges.

2. There are two cycle covers containing no connector edges.

gn is a projection of a polynomially large permanent. This means that there is an edge
weighted graph G (with the weights being field elements and variables) such that

gn(X1, . . . ,Xp(n),Y1, . . . ,Yq(n)) =
∑

cycle cover C
w(C).

Assume that the variable Yi occurs `i times in G. We add a rosette graph of size `i and connect
every edge labeled with Yi with one of the connector edges of the rosette using an equality
gadget. All edges inherit their weights from the corresponding subgraphs, that is, the edges
from G get the weights they have in G, the edges in the equality gadgets keep their weights, and
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Figure 8: The rosette graph of size four. Connector edges are drawn dashed.

the edges in the rosette graph all have weight one. The only exception are the edges carrying a
weight Yi in G, they get the weight 1 instead. We do this for each i. Assume, we introduced t
equality gadgets altogether. We will add one isolated self loop with weight 1/2t to compensate
for the 2 that is introduced by every equality gadget. (The characteristic of k should be distinct
from 2 for this!) Let H be the resulting graph.

Let C be a cycle cover of G. w(C) is a monomial m(X1, . . . ,Xn,Y1, . . . ,Yq(n)). Let I be the
set of indices such that Yi appears in w(C). What is the contribution of C in∑

e

gn(X1, . . . ,Xp(n),e1, . . . ,eq(n))?

If Yi appears in w(C), then we have to set ei = 1, otherwise, the constribution to the exponential
sum will be zero. If Yi does not appear in w(C), then we can set ei to 0 or 1. Therefore, the
contribution of C is

2q(n)−|I|m(X1, . . . ,Xp(n),1, . . . ,1).

We call a cycle cover D of H consistent if for every equality gadget, either both edges it
connects are chosen or none of them is chosen. A cycle cover C of G can be extended to a
consistent cycle cover of H. If an edge with label Yi appears in C, then we can extend it in one
possible way in the corresponding rosette. If no such edge appears in C then there are two ways.
In total, there are 2q(n)−|I| extensions. By Lemma 7.8, we know that

perH =
∑

consistent D
w(D).

Therefore,
perH =

∑
e

gn(X1, . . . ,Xp(n),e1, . . . ,eq(n)).

Theorem 7.10. Over fields of characteristic distinct from 2, per is VNP-complete.
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Proof. It remains to show that per ∈VNP. It is quite easy to write a Boolean expression E(Y )
of polynomial size which checks whether a given matrix Y ∈ {0,1}n×n is a permutation matrix.
As done before, we can write this as an equivalent arithmetic formula Ê(Y ). Now it is easy to
check that

perX =
∑

Y ∈{0,1}n×n
Ê(Y )

∏
i,j

(Xi,jYi,j + 1−Yi,j).

Over fields of characteristic 2, the permanent can only be VNP-hard, if VNP = VP, since it
coincides with the determinant in this case. But there are other VNP-complete polynomials that
are also hard over fields of characteristic two like the Hamiltonian cycle polynomial, see e.g. [16].

7.3 Valiant’s conjecture

Valiant’s conjecture is the algebraic counterpart of the P versus NP conjecture.

Conjecture 7.11 (Valiant). VP(VNP.

Since the permanent is VNP-complete, we can rephrase this conjecture as

per /∈VP.

Since VPws ⊆VP, we can formulate a weaker version of Valiant’s conjecture, namely, VPws (VNP.
Since VPws has a nice complete family, this version can be reformulated as

per 6≤p det.

It is easy to check that VPws is closed under interpolation and substitutions. Therefore, by
Lemma 5.25, the conjecture VPws (VP can also be restated as

per 6≤end det.

Here, geometric complexity theory starts. As in the case of Waring rank, we will replace arbitrary
endomorphisms by invertible ones.

Valiant’s conjecture

• VNP = VNPe

• per is complete for VNP over fields of characteristic 6= 2.

• Valiant’s conjecture: VP(VNP

• weaker variant: VPws (VNP (equivalent to per 6≤end det)
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8 Border complexity and group orbit closures
In this chapter we explain why in Section 3.5 we went from monoid orbits to group orbit closures:
We phrase the questions from algebraic complexity theory in terms of group orbit closures.

Recall that on the space of polynomials A = C[X1, . . . ,XM ]d we have seen several ways to
measure complexity:

• minimal size of an arithmetic formula in which the leafs are constants or variables,

• minimal size of an arithmetic formula in which the leafs are affine linear forms,

• min{n | `n−dh ∈ End3n2 imm(3)
n },

where ` denotes the padding variable (which could be one of the existing variables). For a
p-family either all or none of these measures are polynomially bounded, that is, all measures
can be used to characterize the class VPe. Recall that VPe consists of all p-families where these
measures are polynomially bounded.

The class VPws is characterized by the following measures:

• minimal weakly skew circuit size,

• minimal skew circuit size,

• minimal algebraic branching program size,

• min{n | `n−dh ∈ Endn3 immn},

• min{n | `n−dh ∈ Endn2detn} (i.e., determinantal complexity).

For a p-family either all or none of these measures are polynomially bounded. The class VPws
consists of the p-families where these measures are polynomially bounded.

Both classes have a characterization in terms of an endomorphism orbit. Since group orbits
are much easier to handle than monoid orbits, we replace each orbit by its closure. Then we
can replace Endm by GLm (like we did for Waring rank). Furthermore, in algebraic geometry,
understanding the closure of constructible sets is often much easier than understanding the
set itself. We refer to [40, App. B] for an extended discussion of this and how it relates to
complexity.

We obtain new ways of measuring the complexity of polynomials. We define VPe to be
the class of p-families where min{n | `n−dh ∈ GL9nimm(3)

n } is polynomially bounded. We define
VPws to be the class of p-families where min{n | `n−dh ∈ GLn2detn} is polynomially bounded. It
is easy to see that taking the closure in the other endomorphism description yields the same
class.

In general for a set C of sequences of polynomials we define its closure C as follows: The
sequence (fn)n is in C iff there exist polynomials fn,i such that

• for all i, the sequences (fn,i)n∈N are in C
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• for all n, the sequences (fn,i)i∈N converge to fn.

Clearly C ⊆ C, in particular VPe ⊆VPe, VPws ⊆VPws, and VNP⊆VNP. But the relation-
ship between C and C is unknown in most cases. It is not even known whether VPe ⊆VNP. In
particular we could have that VPe 6= VNP but their closures are the same. In this case, the main
methods of this article would fail. In fact, no method that could only work with the closure
could work. Instead, we would have to consider the Zariski-constructible sets themselves and try
to separate them with methods of algebraic geometry.

The classical group orbit closure studied in geometric complexity theory is GLn2detn. For
fixed m and n we search for ways to prove `n−mperm /∈GLn2detn. Since (perm) is VNP-complete,
proving superpolynomial lower bounds is equivalent to separating VNP 6⊆VPws.

It is a challenging problem to understand the closures of algebraic complexity classes. Some
recent results can be found in [13, 15, 41, 54].

Border complexity and group orbit closures

The lower bound questions in algebraic complexity theory can be stated in terms of
border complexity.
Proving border complexity lower bounds is a special case of the problem of separating
a point from a group orbit closure.

9 Representation Theory

Recall the group actions from Chapter 3 and in particular the lifting of the action to the function
space. In this chapter we lift group actions again until in Section 10.2 we obtain new significant
search space restrictions for obstructions that come from representation theory. Our ground
field is the complex numbers.

9.1 Key example: Lifting the group action

Let A = C[X1, . . . ,XN ]d. Recall that C[A]δ is the vector space of homogeneous degree δ poly-
nomials on A, i.e., C[A]δ consists of homogeneous degree δ polynomials in the coefficients of a
degree-d polynomial. Let G := GLN . Since G acts on A, we know that G also acts linearly on
C[A] as follows: for every g ∈G and every f ∈ C[A] we define the polynomial gf ∈ C[A] via:

for every h ∈ A we have (gf)(h) := f(gTh). (9.1)

The following two lemmas are special cases of Lemmas 3.5 and 3.6, since GLN ⊆ EndN . We
state them explicitly, since we refer to them frequently.

Lemma 9.1. Let f,f ′ ∈ C[A] and let g ∈G. For all complex numbers α,α′ we have

g(αf +α′f ′) = α(gf) +α′(gf ′).
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By induction Lemma 9.1 holds for arbitrary finite linear combinations.

Lemma 9.2. Let f,f ′ ∈ C[A] and let g ∈G. Then

g(f ·f ′) = (gf) · (gf ′).

Again, as in Chapter 3, this means that we only need to understand the action on single
variables.

Example 9.3. Let N = 2, d= 2, δ = 2, A = C[X,Y ]2, and C[A]2 = C[T1,T2,T3]2 be the homoge-
neous degree 2 functions on A. For the sake of readability, we here reuse the letter d differently

(with a different meaning): Let g =
(
a b
c d

)
. Then gTX = aX+ bY and gTY = cX+dY as in

Chapter 3. Thus,

gTX2 = (aX+ bY )2 = a2X2 + 2abXY + b2Y 2,

gTXY = acX2 + (bc+ad)XY + bdY 2,

gTY 2 = c2X2 + 2cdXY +d2Y 2.

For every polynomial f ∈ C[A]1, f = αT1 +βT2 + γT3, we have f(X2) = α, f(XY ) = β, and
f(Y 2) = γ. Thus f = f(X2) ·T1 +f(XY ) ·T2 +f(Y 2) ·T3. Using (gTi)(h) = Ti(gTh) we obtain:

gT1 = (gT1)(X2) ·T1 + (gT1)(XY ) ·T2 + (gT1)(Y 2) ·T3 = a2T1 +acT2 + c2T3,

gT2 = 2abT1 + (bc+ad)T2 + 2cdT3,

gT3 = b2T1 + bdT2 +d2T3,

gT 2
2 = 4a2b2T 2

1 + 4ab(bc+ad)T1T2 + 8abcdT1T3 + (bc+ad)2T 2
2 + 4(bc+ad)cdT2T3 + 4c2d2T 2

3 ,

gT1T3 = a2b2T 2
1 + (a2bd+ab2c)T1T2 + (a2d2 + b2c2)T1T3 +abcdT 2

2 + (acd2 + bc2d)T2T3 + c2d2T3.

For the discriminant, we obtain

g(T 2
2 −4T1T3) = gT 2

2 −4gT1T3

= 8abcdT1T3 + (bc+ad)2T 2
2 −4((a2d2 + b2c2)T1T3 +abcdT 2

2 )
= 8abcdT1T3 + (b2c2 + 2abcd+a2d2)T 2

2 − (4a2d2 + 4b2c2)T1T3−4abcdT 2
2

= (8abcd−4a2d2−4b2c2)T1T3 + (b2c2 + 2abcd+a2d2−4abcd)T 2
2

= 4(2abcd−a2d2− b2c2)T1T3 + (b2c2−2abcd+a2d2)T 2
2

= (ad− bc)2T 2
2 −4(ad− bc)2T1T3

= (ad− bc)2(T 2
2 −4T1T3)

= det(g)2(T 2
2 −4T1T3).

Thus the discriminant is fixed under the group action (up to the prefactor). Indeed, the
discriminant is fixed under the group action of the special linear group (i.e., matrices with
determinant 1).
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Example 9.4. Let g=
(
a b
0 d

)
. Then gT 2

1 = a4T 2
1 . Thus the line CT 2

1 is fixed under the action of

upper triangular matrices. However, it is not fixed under the action of lower triangular matrices:

Let g =
(

1 0
c 1

)
. Then gT 2

1 = T 2
1 +2cT1T2 +2c2T1T3 +c2T 2

2 +2c3T2T3 +c4T 2
3 . The linear span of

these gT 2
1 is of dimension at least 5: Their coefficient vectors are (1,2c,2c2, c2,2c3, c4), so putting

c=−2,−1,0,1,2 yields the rank 5 matrix
1 −4 8 4 −16 16
1 −2 2 1 −2 1
1 0 0 0 0 0
1 2 2 1 2 1
1 4 8 4 16 16

 .

Remark 9.5. It is a small calculation to verify that for A = C[X,Y ]2 we have C[A]2 = C(T 2
2 −

4T1T3)⊕〈GL2T
2
1 〉.

9.2 General representation theory

Remark 9.5 gives an interesting example of a decomposition of C[A]δ. It is called the decom-
position into irreducible representations. To understand this decomposition and how it can be
used to restrict the search space for obstructions we now study some basic representation theory.
This section and Chapter 10 are based on lecture notes by Peter Bürgisser on “Kombinatorik
der Darstellungstheorie symmetrischer Gruppen” (combinatorics of the representation theory of
symmetric groups) from 2006 at Paderborn University.

Let G be a group and V be a finite dimensional complex vector space. Recall the definition
of a linear monoid action from Chapter 3. Now we restrict our attention to monoids that are
groups: A group homomorphism % :G→GL(V ) is called a linear group action or a representation
of G. If the action is understood, then we just say that V is a representation.

Example 9.6. Let G = Sn. Let V = Cn and %(π)(ei) = eπ(i), that is, the symmetric group
on n letters acts on Cn by permuting the n coordinates. Then (πσ)(ei) = eπ(σ(i)) = π(σei) for
all π,σ ∈Sn. This is called the defining representation of Sn. The matrices %(π) are called
permutation matrices. They consist of a single 1 in each row and each column, and the rest is
filled with zeros.

Example 9.7. Let Cn := Z/nZ denote the cyclic group of order n. We can think of Cn ⊆ C
as the group of n-th roots of unity. The identity element in Cn is denoted by 1Cn . Let Cn be
generated by the element g, i.e., Cn = 〈g〉. Let C∗ := C\{0}= GL1.

Let % :Cn→C∗ be a 1-dimensional representation of Cn. Since gn = 1Cn we have 1 = %(1Cn) =
%(gn) = %(g)n, thus %(g) = ζk for some k ∈ Z and ζ := e

2πi
n . Indeed, each k gives a representation.

Example 9.8. As we saw in Section 9.1, for A = C[X1, . . . ,XN ]d the vector space C[A]δ is a
GLN representation.
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Remark 9.9. Representations are sometimes called modules. Representations of G are precisely
the finite dimensional modules where the underlying ring is the group algebra of G. The
group algebra C[G] is defined as the vector space of formal linear combinations of finitely
many group elements. Two elements of C[G] are multiplied via the obvious convolution:
(∑iαigi) · (

∑
j βjgj) =∑

i,j αiβj(gigj), where αi,βj ∈ C and gi,gj ∈G.

Definition 9.10. A linear subspace W ⊆ V of a representation V is called a subrepresentation
if it is closed under the action of G, i.e.,

∀g ∈G∀w ∈W : gw ∈W.

The zero vector space and V itself are always subrepresentations. These are called the trivial
subrepresentations.

Example 9.11. Let Cn denote the defining representation of Sn. Then w := e1 +e2 + · · ·+en
is fixed under the action of Sn and hence the line Cw is a subrepresentation.

It is easy to verify that in general, for every element v ∈ V , the linear span 〈Gv〉 of the orbit
Gv is a subrepresentation.

Example 9.12. According to Example 9.3, for the discriminant, 〈GL2(b2 − 4ac)〉 is a 1-
dimensional subrepresentation of C[A]2, where A = C[X,Y ]2.

Example 9.13. Let Z ⊆A be a set that is closed under the action of GLN . Then the vanishing
ideal I(Z)δ is a subrepresentation of C[A]δ. This can be seen as follows: Let g ∈ GLN and z ∈ Z.
If f vanishes on Z, then (gf)(z) = f(gT z) = 0 for all g ∈ GLN , because gT z ∈ Z.

Definition 9.14. If a representation V only has the two trivial subrepresentations, then V is
called irreducible.

From the definition it is clear that every 1-dimensional representation is irreducible.

Lemma 9.15. Let Cn := Z/nZ. Every irreducible Cn-representation is 1-dimensional.

Proof. Let Cn = 〈g〉. Let V be a representation of Cn. Consider %(g) ∈ GL(V ) and let v ∈ V \{0}
be an eigenvector of %(g) to some eigenvalue β ∈ C. Then the line Cv is a subrepresentation of
V , because:

∀α ∈ C : g(αv) = %(g)(αv) = βαv ∈ Cv

and thus gk(αv) = g(g · · ·(g(gαv)) · · ·) = βkαv ∈Cv. Thus if V is irreducible, V is 1-dimensional.

We will see in Corollary 10.10 that for separating points h from orbit closures Gc it suffices
to consider polynomials that lie in irreducible representations. This significantly strengthens
Proposition 4.17.

THEORY OF COMPUTING 57

http://dx.doi.org/10.4086/toc
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Representations

A group homomorphism G→ GL(V ) is a representation. If the action is understood,
we simply call the representation V .
The vanishing ideal I(Z)δ of a set Z ⊂ A that is closed under the action of G is a
subrepresentation of C[A]δ.

10 Representation theory of finite groups and Maschke’s theo-
rem

Recall from Proposition 4.17 that in order to prove that a certain homogeneous polynomial h of
degree δ is not contained in some orbit closure GLNc, we want to find a homogenous polynomial
f ∈ C[A] with f(GLNc) = {0} and f(h) 6= 0. Since GLN is linearly reductive (see below), we can
find such an f in an irreducible subrepresentation of I(Gc)δ. While the linear reductivity of
GLN is beyond the scope of these lecture notes, we will prove it for finite groups.

10.1 Maschke’s theorem

Definition 10.1. Let U and W be linear subspaces of V . We say that V is the direct sum of
U and W if for every v ∈ V there is a unique u ∈ U and w ∈W such that v = u+w. We write
V = U ⊕W .

If V is a G-representation and U and W are subrepresentations such that V = U ⊕W , then
we say that U and W are representation complements.

Example 10.2. Let Cn denote the defining representation of Sn. Then Cn = 〈e1 + · · ·+en〉⊕W ,
where W = {w ∈ Cn | w1 + · · ·+wn = 0}. We have dimU = 1, dimW = n−1, U ∩W = 0, thus
U ⊕W = Cn.

Does every subrepresentation have a complement? In this chapter we will see that the answer
is yes, provided that G is finite.

Definition 10.3. An inner product on a finite dimensional complex vector space V is a map

〈., .〉 : V ×V → C

with

• 〈α1v1 +α2v2,w〉= α1〈v1,w〉+α2〈v2,w〉 for all αi ∈ C, vi,w ∈ V ,

• 〈v,w〉= 〈w,v〉, where the bar denotes complex conjugation,

• 〈v,v〉> 0 if v 6= 0.

For a linear subspace U ⊆ V the orthogonal complement U⊥ is defined as

U⊥ := {v ∈ V | ∀u ∈ U : 〈v,u〉= 0}.
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Lemma 10.4. If U ⊆ V is a linear subspace, then U⊥ ⊆ V is a linear subspace and V =U⊕U⊥.

Proof. If v1,v2 ∈ U⊥ and α1,α2 ∈ C, then let u ∈ U and calculate

〈α1v1 +α2v2,u〉= α1〈v1,u〉+α2〈v2,u〉= 0 + 0 = 0,

thus U⊥ ⊆ V is a linear subspace. If u ∈ U and u ∈ U⊥, then 〈u,u〉= 0 and hence u= 0, thus
U ∩U⊥ = 0. Since dimU⊥ = n−dimU (U⊥ is the vanishing set of dimU linearly independent
linear constraints: 〈v,ui〉= 0 for all basis vectors ui ∈ U), we have V = U ⊕U⊥.

For Cn, we can define the inner product 〈v,w〉 :=∑n
k=1 vkwk, thus every finite dimensional

complex vector space has an inner product.

Definition 10.5. 〈., .〉 is called G-invariant, if for all g ∈G, v,w ∈ V :

〈gv,gw〉= 〈v,w〉.

Lemma 10.6. Let 〈., .〉 be G-invariant and let U ⊆ V be a subrepresentation. Then U⊥ ⊆ V is
also a subrepresentation.

Proof. Let v ∈ U⊥, g ∈G. We have to show that gv ∈ U⊥. Let u ∈ U be arbitrary. Then

〈gv,u〉= 〈gv,gg−1u〉 (∗)= 〈v,g−1u︸ ︷︷ ︸
∈U

〉= 0.

where (∗) holds because 〈., .〉 is G-invariant.

Lemma 10.7. Let G be finite and let V be a G-representation. Then V has a G-invariant inner
product.

Proof. Let 〈., .〉′ be an inner product on V . For v,w ∈ V , we define

〈v,w〉 := 1
|G|

∑
g∈G
〈gv,gw〉′

It is straighforward to verify that 〈., .〉 is an inner product on V . We show that 〈., .〉 is G-invariant:
Let g′ ∈G.

〈g′v,g′w〉= 1
|G|

∑
g∈G
〈gg′v,gg′w〉′ = 1

|G|
∑
x∈G
〈xv,xw〉′ = 〈v,w〉.

Of course, dividing by |G| in the proof of Lemma 10.7 is optional, but it makes the construction
idempotent: if 〈., .〉′ is already G-invariant, then 〈., .〉′ = 〈., .〉.

Theorem 10.8 (Maschke’s theorem). Let G be finite and V be a G-representation. Then V
decomposes into a direct sum V = U1⊕U2⊕·· ·⊕Ut of irreducible G-representations Ui.
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Proof. We proceed by induction on dimV =: d. If d= 0, then t= 0. For the induction step we
make a case distinction. If V is irreducible, then we are done. If V is not irreducible, then let
U ∈ V be a nontrivial subrepresentation, i.e., U 6= 0 and U 6= V . Let 〈., .〉 be a G-invariant inner
product on V , which exists by the previous lemma, and let U⊥ be the orthogonal complement
of U with respect to this inner product.

Using Lemma 10.4 and Lemma 10.6 we see that V = U ⊕U⊥ with the G-representations U
and U⊥. Using the induction hypothesis on U and U⊥ we see that both decompose into a direct
sum of irreducibles. Summing up this sum finishes the proof.

10.2 Search space restrictions

Groups for which every representation decomposes into a direct sum of irreducibles are called
linearly reductive or just reductive (which is the same over fields of characteristic 0). We just
showed that finite groups are reductive. For us it will be important to know that GLN is
reductive.

Theorem 10.9. Every finite dimensional polynomial/rational GLN -representation V decomposes
into a direct sum V =U1⊕U2⊕·· ·⊕Ut of irreducible polynomial/rational GLN -representations Ui.

The proof of Theorem 10.9 uses the same idea as Maschke’s theorem, but the invariant scalar
product is created by using the compact Zariski-dense subgroup SUN ⊆ GLN and normalizing
using the so-called Haar measure. We omit the details here, because they require some measure
theory.

The next corollary strengthens Proposition 4.17 by putting another significant restriction on
the search space for our obstructions that we search to find complexity lower bounds.

Corollary 10.10. Let Z (A be a Zariski-closed cone that is closed under the action of GLN .
We have seen that I(Z)δ is a GLN -representation and hence by Theorem 10.9 I(Z)δ decomposes
into a sum of irreducibles. Let h /∈ Z. Then there exists an irreducible GLN -representation
U ⊆ I(Z)δ and an f ∈ U such that f(h) 6= 0.

Proof. Let 0 6= I(Z)δ = U1⊕·· ·⊕Uk. Pick 0 6= f ∈ I(Z)δ with f(h) 6= 0. Write f = f1 + · · ·+fk
with fi ∈ Ui, so in particular fi ∈ I(Z)δ. Since f(h) 6= 0 there exists i with fi(h) 6= 0.

Search space restrictions

GLN is a reductive group, that is, every GLN -representation decomposes into a direct
sum of irreducible GLN -representations.
If h /∈ GLNc, then for some degree δ a separating polynomial f can be found in an
irreducible representation of I(GLNc)δ.
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11 The irreducible representations of the general linear group:
First properties

Since by Corollary 10.10 we can find obstructions in irreducible GLn-representations, we want to
understand the structure of irreducible GLn-representations better. In this chapter we will prove
the existence of so-called highest weight vectors in irreducible representations of GLn. These will
be sufficient to separate points from orbit closures.

We follow [50, III.1.3–III.1.4].

11.1 Equivariant maps and isomorphisms

Given two representations (V,%) and (V ′,%′) of a group G, a linear map ϕ : V → V ′ is called
equivariant or a G-morphism if

∀g ∈G,v ∈ V : gϕ(v) = ϕ(gv),

or in other words, %′(g)ϕ(v) = ϕ(%(g)v). If ϕ is an equivariant vector space isomorphism, then
we say that V and V ′ are isomorphic representations.

Definition 11.1. Let G≤GLn be a subgroup (we will take G to be GLn or the group of diagonal
matrices). A representation % : G→ GL(V ) is called polynomial if the dim(V )2 coordinate
functions are multivariate polynomials in the n2 coordinate functions of GLn.

Example 11.2. C[A]δ is a polynomial representation, see Proposition 3.21. Subrepresentations
of polynomial representations are polynomial.

Example 11.3. Let C2 = 〈v1,v2〉. LetG= GL1×GL1 act on C2 via (g1,g2)(v1,v2) = (g2
1.v1,g1g

2
2.v2),

where we used lower dots for the product of a scalar and a vector. We see that C2 is a polyno-
mial representation of G that decomposes into a direct sum C2 = Cv1⊕Cv2 of two polynomial
subrepresentations.

Our goal is to classify the classes of isomorphic polynomial irreducible representations of
GLn. In order to do that, we will generalize Example 11.3.

11.2 The algebraic torus and the weight decomposition

Before we study the irreducible representations of GLn, in this section we study the subgroup of
invertible diagonal matrices in GLn.

Definition 11.4. Tn := (C×)n ⊆ GLn denotes the group of invertible diagonal matrices, also
called the algebraic torus.

We prove that Tn is linearly reductive and we fully describe its irreducible representations.
Recall that a matrix g is called diagonalizable if there exists an invertible matrix P such that

P−1gP is a diagonal matrix. Matrices with pairwise distinct eigenvalues are diagonalizable, in
particular the set of diagonalizable matrices lies dense in the set of all matrices, i.e., every matrix
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can be approximated arbitrarily closely by diagonalizable matrices via slight perturbations of
the entries.

We will use the following lemma for subgroups H which consist of representation matrices
%(t) ∈ GL(V ), where t ∈ Tn.

Lemma 11.5 (Simultaneous diagonalizability). Let H ≤ GL(V ) be an abelian subgroup and each
g ∈H diagonalizable. Then H is simultaneously diagonalizable, i.e., there exists P ∈ GL(V ) such
that for all g ∈H we have that P−1gP is a diagonal matrix.

Proof. The proof is by induction on the size of the matrices. The base case is when all matrices
of H have only one eigenvalue. This in particular includes the case for which the matrices have
size 1×1.

If g = S−1DS is diagonalizable (with a diagonal matrix D) and has only one eigenvalue λ,
then g = diag(λ, . . . ,λ), because S−1diag(λ, . . . ,λ)S = λS−1S = diag(λ, . . . ,λ). If all g ∈H have
only one eigenvalue, then there is nothing to show, because all g are diagonal.

Let g ∈H with at least 2 eigenvalues. Then find S−1gS = diag(λ1, . . . ,λ1,λ2, . . . ,λ2, . . .). Note
that since bg = gb for all b ∈H we have S−1bSS−1gS = S−1gSS−1bS. Therefore

diag(λ1, . . . ,λ1,λ2, . . . ,λ2, . . .)S−1bS = S−1bSdiag(λ1, . . . ,λ1,λ2, . . . ,λ2, . . .)

and hence all matrices in S−1HS are block diagonal, where the block sizes depend only on the
multiplicities of the eigenvalues of g.

Then by the induction hypothesis the single blocks can be simultaneously diagonalised by
matrices S1,S2 . . .. Then diag(S1,S2, . . .) simultaneously diagonalizes S−1HS and thus P :=
S ·diag(S1,S2, . . .) simultaneously diagonalizes H.

Let (V,%) be a polynomial representation of Tn. Since the elements of Tn commute, all
elements %(t), t ∈ Tn, commute. Let H := {%(t) | t ∈ Tn}. To apply Lemma 11.5 we need that
each %(t) is diagonalizable. This is achieved in the following lemma.

Lemma 11.6. Let (V,%) be a polynomial representation of Tn. Then %(t) is diagonalizable for
every t ∈ Tn.

Proof. We start with a fact on multivariate interpolation. A multivariate polynomial f of
degree d in n variables is uniquely defined by its (d+ 1)n evaluations f(x1, . . . ,xn) at points
(x1, ...,xn) ∈ Cn, where we put d+ 1 different values for each of the xi, as can be seen by
multivariate interpolation.

Let T̃n ≤ Tn denote the subgroup of elements diag(t1, . . . , tn) for which each ti has finite order
(i.e., ti is a root of unity). By definition T̃n = (T̃1)n. For every k, the primitive k-th roots of
unity are in T̃1, in particular T̃1 has infinitely many elements. By multivariate interpolation we
conclude that if f vanishes on (T̃1)n, then f = 0. We say that (T̃1)n = T̃n lies Zariski-dense in
Cn.8

8Remark: T̃1 is an example of a set for which Zariski and Euclidean closure are not the same. The Zariski
closure is C, the Euclidean closure is the unit circle. T̃1 is not constructible.
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All elements in T̃n commute. Thus all elements in %(T̃n) commute. Given s ∈ T̃n, let 〈s〉 be
the cyclic group generated by s. Since 〈s〉 is a finite cyclic group, it is linearly reductive and
its irreducible representations are 1-dimensional (Theorem 10.8 and Lemma 9.15). Thus we
can decompose V into 〈s〉-irreducibles, each spanned by a single vector vi. Now P−1%(s)P is
diagonal, where the columns of P are given by the vi: For standard basis vectors ei we have
(P−1%(s)P )ei = P−1%(s)vi = P−1αvi = αei for some α ∈ C. Therefore %(s) is diagonalizable and
using Lemma 11.5 we see that %(T̃n) is simultaneously diagonalizable: There exists P such that
P−1%(T̃n)P are all diagonal.

Define fi,j : Cn→ C, (t1, . . . , tn) 7→ (P−1%(diag(t1, . . . , tn))P )i,j . We just saw that fi,j(s) = 0
for all s ∈ T̃n, i 6= j. Since T̃n lies Zariski-dense in Cn it follows that fi,j(t) = 0 for all t ∈ Cn,
i 6= j. Thus P−1%(t)P is diagonal for all t ∈ Tn.

Lemma 11.7. Given a nonzero multivariate polynomial κ in n variables t = (t1, . . . , tn) with
κ(t2) = (κ(t))2, where t2 := (t21, . . . , t2n). Then κ is a monomial.

Proof. For natural numbers k1, . . . ,kn we have that κ(αk1 ,αk2 , . . . ,αkn) is a univariate nonzero
polynomial ζ(α). Moreover, ζ(α)2 = ζ(α2). The idea is that if k1� k2� ·· · � kn, then there
is a 1:1 correspondence between the nonzero homogeneous parts ζi of ζ—which are just single
monomials, since ζ is univariate—and the monomials in κ with nonzero coefficient. (This kind of
substitution is also called Kronecker substition and has been used in polynomial identity testing.)
Because of this correspondence it suffices to show that ζ is homogeneous, since this imples that
κ is a single monomial or zero.

For the sake of contradiction assume that ζ is not homogeneous, so assume that ζ = ζi+ζj+ζ ′
with ζi 6= 0 being homogeneous of degree i and ζj 6= 0 being homogeneous of degree j, i > j,
and ζ ′ being of degree less than j. Then ζ(α2) = α2iζi(1) +α2jζj(1) +O(α2j−2) and ζ(α)2 =
α2iζi(1)2 +α2jζj(1)2 + 2αi+jζi(1)ζj(1) +O(αi+j−1). Comparing the coefficient of degree i+ j we
see that 2αi+jζi(1)ζj(1) 6= 0, in contradiction to ζ(α2) = ζ(α)2.

Theorem 11.8. For t= diag(t1, . . . , tn) ∈ Tn and λ ∈ Nn we write tλ :=∏n
i=1 t

λi
i ∈ C.

For every polynomial representation % : Tn→ GL(V ) we have that

V =
⊕
λ∈Nn

Vλ,

where
Vλ := {v ∈ V | %(t)v = tλv for all t ∈ Tn}.

Proof. Using Lemma 11.6, {%(t) | t ∈ Tn} is simultaneously diagonalizable, so there is P ∈ GL(V )
such that P−1%(t)P is diagonal for every t ∈ Tn. Therefore the i-th diagonal entry of P−1%(t)P
is given by a function κ(t). Since % is a polynomial representation, each κ is a multivariate
polynomial in n variables. Since P−1%(t)P ≤ GL(V ) is a subgroup of diagonal matrices, κ(tt′) =
κ(t)κ(t′), where the product tt′ is defined componentwise. Using Lemma 11.7 it follows that
κ(t) = tλ for some λ.

The decomposition in Theorem 11.8 is called the weight decomposition. Vλ is called the
weight space of weight λ and a vector in Vλ is called a weight vector of weight λ.
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Corollary 11.9. The polynomial irreducible representations of Tn are 1-dimensional and indexed
by lists in Nn.

Proof. Given a polynomial irreducible representation V of Tn, by Theorem 11.8, V decomposes
into a direct sum of weight spaces, each of which decomposes (arbitrarily) into a direct sum
of 1-dimensional irreducible Tn-representations. Since V is irreducible, there can be only one
summand. It follows that each polynomial irreducible representation is 1-dimensional and a
weight space for some weight λ ∈ Nn.

Moreover, let λ 6= µ and V and W be 1-dimensional with weight λ and µ, respectively. For
the sake of readability we use lower dots for scalar multiplication: If ϕ : V →W is Tn-equivariant,
then ϕ(tv) = ϕ(tλ.v) = tλ.ϕ(v) 6= tµ.ϕ(v) = tϕ(v) and thus V and W are not isomorphic. The
other direction works analogously: If λ= µ, then V and W are isomorphic.

GLn versus Tn

Every polynomial Tn-representation decomposes into a direct sum of weight spaces,
indexed by λ ∈ Nn. This is called the weight decomposition.
Since a polynomial irreducible GLn-representation is also a polynomial Tn-
representation, it also has a weight decomposition.

11.3 Highest weight vectors

As seen in the last section, every polynomial irreducible GLn-representation has a weight
decomposition. This is a first structural result about irreducible GLn-representations. In this
section we fully classify the irreducible GLn-representations.

Embed γ : Sn ↪→ GLn via permutation matrices, i.e., the permutation π is mapped to the
matrix that has entries 1 at positions (i,π(i)) and zeros everywhere else. One can readily verify
that γ is a group homomorphism. Sn acts on Nn in the natural way by permuting the positions,
so π(λ) := (λπ−1(1), . . . ,λπ−1(n)).

Lemma 11.10. Given a GLn-representation V and let Vλ denote its λ weight space. Let Sn

act on V via γ : Sn ↪→ GLn. Then πVλ = Vπ(λ).

Proof. Let v ∈ Vλ, t= (t1, . . . , tn) ∈ Tn and π ∈Sn.
For the sake of readability let the lower dot denote the multiplication with a scalar from the

left. We calculate: γ(π−1)diag(t1, . . . , tn)γ(π) = diag(tπ(1), . . . , tπ(n)) =: tπ. Since

tπv = diag(tπ(1), . . . , tπ(n))v = tλ1
π(1) · · · t

λn
π(n).v = t

λπ−1(1)
1 · · · t

λπ−1(n)
n .v = tπ(λ).v,

we have

t(πv) = tπv = (ππ−1)tπv = π(π−1tπ)v = π(tπv) = π(tπ(λ).v) = tπ(λ).(πv),

and therefore πv ∈ Vπ(λ). We conclude πVλ ⊆ Vπ(λ) and by symmetry πVλ = Vπ(λ).
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Definition 11.11. A finite list of natural numbers λ ∈Nn is called a partition if it is nonincreas-
ing, i.e., λ1 ≥ λ2 ≥ . . .≥ λn. We define |λ| :=∑n

i=1λi. More generally, we define |λ| :=∑n
i=1λi

for all λ ∈ Zn. We say that λ is a partition of N if |λ|=N .
On Zn we define the following partial order, the so-called dominance order. Two lists λ,µ∈Zn

satisfy λD µ iff

• for all 1≤ i≤ n: ∑i
j=1λj ≥

∑i
j=1µj .

In this situation we say that λ dominates µ. Usually when comparing λ and µ we have |λ|= |µ|.
We write λ.µ to denote that both λD µ and λ 6= µ hold.

Example 11.12. We have (6,3,3)D (6,2,2,2), because 6≥ 6, 6+3≥ 6+2, 6+3+3≥ 6+2+2,
and 6 + 3 + 3+ 0≥ 6 + 2 + 2+ 2.

Dominance is a partial order: (6,3,1,1) 6D (5,3,3) and (6,3,1,1) 6E (5,3,3).

Let Un ≤ GLn denote the subgroup of upper triangular matrices with 1s on the diagonal.
Analogously, let U−n ≤ GLn denote the subgroup of lower triangular matrices with 1s on the
diagonal.

Lemma 11.13. Let v be a weight vector of weight λ and let g ∈ Un. Then gv = v+w, where
w ∈

⊕
µ.λVµ.

If g ∈ U−n instead, then gv = v+w, where w ∈
⊕

µ/λVµ.

Proof. We only prove the first part. The second part is completely analogous. Again, for the
sake of readability we sometimes use the lower dot to denote the multiplication with a scalar
from the left.

Define xij(α), i 6= j, to be the identity matrix plus a single α ∈ C in row i, column j. We
prove the result for g = xij(α) with i < j. This is without loss of generality, because Un is
generated as a group by these xij(α).

For t= diag(t1, . . . , tn) ∈ Tn we have txij(α)t−1 = xij(ti · t−1
j ·α).

Let {w1, . . . ,wη} be a basis of V . Since % is a polynomial representation, each coordinate
function of xij(α)v is a univariate polynomial in α:

xij(α)v =
η∑
s=1

(
∑
h≥0

ch,sα
h)ws =

∑
h≥0

αh.vh

with ch,s ∈ C and vh :=∑η
s=1 ch,sws.

Since xij(0) = Idn, it follows xij(0)v = v, thus we get that the constant term v0 = v. We have

txij(α)v = txij(α)t−1tv = (xij(tit−1
j α))tv = (xij(tit−1

j α))(tλ.v)

= tλ.(xij(tit−1
j α))v = tλ.

∑
h≥0

thi .t
−h
j .αh.vh =

∑
h≥0

αh.(tλ+hζij .vh),

where ζij := (0,0, . . . ,0,1,0, . . . ,0,−1,0, . . . ,0) with the 1 at position i and the −1 at position j.
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On the other hand

txij(α)v = t(
∑
h≥0

αh.vh) =
∑
h≥0

αh.tvh

Comparing coefficients we see that

tvh = tλ+hζij .vh,

thus each vh is an element of Vλ+hζij .
The proof is finished by observing that λ/ (λ+hζij) for i < j, 0< h.

Let Bn ≤ GLn denote the subgroup of upper triangular matrices. A 1-dimensional linear
subspace Cv of a GLn-representation V is called a Bn-stable line, if it is closed under the action
of Bn. Since Tn ≤Bn is a subgroup, in a polynomial GLn-representation every Bn-stable line is
also a 1-dimensional Tn-representation and hence every Bn-stable has a weight λ ∈ Nn.

Corollary 11.14. Let V be a GLn-representation and v ∈ Vλ for some λ ∈Nn such that Cv is a
Bn-stable line. Then 〈GLnv〉 ⊆ Cv⊕

∑
µ/λVµ.

Proof. The set U−n TnUn ⊆ GLn is dense, because LU factorization of matrices almost always
(on a Zariski open subset) works without pivoting, in other words GLn = U−n TnUn, where the
closure is taken in GLn. Thus GLnv = U−n TnUnv ⊆ U−n TnUnv ⊆ C ·U−n v. Lemma 11.13 yields
C ·U−n v ⊆ Cv+∑µ/λVµ. The right hand side is closed, since it is a finite-dimensional vector
space, thus C ·U−n v ⊆ Cv+∑µ/λVµ. Therefore GLnv ⊆ Cv+∑µ/λVµ. Since the right hand side
is a vector space, it follows that 〈GLnv〉 ⊆ Cv+∑µ/λVµ.

The following theorem completely classifies the irreducible GLn-representations by the weight
of their unique Bn-stable line.

Theorem 11.15. a’) Let V be a polynomial GLn-representation with a Bn-stable line Cv ⊆ V .
Then 〈GLnv〉 is irreducible.

a) For each irreducible polynomial GLn-representation V there exists exactly one Bn-stable
line Cv ⊆ V . Let λ be the weight of v, called the highest weight of V . Then the λ-weight
space Vλ = Cv is 1-dimensional. Furthermore we have that λ is a partition and for all
weights µ that appear in V (i.e., Vµ 6= 0) we have µE λ.

b) Two irreducible polynomial representations V and V ′ are isomorphic, iff their highest
weights λ and λ′ are equal.

c) Let λ ∈ Nn be a partition. Then there exists an irreducible polynomial representation of
GLn with highest weight λ.

Remark 11.16. In the situation a) we call v a highest weight vector (HWV).

THEORY OF COMPUTING 66

http://dx.doi.org/10.4086/toc


INTRODUCTION TO GEOMETRIC COMPLEXITY THEORY

Proof. (c) For every partition λ we can explicitly construct an irreducible representation. The
construction is slightly technical and we postpone it until Section 17.

(a’) Let Cv be a Bn-stable line of weight λ and let W := 〈GLnv〉. Decompose W =⊕
iWi

into irreducible GLn-representations Wi. Decompose the Wi further into their weight spaces
spanned by weight vectors vj , so that the vj form a basis of W . Since v ∈W has weight λ, one
of the vj must have weight λ. Let vj ∈Wi =:W ′. By Cor. 11.14 the λ weight space Wλ of W is
1-dimensional and thus the λ weight space W ′λ is also 1-dimensional, in fact W ′λ =Wλ. Thus
v ∈W ′λ. Thus W = 〈GLnv〉 ⊆W ′. Hence W is irreducible.

(a) Let Cv ⊆ V be a Bn-stable line. The orbit span 〈GLnv〉 ⊆ V is a subrepresentation, but
since V is irreducible, actually V = 〈GLnv〉. Using Cor. 11.14 we see that 〈GLnv〉 ⊆Cv+∑µ/λVµ.
Therefore:

• The poset (with respect to the dominance order) of weights that occur in V has a
maximum: λ

• In V there is a unique line of weight λ.

We now see that the Bn-stable line in V is unique. A second Bn-stable Cw line would have a
weight µ/λ, but then 〈GLnw〉 ⊆ Cw+∑ν/µVν would not contain Cv, which is a contradiction
to V being irreducible. Thus the Bn-stable line in V is unique.

If λ is not a partition, then π(λ) is a partition for some π ∈Sn. By Lemma 11.10, πVλ = Vπ(λ).
But π(λ).λ (easy exercise for the reader), a contradiction to λ dominating all weights in V .

It remains to show that there exists a Bn-stable line. Take all weights µ for which Vµ 6= 0
and take a maximal element λ with respect to the dominance order. Take 0 6= v ∈ Vλ. Use
Lemma 11.13 to see that Unv = v. Thus V contains at least the Un-stable line Cv. Since
Bn = TnUn and since v ∈ Vλ, it follows that Cv is a Bn-stable line.

(b) Isomorphic representations clearly have equal highest weights: If ϕ : V → V ′ is an
isomorphism, then v is Bn-stable iff ϕ(v) is Bn-stable. Moreover, tϕ(v) =ϕ(tv) =ϕ(tλv) = tλϕ(v).

To see the other direction, let λ= λ′, where Cv ⊆ V and Cv′ ⊆ V ′ are the Bn-stable lines
in V and V ′, respectively. Consider the GLn-representation V ⊕V ′, g(u,u′) := (gu,gu′) for all
u ∈ V , u′ ∈ V ′, g ∈ GLn. Then w := (v,v′) ∈ V ⊕V ′. Let W := 〈GLn ·w〉 ⊆ V ⊕V ′. Since λ= λ′

it follows that w has weight λ and Cw ⊆W is a Bn-stable line. By part (a’) we have that W is
irreducible.

We write V = V ⊕{0} and V ′ = {0}⊕V ′. Then W ∩V ′ ⊆W is a subrepresentation, but
W is irreducible, so W ∩V ′ = W (i.e., W ⊆ V ′) or W ∩V ′ = {0}. Since w ∈W , but w /∈ V ′,
we have W ∩V ′ = {0}. But W ∩V ′ is the kernel of the linear projection map pr : W → V ,
(v,v′) 7→ v. Thus pr is injective. Moreover, pr is equivariant. Thus p̃r :W → pr(W ), w 7→ pr(w)
is a GLn-isomorphism. Its image is thus a subrepresentation of V , isomorphic to W . But
V is irreducible and W 6= {0}, thus V and W are isomorphic GLn-representations (V ∼= W ).
Analogously we show that W ∼= V ′ and thus V ∼= V ′.

The previous theorem gives a complete characterization of irreducible polynomial GLn-
representations V : Using part (a) we see that V has a unique Bn-stable line Cv of some weight λ.
Using part (a’) we see that V = 〈GLnv〉. Using parts (b) and (c) we see that there is a 1:1
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correspondence between partitions into at most n parts and isomorphism types of irreducible
polynomial GLn-representations.

Example 11.17. Let A = C[X,Y ]2, V = C[A]2. The calculation from Example 9.3 shows that
the discriminant f := T 2

2 −4T1T3 satisfies gf = det(g)2f and thus diag(α1,α2)f = α2
1α

2
2f , so f is

a weight vector of weight (2,2). Moreover, gf = f if det(g) = 1, in particular f is fixed under
Un. Thus Cf is a Bn-stable line. Hence f is a highest weight vector of weight (2,2).

Example 9.4 shows analogously that the polynomial T 2
1 is a highest weight vector of weight

(4,0).
Each orbit span of a HWV is an irreducible subrepresentation. Here the orbit span of

the discriminant is 1-dimensional, while the orbit span of T 2
1 is 5-dimensional. Since V is

6-dimensional this concludes the decomposition into irreducibles, as already pointed out in
Remark 9.5: the 6-dimensional GL2-representation V decomposes into a direct sum of two
irreducibles: One of type (4,0) and one of type (2,2).

11.4 Highest weight vector obstructions

In this section we will see how Corollary 10.10 can be strenghtened even further with an
additional significant search space restriction for obstructions: we only need to consider HWVs,
see Corollary 11.19.

Proposition 11.18. Let A = C[X1, . . . ,XN ]d. Then C[A]δ decomposes into irreducibles as

C[A]δ =
⊕
i

Vi,

where the type of each Vi is a partition of dδ.

Proof. We consider the action of t := diag(α, . . . ,α) ∈ Tn on C[A]δ. Indeed, tf = αdδf for every
f ∈ C[A]δ. Thus each weight vector f ∈ C[A]δ of weight λ (i.e., tf = tλf) must satisfy

αdδf = tf = tλf = tλ1
1 tλ2

2 · t
λn
n f = αλ1+···+λnf,

thus λ1 + · · ·+λn = dδ. In particular this is true for highest weight vectors. The statement
follows with the classification in Theorem 11.15.

Corollary 11.19. Let A = C[X1, . . . ,XN ]d. Let c ∈ A, G = GLN . If h /∈ Gc, then there exists
δ ∈ N, λ ∈ NN a partition of δd, and a highest weight vector f ∈ C[A]δ of weight λ, such that
f(Gc) = {0} and for almost all group elements g ∈G we have f(gh) 6= 0. (“Almost all” means
that the set of g for which f(gh) = 0 is a Zariski-closed proper subset of G.)

Proof. From Corollary 10.10 we already know that an f exists that is contained in the homoge-
neous degree δ part I(Gc)δ of the vanishing ideal, but that also satisfies f(h) 6= 0. Moreover,
I(Gc)δ is a subrepresentation of C[A]δ, so we can decompose it into irreducibles

I(Gc)δ =
⊕
j∈Ω

Vj
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for a finite index set Ω, where by Prop. 11.18 the type of each Vj is a partition of dδ. Now we
can write f =∑

j∈Ω fj , where fj ∈ Vj . By Theorem 11.15(a),(a’) it follows that we can write the
finite sum fj =∑

i gj,ifj,i, where gj,i ∈G and fj,i is an HWV (scalars in the linear combination
can be merged with the HWVs, so they do not appear in the sum).

Since f(h) 6= 0, we have that (gj,ifj,i)(h) 6= 0 for some j, i. This means fj,i(gTj,ih) 6= 0, which
proves the first part of the corollary, choosing g = gTj,i. For the second part we have to analyze
the subset of group elements g̃ ∈G that satisfy fj,i(g̃h) 6= 0. But fj,i(g̃h) is a polynomial in the
entries of g̃. This finishes the proof.

The following calculation gives a feel that looking at HWVs should be useful.
For A = C[X1, . . . ,XM ]d we have dimC[A]δ =

(δ+(d+M−1
d )−1
δ

)
. Thus if M = d= δ = 6 we have

dimC[A]δ = 13949678575756. But one can compute that the dimension of the vector space of
highest weight vectors is only 31781 and the highest dimension of the highest weight subspace
in a Vλ is 105.

More crucially, the dimensions of the highest weight vector spaces do not change when
increasingM , but dimC[A]δ increases significantly! For A=C[X1, . . . ,XM ]2 we have dimC[A]2 =(1+(1+M

2 )
2

)
= M4

8 + M3

4 + 3M2

8 + M
4 , but we will see that the dimension of the space of HWVs is

just 2, independent of M , provided M ≥ 2.

Irreducible representations of GLn and HWVs

The irreducible polynomial representations of GLn are indexed by partitions λ ∈ Nn.
Each irreducible polynomial representation V has a unique highest weight vector (up
to scale): A weight vector that is Bn-stable. Its weight determines the isomorphism
type of V .
For proving lower bounds h /∈Gc we can restrict our search for obstructions f to highest
weight vectors. This greatly reduces the dimension of the search space.

12 Schur’s lemma, multiplicities, and isotypic decompositions
So far we restricted the search space for obstructions further and further. In this chapter we want
to present a sufficient criterion for obstructions that is not known to be a necessary criterion:
Comparing representation-theoretic multiplicities, see Section 12.4. This strategy for proving
h /∈Gc is mathematically beautiful, but still bears many open research questions.

Again we follow Bürgisser’s lecture notes.

12.1 Schur’s lemma

For a group G and two G-representations V and W we define
HomG(V,W ) := {ϕ | ϕ : V →W a G-morphism}.

HomG(V,W ) is a vector space and a linear subspace of Hom(V,W ). Moreover, define EndG(V ) :=
HomG(V,V ).
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Lemma 12.1. Let ϕ ∈HomG(V,W ). Then

1. kerϕ := {v ∈ V | ϕ(v) = 0} is a subrepresentation of V

2. imϕ := {ϕ(v) | v ∈ V } is a subrepresentation of W

Proof. It is clear that kernel and image are linear subspaces. We have to verify that both are
closed under the group action.

If v ∈ kerϕ and g ∈G, then ϕ(gv) = gϕ(v) = g0 = 0 and thus gv ∈ kerϕ.
If w ∈ imϕ and g ∈G, then choose v ∈ V such that ϕ(v) = w. Then gw = gϕ(v) = ϕ(gv) ∈

imϕ.

We write V ∼= W to denote that V and W are isomorphic representations, and V 6∼= W
otherwise.

Lemma 12.2 (Schur’s lemma). Let V and W be irreducible G-representations. Then

1. V 6∼=W ⇒HomG(V,W ) = 0

2. V ∼=W ⇒ dimHomG(V,W ) = 1

Proof. 1.: We show the contraposition and thus assume the existence of a G-morphism ϕ : V →W ,
ϕ 6= 0.

• kerϕ( V is a subrepresentation. Since V is irreducible, it follows that kerϕ= 0, thus ϕ is
injective.

• 0 6= imϕ⊆W is a subrepresentation. Since W is irreducible, imϕ=W , thus ϕ is surjective.

Putting both bullet points together we see that ϕ is bijective. Thus V ∼=W .
2.: We first treat the case V =W . Let ϕ ∈ EndG(V ) be arbitrary. Let v be an eigenvector of

ϕ to the eigenvalue α. Then ϕ−αid ∈ EndG(V ) and v ∈ ker(ϕ−αid).

0 6= v ∈ ker(ϕ−αid)︸ ︷︷ ︸
subrepresentation of V

V irred⇒ ker(ϕ−αid) = V,

thus ϕ−αid = 0, therefore ϕ= αid.
For the more general case V ∼= W let ψ ∈ HomG(V,W ) be a G-isomorphism. Let ϕ ∈

HomG(V,W ) be arbitrary. Then ψ−1 ◦ϕ ∈ EndG(V ) = CidV . Thus there exists α ∈ C with
ψ−1 ◦ϕ= αidV . Therefore ϕ= αψ. We conclude that HomG(V,W ) = Cψ.

12.2 Multiplicities

In this section we present the definition of representation-theoretic multiplicities. We will use
this to define special types of obstructions, see Section 12.4.

Corollary 12.3. Let V be a G-representation. Let V = U1⊕·· ·⊕Ut be a decomposition into
irreducibles. Let W be an irreducible G-representation. Then |{i |Ui ∼=W}|= dimHomG(W,V ) =
dimHomG(V,W ).
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Proof. Let pri : V → Ui denote the i-th canonical projection. The following is an isomorphism of
vector spaces:

t⊕
i=1

HomG(W,Ui) → HomG(W,V )

(ϕ1, . . . ,ϕt) 7→
(
w 7→ ϕ1(w) + . . .+ϕt(w)

)
(pr1 ◦ψ,. . . ,prt ◦ψ) 7→ψ

Schur’s lemma implies dim⊕t
i=1 HomG(W,Ui) =∑t

i=1 dimHomG(W,Ui) = |{i | Ui ∼=W}|, which
finishes the proof of the first equality. For the second part we proceed analogously with an
isomorphism of vector spaces.

t⊕
i=1

HomG(Ui,W ) → HomG(V,W )

(ϕ1, . . . ,ϕt) 7→ ϕ1 ◦pr1 + · · ·+ϕt ◦prt
(ψ|U1 , . . . ,ψ|Ut) 7→ψ

Schur’s lemma implies dim⊕t
i=1 HomG(Ui,W ) =∑t

i=1 dimHomG(Ui,W ) = |{i | Ui ∼=W}|, which
finishes the proof of the second equality.

From this corollary we see that |{i | Ui ∼= W}| is independent of the decomposition. This
justifies the name “multiplicity” in the following definition.

Definition 12.4. For a G-representation V and an irreducible G-representation W the multi-
plicity multW (V ) of W in V is defined as

multW (V ) := dimHomG(W,V ).

Corollary 12.5. If U ⊆ V is a subrepresentation, then multW (U)≤multW (V ).

Proof. If U ⊆ V , then HomG(W,U) is a linear subspace of HomG(W,V ).

Corollary 12.6. If U � V is a G-equivariant surjection of representations, then multW (U)≥
multW (V ).

Proof. Let ϕ : U � V be a G-equivariant surjection. Define the linear map κ : HomG(V,W )→
HomG(U,W ) by κ(ψ) = ψ ◦ϕ. It remains to show that κ is injective. For this we assume that
κ(ψ) = 0, i.e., ψ ◦ϕ= 0. Since ϕ is surjective, it follows ψ = 0.

In the case where G= GLN we have the following very useful way of determining multiplicities:

Proposition 12.7. If V is a GLN -representation, then multλ(V ) = dimHWVλ(V ), where
HWVλ(V ) is the linear subspace of highest weight vectors of weight λ in V .
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Proof. Fix an irreducible GLN -representation Wλ and fix a nonzero vector h from the 1-
dimensional linear subspace of HWVs in Wλ. By Theorem 11.15(a’), if 0 6= v ∈ HWVλ(V ),
then 〈GLNv〉 is irreducible. By Lemma 12.2 it follows that dimHomG(Wλ,〈GLNv〉) = 1. Since
every equivariant map maps HWVs of weight λ to HWVs of weight λ or to 0, every element
in HomG(Wλ,〈GLNv〉) has ϕ(h) = αv for some α ∈ C. Moreover, for each α there exists such a
G-homomorphism.

Now we have the following isomorphism of vector spaces HWVλ(V )→HomG(Wλ,V ):

v 7→
(
ϕ ∈HomG(Wλ,〈GLNv〉), ϕ(h) = v

)
with inverse map ϕ 7→ ϕ(h).

12.3 Isotypic components

In this section we assume that our group G is linearly reductive. The decomposition into
irreducible representations might not be unique as soon as the multiplicity of some isomorphism
type λ exceeds 1. In this section we group together isomorphic copies of the same irreducible
representation to obtain the unique isotypic decomposition.

A representation V is called isotypic if V is a (not necessarily direct or finite) sum of
irreducible representations that are all isomorphic.

Definition 12.8. Let G be a group and let V be a G-representation (in particular finite
dimensional). Let W be an irreducible G-representation and define λ to to be its isomorphism
type. The isotypic component Vλ of type λ is defined as the (possibly infinite) sum ∑

iVi of all
irreducible subrepresentations of type λ.

For example the weight spaces in section 11 are isotypic components, where the group G is
the algebraic torus.

Lemma 12.9. An isotypic representation of type λ decomposes into a direct sum of irreducibles
of type λ.

Proof. Let V be isotypic and write V = E1 + · · ·+Et with Ei irreducible of type λ and t
minimal. Clearly t is finite because dimV is finite and dimEi ≥ 1. For the sake of contradiction
assume that the sum is not direct: There exists xi ∈ Ei such that x1 + · · ·+xt = 0 and w.l.o.g.
xt 6= 0. Thus xt =−(x1 + · · ·+xt−1) and hence (E1 + · · ·+Et−1)∩Et 6= 0. Since Et is irreducible:
Et ⊆ E1 + · · ·+Et−1, which is a contradiction to t being minimal.

Proposition 12.10. Every representation V decomposes into a direct sum of isotypic represen-
tations V =⊕

λVλ, where λ runs over all types of irreducible representations.

Proof. Let V =M1⊕·· ·⊕Mk be a decomposition into irreducibles. Then multλ(V ) equals the
number of times for which Mi is of type λ. Define the direct sum

M :=
⊕

i with Mi of type λ
Mi,
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so dimM = multλ(V ) ·dimλ, where dimλ denotes the dimension of the irreducible representation
of type λ. It remains to show that M = Vλ, because then we see that the direct sum of isotypic
components results from adding up isomorphic copies of irreducible representations. Clearly
M ⊆ Vλ.

Since Vλ decomposes into a direct sum of irreducibles of type λ (Lemma 12.9), the number of
summands in this decomposition is multλ(Vλ) by Cor. 12.3. Therefore dimVλ = multλ(Vλ) ·dimλ.
Since Vλ ⊆ V it follows multλ(Vλ)≤multλ(V ) and thus dimVλ ≤multλ(V ) ·dimλ= dimM .

Since dimVλ ≤ dimM and M ⊆ Vλ, we conclude M = Vλ.

12.4 Using multiplicities or occurrences as obstructions

Let A = Cη. For a Zariski-closed set Z ⊆ A we define the coordinate ring

C[Z] := C[A]/I(Z)

If Z is a cone, then C[Z] is graded via C[Z]δ = C[A]δ/I(Z)δ.

Lemma 12.11. Let G be a group, V be a G-representation, and let there exist a G-invariant
inner product on V . If U ⊆ V is a subrepresentation, then the quotient V/U is also a G-
representation. More precisely, V ∼= U ⊕V/U .

Proof. Since U is a G-representation, for g ∈G we have gU = U as a set. Thus if v ∈ V , then
v+U ∈ V/U and g(v+U) = gv+gU = gv+U ∈ V/U .

If we have a G-invariant inner product, then V = U ⊕U⊥. We now show that U⊥ ' V/U .
Let p : V � U⊥ be the projection that sends U to 0. The equivariant isomorphism V/U → U⊥

is given by v+U 7→ p(v+U) = p(v) with inverse map w 7→ w+U .

From the lemma we conclude that if C[A]δ is aG-representation and I(Z)δ is aG-representation,
then C[Z]δ is a G-representation.

An approach towards proving complexity lower bounds goes as follows. Let Z ′⊆Z be a Zariski-
closed cone that is closed under the action of GLM . Think of GLn2+1T

n−mperm ⊆ GLn2+1detn or
of GLn2Xn−m

1,1 perm ⊆ GLn2detn for some fixed values of n and m. Then I(Z)δ ⊆ I(Z ′)δ and thus
we obtain a canonical GLn2-equivariant surjection C[Z]δ�C[Z ′]δ. By Schur’s lemma (Cor. 12.6)
this implies multλ(C[Z])≥multλ(C[Z ′]).

Thus if we want to prove Z ′ 6⊆ Z, it is sufficient to show the existence of some λ that satisfies
multλ(C[Z])<multλ(C[Z ′]). Such λ are called representation theoretic multiplicity obstructions.
If multλ(C[Z]) = 0<multλ(C[Z ′]), then these λ a called occurrence obstructions.

Mulmuley and Sohoni conjectured that one could separate VNP 6⊆VPws by using occurrence
obstructions, but this was recently rejected:

Conjecture 12.12. For every polynomial p there exist infinitely many m and n ≥ p(m)
with: If Z ′ := GLn2Xn−m

1,1 perm and Z := GLn2detn, then there exists λ with multλ(C[Z ′]) >
0 = multλ(C[Z]).

Theorem 12.13 ([22]). Let n ≥ m25 and let Z ′ := GLn2Xn−m
1,1 perm and Z := GLn2detn. If

multλ(C[Z ′])> 0, then multλ(C[Z])> 0.
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It is an open problem if multiplicities can be used to separate orbit closures. More specifically,
it is open if VNP 6⊆VPws can be proved using representation theoretic multiplicity obstructions.

12.4.1 Plethysm coefficients

When we try to find λ such that multλ(C[Z ′])>multλ(C[Z])> 0, then a necessary condition
is that the plethysm coefficient exceeds multλ(C[Z]), which we explain in this section (see
Lemma 12.14).

Let A=C[X1, . . . ,XM ]d. Fix δ ∈N. Let λ be a partition of dδ. Define the plethysm coefficient
as

aλ(δ,d) := multλ(C[A]δ).

We will see later (Proposition 19.8) that aλ(δ,d) basically does not depend on M : Define
`(λ) := max{i | λi > 0}. If `(λ)>M , then aλ(δ,d) = 0. On the other hand aλ(δ,d) has the same
value for all M ≥ `(λ). Therefore we define aλ(δ,d) to be the value for large M .

Finding a combinatorial description for aλ(δ,d) is a major open problem in algebraic combina-
torics. It is problem 9 on Stanley’s problem list from 2000 [73]. In terms of theoretical computer
science, this quesion can be phrased as: Is the function (λ,δ,d) 7→ aλ(δ,d) in the complexity class
#P? Here we are allowed to encode the partition λ in unary.

The Schur software and the LiE software can compute plethysm coefficients.

Lemma 12.14. There exists λ with multλ(C[Gv]δ)<aλ(δ,d) iff the type λ occurs in the vanishing
ideal I(Gv)δ.

Proof. C[A]δ = I(Gv)δ⊕C[Gv]δ and thus aλ(δ,d) = multλ(C[Gv]δ) + multλ(I(Gv)δ).

Multiplicities

Representation-theoretic multiplicities count how often an irreducible representation
occurs in a decomposition into irreducibles.
The vanishing ideal and the coordinate ring are dual notions. Their multiplicities add
up to the plethysm coefficient.
An attack route towards finding obstructions goes via comparing multiplicities in
coordinate rings of orbit closures. Occurrence obstructions are known not to separate
VPws from VNP.

13 Tensors for computer scientists

In this chapter we discuss tensors. This will serve mainly two purposes: To discuss the
computational complexity of bilinear maps using geometric complexity theory, and to explicitly
construct the irreducible representations of GLn and their highest weight vectors.

THEORY OF COMPUTING 74

http://dx.doi.org/10.4086/toc


INTRODUCTION TO GEOMETRIC COMPLEXITY THEORY

13.1 Bilinear forms

Let U and V be vector spaces over F. All vector spaces are assumed to be finite dimensional. Let
f : U ×V → F be a bilinear form, that is, a form which is linear in both components. We denote
the set of all bilinear forms by Bil(U,V ;F). A linear form ` : U → F is uniquely determined when
we know its values at any basis u1, . . . ,um of U . How about f?
Lemma 13.1. Let u1, . . . ,um and v1, . . . ,vn be bases of U and V , respectively. Then f is uniquely
determined by the values fi,j := f(ui,vj), 1≤ i≤m, 1≤ j ≤ n.
Proof. Let g : U ×V → F be another bilinear form with g(ui,vj) = fi,j , 1≤ i≤m, 1≤ j ≤ n. Let
u=∑m

i=1αiui and v =∑n
j=1βjvj be arbitrary. We have

g(u,v) = g(
m∑
i=1

αiui,
n∑
j=1

βjvj)

=
m∑
i=1

αig(ui,
n∑
j=1

βjvj)

=
m∑
i=1

n∑
j=1

αiβjg(ui,vj)

=
m∑
i=1

n∑
j=1

αiβjfi,j

= f(u,v).

Note that to get the last line, we used bilinearity again.

By choosing the bases, we identiy U with Fm and V with Fn. Now, we can write f even
more concretely as

f(x,y) =
m∑
i=1

n∑
j=1

fi,jxiyj .

(As a golden rule, you should avoid specifying a basis unless it is really neccessary. However, it
is at first more intuitive to think in terms of bases.) You usually think of xi as an indeterminate,
and to evaluate f we substitute the value αi for xi. But you can also think of xi being a linear
form mapping (by substitution) a vector ∑m

i=1αiui to αi, that is, x1, . . . ,xm is a dual basis to
u1, . . . ,um. The same is true for y1, . . . ,yn. The products of linear forms xiyj form a basis of the
linear space of bilinear forms U ×V → F. Recall that the set of all linear forms on U or V are
denoted by U∗ of V ∗, respectively.
Definition 13.2. The space of all bilinear forms U ×V → F is called the tensor product of U∗
and V ∗ and is denoted by U∗⊗V ∗.

Let x=∑m
i=1αixi ∈ U∗ and y =∑n

j=1βjyj ∈ V ∗. We have

xy =
m∑
i=1

n∑
j=1

αiβjxiyj .
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How do you get the tensor product U⊗V ? You simply start with bilinear forms U∗×V ∗→ F.
While this looks complicated at a first glance—bilinear forms mapping pairs of linear forms to
scalars—also U∗ is just a vector space and once you choose a basis, everything is isomorphic to
some Fm.

Exercise 13.3. Prove that Hom(U,V )∼= U∗⊗V . While this is absolutely clear to every mathe-
matican, computer scientists tend to forget about this pretty soon. (Or even never learned it
this way.)

The previous exercise identifies linear maps U → V with bilinear forms on U ×V ∗. Both
objects are specified by a two-dimensional array of field elements and we interpret this data in two
different ways. So Hom(U,V )∼= Bil(U,V ∗;F) essentially says nothing. However, by re-interpreting
objects in the right way, one can often prove astonishing facts very quickly. You should get used
to this!

13.2 Universal property

We can define tensor products also in terms of a universal property. A tensor product of two spaces
U and V is a vector space, denoted by U ⊗V , together with a bilinear map φ : U ×V → U ⊗V
such that for any bilinear map b : U ×V →W , there is a unique linear map ` : U ⊗V →W such
that b= `◦φ. Given a tensor product, we set u⊗v := φ(u,v) for every u ∈ V and v ∈ V .

Theorem 13.4. Let U and V be (finite-dimensional) vector spaces.

1. U and V have a tensor product.

2. Any two tensor products of U and V are isomorphic.

3. If u1, . . . ,um is a basis of U and v1, . . . ,vn is a basis of V , then ui⊗vj, 1≤ i≤m, 1≤ j ≤ n
is a basis of U ⊗V .

Proof. To prove the first item, we construct an explicit tensor product. It will be the construction
of the previous section. We set U ⊗V = Bil(U∗,V ∗;F) and φ(u,v)(x,y) = x(u) ·y(v). Then the
third item immediately follows from the discussion right after Lemma 13.1.

Let b : U × V → W be a bilinear map. We choose a basis u1, . . . ,um of U and a basis
v1, . . . ,vn of V . To finish the proof of the first item, we define the linear map ` : U ⊗V →W by
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`(ui⊗vj) := b(ui,vj), 1≤ i≤m, 1≤ j ≤ n. Note that for u=∑m
i=1αiui and

∑n
j=1βjvj , we have

`(u⊗v) = `(
m∑
i=1

αiui⊗
n∑
j=1

βjvj)

= `(
m∑
i=1

n∑
j=1

αiβjui⊗vj)

=
m∑
i=1

n∑
j=1

αiβj`(ui⊗vj)

=
m∑
i=1

n∑
j=1

αiβjb(ui,vj)

= b(u,v),

so `◦φ and b are equal. ` is unique, since it is defined on a basis of U ×V .
It remains to prove the second item. Assume we have two tensor products U ⊗V , φ and

U ⊗′ V , φ′. We apply the definition of tensor product to U ⊗V and φ and let the bilinear map
b = φ′ and the vector space W = U ⊗′ V . We get a linear map ` : U ⊗W → U ⊗′ V such that
`◦φ= φ′. In the same way, by interchanging the roles of the two tensor products, we get a linear
map `′ : U ⊗′ V → U ⊗V . The situation is depicted below:

U ×V

U ⊗V

U ⊗′ V

φ

φ′

``′

We have `′ ◦ `◦φ= `′ ◦φ′ = φ. We apply the definition of tensor product to U ⊗V and φ and
let the bilinear map be φ and the vector space W = U ×V . Then the linear map can be the
identity and it can be `′ ◦ ` by the equation above. By the uniqueness of the linear map, we
get that `′ ◦ ` is the identity (on U ⊗V ). In the same way, we get that `◦ `′ is the identity (on
U ⊗′ V ). Thus ` and `′ are isomorphisms.

Exercise 13.5. Let U , V , and W be vector spaces. Prove the following (the isomorphisms can
be proved using the univesal property):

1. U ⊗V ∼= V ⊗U .

2. U ⊗ (V ⊗W )∼= (U ⊗V )⊗W .

3. dimU ⊗V = dimU ·dimV .
The second item says that the tensor product is associative (up to isomorphisms), therefore,

we simply can write U ⊗V ⊗W . One could also define a threefold tensor product directly by
defining it as the vector space of trilinear form U∗×V ∗×W ∗→ F. In the same way, we can
build the tensor product of an arbitrary number of vector spaces.
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13.3 Tensor rank

Elements of the form u⊗v ∈ U ⊗V are called elementary or decomposable or rank-one tensors.
Not all elements are elementary, for instance u1⊗v1 +u2⊗v2 is not elementary when u1 and u2
as well as v1 and v2 are linearly independent. In general, if we have a tensor product V1⊗·· ·⊗Vk,
we call elements of the form v1⊗·· ·⊗vk with vi ∈ Vi elementary (or decomposable or rank-one
tensors).

The rank of a matrix M can be defined as the minimum number r of rank one matrices
S1, . . . ,Sr such that M = S1 + · · ·+Sr. In the same way, we define the rank of a tensor t ∈
V1⊗·· ·⊗Vk as the minimum number of rank-one tensors s1⊗·· ·⊗sr ∈ V1⊗·· ·⊗Vk such that

t= s1 + · · ·+sr.

We denote the rank of a tensor by R(t).
Note that this generalizes the rank of a matrix. Any matrix M can be interpreted as an

element of U∗⊗V . A rank-one matrix S can be written as S = a · b where a is a column vector
and b is a row vector. Then for any column vector x,

S ·x= (a · b) ·x= (b ·x) ·a,

because b ·x is a 1×1 matrix. In this way, we can interpret b as a linear form on U .
Note that for matrices, we have further equivalent definitions of rank. In particular, there

are efficient algorithms for computing the rank. This is not true for tensors in a threefold (or
higher) tensor product. Here the problem is NP-hard [42], even complete for the existential
theory over the underlying ground field F [70, 71], and also hard to approximate [12, 77, 72].

13.4 Actions on tensor products

Let V1, . . . ,Vk and U1, . . . ,Uk be vector spaces and let Ai ∈Hom(Vi,Ui), 1≤ i≤ k. We can extend
the Ai to a homomorphism

A1⊗·· ·⊗Ak : V1⊗·· ·⊗Vk→ U1⊗·· ·⊗Uk

in the following way: Let v1⊗·· ·⊗vk ∈ V1⊗·· ·⊗Vk. We set

A1⊗·· ·⊗Ak(v1⊗·· ·⊗vk) =A1(v1)⊗·· ·⊗Ak(vk)

and extend A1⊗·· ·⊗Ak to V1⊗·· ·⊗Vk by linearity.

Exercise 13.6. Prove that A1⊗·· ·⊗Ak is well-defined, that is, if we decompose a tensor t in
two different ways into rank-one tensors, then we get the same result.

Definition 13.7. Let t ∈ V1⊗·· ·⊗Vk and s ∈ U1⊗·· ·⊗Uk. We call s a restriction of t and
write s≤ t if there are Ai ∈ Hom(Vi,Ui), 1≤ i≤ k, such that A1⊗·· ·⊗Ak(t) = s.

The proof of the following lemma is obvious.
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Lemma 13.8. If s is a restriction of t, then R(s)≤R(t).

We can let End(V1)×·· ·×End(Vk) act on V1⊗·· ·⊗Vk by

(A1, . . . ,Ak)t=A1⊗·· ·⊗Ak(t).

If Ui is a subspace of Vi, then we can write the fact that s is a restriction of t as a monoid orbit
problem, namely, s≤ t iff

s ∈ (End(V1)×·· ·×End(Vk))t.

Note that by Lemma 13.8, this means that R(s)≤R(t). In the next chapter, we will see how we
can interpret this in terms of complexity.

The language of tensors

The language of tensors is a natural way of describing multilinear maps.
This will help us in the study of the complexity of bilinear maps.
Moreover, tensor products are fundamental building blocks in the representation theory
of GLn.

14 Complexity of bilinear maps

The following two chapters give a brief introduction to the tensor rank problem and its relation
to fast matrix multiplication. Many results have been taken from [10], nevertheless we decided
to restate them explicitly for the reader’s convenience. For even more details, the reader is
referred to [10] and the references given there.

14.1 Strassen’s algorithm

Given a k×m-matrix x= (xhi) and and m×n-matrix y = (yij) whose entries are indeterminates
over some field F, we want to compute their product xy = (zhj). The entries zhj are given by

zhj =
m∑
i=1

xhiyij , 1≤ h≤ k, 1≤ j ≤m. (14.1)

In 1969, Strassen [75] found a way to multiply 2×2-matrices with only 7 multiplications but 18
additions.

Let zij , 1≤ i, j ≤ 2, be given by(
z11 z12
z21 z22

)
=
(
x11 x12
x21 x22

)(
y11 y12
y21 y22

)
.
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We compute the seven products

p1 = (x11 +x22)(y11 +y22),
p2 = (x21 +x22)y11,

p3 = x11(y12−y22),
p4 = x22(−y11 +y21),
p5 = (x11 +x12)y22,

p6 = (−x11 +x21)(y11 +y12),
p7 = (x12−x22)(y21 +y22).

We can express each of the zij as a linear combination of these seven products, namely,(
z11 z12
z21 z22

)
=
(
p1 +p4−p5 +p7 p3 +p5

p2 +p4 p1 +p3−p2 +p6

)
.

By applying this construction recursively, we get the well-known algorithm which multiplies
matrices in time O(nlog2 7). To make the recursion work, it is crucial that the entries are bilinear
products.

14.2 Relation to tensor rank

Assume that in general, we have k bilinear forms

zh =
m∑
i=1

n∑
j=1

ti,j,hxiyj , h= 1, . . . ,k

and we have r bilinear products

pρ = (uρ,1x1 + · · ·+uρ,mxm)(vρ,1y1 + · · ·+vρ,mym)

such that we can write each zh as a linear combination of them, that is,

zh = w1,hp1 + · · ·+wr,hpr.

We can view the “array” t= (th,i,j) as a tensor in Fk⊗Fm⊗Fn. The products p1, . . . ,pr correspond
to a decomposition of t into rank-one tensors: Namely, let wρ = (wρ,1, . . . ,wρ,k), 1≤ ρ≤ r and
define uρ and vρ accordingly. Then

wρ⊗uρ⊗vρ = (wρ,huρ,ivρ,j)

and by comparing coefficients, we get that

t=
r∑

ρ=1
wρ⊗uρ⊗vρ.

In the same way, if we have a decomposition of t into r rank-one tensors, then we can obtain r
bilinear products such that each zh is contained in their linear span. Therefore, the minimal
number of such products is precisely R(t).
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x1,1 x1,2 x2,1 x2,2
y1,1 (1,1) (1,2)
y2,1 (1,1) (1,2)
y1,2 (2,1) (2,2)
y2,2 (2,1) (2,2)

Figure 9: The tensor of 2×2-matrix multiplication. It is {0,1}-valued. An entry (h,j) in the row (h,i)
and column (i, j) means that xh,iyi,j appears in zj,i. Recall that we transposed the third
component.

14.3 The exponent of matrix multiplication

We denote the tensor of the multiplication of k×m-matrices with m×n-matrices by 〈k,m,n〉.
The corresponding tensor lives in Fk×m⊗Fm×n⊗Fn×k. We here transpose the matrices in the
last component for symmetry reasons. Note that every component is indexed by double-indices.
We have

zj′,h =
m∑
i=1

xh,iyi,j′ =
k∑

h′=1

m∑
i=1

m∑
i′=1

n∑
j=1

δh,h′δi,i′δj,j′xh′,iyi′,j ,

Thus 〈k,m,n〉= (δh,h′δi,i′δj,j′). Figure 9 contains an explicit description of the tensor of 2×2-
matrix multiplication.
Definition 14.1. ω= inf{β |R(〈n,n,n〉)≤O(nβ)} is called the exponent of matrix multiplication.

In the definition of ω above, we only count bilinear products. For the asymptotic growth, it
does not matter whether we count all operations or only bilinear products [7], see also [18, 10].
Let ω̃ be the infimum over all β such that there is a family of arithmetic circuits of size O(nβ)
computing the product of two n×n-matrices. Since these circuits compute forms of degree
two, we can make these circuits homogeneous such that the only nonscalar multiplications are
products of linear forms.
Theorem 14.2. ω = ω̃.

Proof. We first prove ω≤ ω̃: Consider an arbitrary circuit computing the product of two matrices.
Let r be number of nonscalar multiplications in it. As in the transformation of arbitrary circuits
into homogeneous ones, we now compute with each homogeneous component separately. Note
that since the output of each circuit is homogeneous of degree two, we only need to keep the
components of degree up to two. The only nonscalar multiplications that we need to perform are
the multiplications between the degree-one-terms, which is a product of linear forms. Therefore,
we can modify the circuit as follows: We first compute several linear forms, then we perform r
multiplications in them and then we compute linear combinations of the r products.

Does this prove that the rank is bounded by r, too? Not quite. The linear forms can be
linear forms in the entries of both matrices. Consider such a product u(X,Y )v(X,Y ). We can
write u(X,Y ) = u′(X) +u′′(Y ). We do the same for v. Then

u(X,Y )v(X,Y ) = u′(X)v′(X) +u′(X)v′′(Y ) +u′′(Y )v′(X) +u′′(Y )v′′(Y ).
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Since the outputs are all bilinear forms, the contribution of all u′(X)v′(X) and of all u′′(Y )v′′(Y )
cancel. Therefore, we can replace the product above by two bilinear products u′(X)v′′(Y ) +
u′′(Y )v′(X). Therefore, the rank is bounded by 2r and ω ≤ ω̃.

For the other inequality, note that from the definition of ω, it follows that

∀ε > 0 : ∃α and m0 > 1 : ∀m≥m0 :R(〈m,m,m〉)≤ α ·mω+ε.

Let ε > 0 be given and choose m large enough. Let r =R(〈m,m,m〉).
To multiply mi×mi-matrices we decompose them into blocks of mi−1×mi−1-matrices and

apply recursion. To multiply matrices of arbitrary sizes, we can pad with 0 to the next power of
m. Let A(n) be the number of arithmetic operations for the multiplication of n×n-matrices
with this approach. We obtain

A(n)≤ rA(n/m) + c(n/m)2

where c is the number of additions and scalar multiplications that are performed by the chosen
bilinear algorithm for 〈m,m,m〉 with r bilinear multiplications. Solving the recursion using the
master theorem [28], we get A(n) =O(nlogm r). (Note that r >m2 in general, so logm r > 2 and
we are in the first case of the master theorem.)

Since r ≤ α ·mω+ε, we have logm r ≤ ω+ ε+ logmα. With ε′ = ε+ logmα,

L(〈n,n,n〉) =O(nlogm r) =O(nω+ε′).

Thus
ω̃ ≤ ω+ ε for all ε > 0,

since logmα→ 0 if m→∞. This means ω̃ = ω, since ω̃ is an infimum.

Remark 14.3. The lower bound R(〈n,n,n〉)≥ 5
2n

2−3n was obtained in [8]. [51] improved this
lower bound to R(〈n,n,n〉)≥ 3n2−o(n2).

14.4 Rank and restrictions

In the following, 〈r〉 denotes the tensor in Fr⊗Fr⊗Fr that has a 1 in the positions (ρ,ρ,ρ),
1≤ ρ≤ r, and 0s elsewhere (a “diagonal”, the three-dimensional analogue of the identity matrix).
This tensor corresponds to the r bilinear forms xρyρ, 1≤ ρ≤ r (r independent products) and is
called the unit tensor.

Lemma 14.4. R(t)≤ r⇔ t≤ 〈r〉.

Proof. "⇐": follows immediately from the observations that s≤ s′ implies R(s)≤R(s′).
"⇒": 〈r〉=

r∑
ρ=1

eρ⊗eρ⊗eρ, where eρ is the ρth unit vector. If the rank of t is ≤ r, then we can

write t as the sum of r triads,

t=
r∑

ρ=1
uρ⊗vρ⊗wρ.
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We define three homomorphisms

α :eρ 7→ uρ, 1≤ ρ≤ r,
β :eρ 7→ vρ, 1≤ ρ≤ r,
γ :eρ 7→ wρ, 1≤ ρ≤ r.

By construction,

(α⊗β⊗γ)〈r〉=
r∑

ρ=1
α(eρ)︸ ︷︷ ︸

=uρ

⊗β(eρ)︸ ︷︷ ︸
=vρ

⊗γ(eρ)︸ ︷︷ ︸
=wρ

= t.

Thus we can rephrase the question whether R(〈n,n,n〉) ≤ r as 〈n,n,n〉 ≤ 〈r〉. Note that
〈n,n,n〉 and 〈r〉 live in general in different spaces, (Fn×n)⊗3 and (Fr)⊗3. For r≥ n2 we can embed
〈n,n,n〉 into (Fr)⊗3 by padding the tensor with zeros. Therefore, the question R(〈n,n,n〉)≤ r is
equivalent whether the padded 〈n,n,n〉 is in the End(Fr)×3-orbit of 〈r〉.

14.5 Permutations of matrix multiplication tensors

Let t ∈ Fk⊗Fm⊗Fn and t =
r∑
j=1

tj with rank-one tensors tj = aj1⊗ aj2⊗ aj3, 1 ≤ j ≤ r. Let

π ∈ S3, where S3 denotes the symmetric group on {1,2,3}. For a rank-one tensor tj , let
πtj = ajπ−1(1)⊗ajπ−1(2)⊗ajπ−1(3) and πt=∑r

j=1πtj . It is an easy exercise to prove that πt is
well-defined. The proof of the following lemma is obvious.

Lemma 14.5. R(t) =R(πt).

Let t= (th′,i,i′,j,j′,h) = 〈k,m,n〉 and π = (123). Then for πt=: t′ ∈ F(n×k)⊗F(k×m)⊗F(m×n),
we have

t′j′,h,h′,i,i′,j = δj,j′δh,h′δi,i′

= δi,i′δj,j′δh,h′

= th′,i,i′,j,j′,i

Therefore,
R(〈k,m,n〉) =R(〈n,k,m〉) =R(〈m,n,k〉).

Now, let t′′ = (ti,h′,j,i′,h,j′). We have R(t) = R(t′′), since permuting the “inner” indices
corresponds to permuting the slices of the tensor.9

Next, let π = (12)(3). Let πt′′ =: t′′′ ∈ F(n×m)⊗F(m×k)⊗F(k×n). We have,

t′′′j′,i,i′,h,h′,j = δi,i′δh,h′δj,j′

= th′,i,i′,j,j′h.

9We can think of a tensor s= (si,j,k) ∈ Fk⊗Fm⊗Fn as k matrices si = (si,j,k) ∈ Fm×n stacked on top of each
other. These are the 1-slices of s. In the same way, we define the 2- and 3-slices.
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Therefore,
R(〈k,m,n〉) =R(〈n,m,k〉).

The second transformation corresponds to the well-known fact that AB =C implies BTAT =CT .
To summarize:

Lemma 14.6. R(〈k,m,n〉) =R(〈n,k,m〉) =R(〈m,n,k〉) =R(〈m,k,n〉) =R(〈n,m,k〉) =R(〈k,n,m〉).

14.6 Products of matrix multiplication tensors

If we have two tensors t ∈ U ⊗V ⊗W and t′ ∈ U ′⊗V ′⊗W ′, we can view their product t⊗ t′ ∈
(U⊗V ⊗W )⊗ (U ′⊗V ′⊗W ′) as a tensor in (U⊗U ′)⊗ (V ⊗V ′)⊗ (W ⊗W ′) by using the natural
isomorphism.

Lemma 14.7. R(t⊗ t′)≤R(t)R(t′).

Proof. Let t=
r∑
i=1

ui⊗vi⊗wi and t′ =
r′∑
i=1

u′i⊗v′i⊗w′i. We have

t⊗ t′ = (
r∑
i=1

ui⊗vi⊗wi)⊗ (
r′∑
j=1

u′j⊗v′j⊗w′j)

r∑
i=1

r′∑
j=1

(ui⊗vi⊗wi)⊗ (u′j⊗v′j⊗w′j)

r∑
i=1

r′∑
j=1

(ui⊗u′j)⊗ (vi⊗v′j)⊗ (wi⊗w′j).

Note that for the rank, it can make a difference whether we view t⊗ t′ as a tensor in
(U ⊗U ′)⊗ (V ⊗V ′)⊗ (W ⊗W ′) or U ⊗U ′⊗V ⊗V ′⊗W ⊗W ′. In the first case the number of
inputs stays the same, we still compute bilinear forms. But the size of each input increases.
In the second case, we would have five inputs, but their size stays the same. For complexity
applications, we choose the first point of view. This is sometimes called a vertical tensor product.

Let u1, . . . ,uk be a basis of U , v1, . . . ,vm of V , and w1, . . . ,wk ofW . Let th,i,j be the coefficient
of t of uh⊗vi⊗wj . In the same way, choose bases for the other three spaces and let t′h′,i′,j′ be the
coefficient of t′ of uh′⊗vi′⊗wj′ . Then the coefficient of t⊗ t′ of (uh⊗u′h′)⊗ (vi⊗v′i′)⊗ (wj⊗w′j′)
is th,i,jth′,i′,j′ .

For the tensor product of matrix multiplications, we have

〈k,m,n〉⊗〈k′,m′,n′〉= (δκκ̄δµµ̄δνν̄δκ′κ̄′δµ′µ̄′δν′ν̄′)
= (δκκ̄δκ′κ̄′δµµ̄δµ′µ̄′δνν̄δν′ν̄′)
=
(
δ(κ,κ′),(κ̄,κ̄′)δ(µ,µ′),(µ̄,µ̄′)δ(ν,ν′),(ν̄,ν̄′)

)
= 〈kk′,mm′,nn′〉
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Thus, the tensor product of two matrix multiplication tensors is a bigger matrix multiplication
tensor. This corresponds to the well known identity (A⊗B)(A′⊗B′) = (AA′⊗BB′) for the
Kronecker product of matrices. (Note that we use quadruple indices to address the entries of the
Kronecker products and also of the slices of 〈k,m,n〉⊗〈k′,m′,n′〉.) It follows that the inequality
in Lemma 14.7 can be strict. We have R(〈2,2,2〉) = 7, but there are faster ways to multiply
matrices than Strassen’s algorithm.

Using this machinery, we can show that whenever we can multiply matrices of a fixed format
efficiently, then we get good bounds for ω.
Theorem 14.8. If R(〈k,m,n〉)≤ r, then ω ≤ 3 · logkmn r.
Proof. If R(〈k,m,n〉)≤ r, then R(〈n,k,m〉)≤ r and R(〈m,n,k〉)≤ r by Lemma 14.6. Thus, by
Lemma 14.7,

R(〈k,m,n〉⊗〈n,k,m〉⊗〈m,n,k〉︸ ︷︷ ︸
=〈kmn,kmn,kmn〉

)≤ r3

and, with N = kmn,

R(〈N i,N i,N i〉 ≤ r3i = (N3logN r)i = (N i)3logN r

for all i≥ 1. Therefore, ω ≤ 3logN r.

Thus, to get a fast matrix multiplication algorithm, it suffices to get a good upper bound on
the rank of some fixed matrix multiplication tensor. However, Coppersmith and Winograd [27]
prove that we cannot achieve ω = 2 by starting with a fixed size matrix multiplication tensor.

Tensor rank and the exponent of matrix multiplication

The exponent of matrix multiplication ω can be expressed equivalently using arithmetic
circuits and tensor rank.
Tensor rank can be studied via the restrictions of the unit tensor.

15 Border rank

15.1 Approximate computations

Over R or C, the rank of matrices is semi-continuous. Let

Cn×n 3Aj →A= lim
j→∞

Aj

If for all j, rk(Aj)≤ r, then rk(A)≤ r as rk(Aj)≤ r means all (r+ 1)× (r+ 1) minors vanish.
But since minors are continuous functions, all (r+ 1)× (r+ 1) minors of A vanish, too.

The same is not true for 3-dimensional tensors. Consider the multiplication of univariate
polynomials of degree one modulo X2:

(a0 +a1X)(b0 + b1X) = a0b0 + (a1b0 +a0b1)X+a1b1X
2

The tensor corresponding to the two bilinear forms a0b0 and a1b0 +a0b1 consists of the two slices:
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1 0
0 0

0 1
1 0

It has rank 3: To show the lower bound, we use a method called the substitution method.
We first set a0 = 0, b0 = 1. Then we still compute a1. Thus there is a product that depends on
a1, say one factor is αa0 +βa1 with β 6= 0. When we replace a1 by −α

β a0, we kill one product.
We still compute a0b0 and −α

β a0b0 +a0b1. Next, set a0 = 1, b0 = 0. Then we still compute b1.
We can kill another product by substituting b1 as above. After this, we still compute a0b0, which
needs one product.

However, we can approximate the tensor above by tensors of rank two. Let

t(ε) = (1, ε)⊗ (1, ε)⊗ (0, 1
ε ) + (1,0)⊗ (1,0)⊗ (1,−1

ε )

t(ε) obviously has rank two for every ε > 0. The slices of t(ε) are

1 0
0 0

0 1
1 ε

Thus t(ε)→ t if ε→ 0.
Bini, Capovani, Lotti and Romani [7] used this effect to design better matrix multiplication

algorithms. They started with the following partial matrix multiplication tensor that we denote
by {z11,z12,z21}: (

x11 x12
x21 x22

)(
y11
y21

∣∣∣∣∣ y12
y22

)
=
(
z11
z21

∣∣∣∣∣ z12
∗

)
where we only want to compute three entries of the result. It can be shown using the substitution
method that R({z11,z12,z21}) = 6, but we can approximate {z11,z12,z21} with only five products.
Consider the following five products:

p1 = (x12 + εx22)y21,

p2 = x11(y11 + εy12),
p3 = x12(y11 +y21 + εy22),
p4 = (x11 +x12 + εx21)y11,

p5 = (x12 + εx21)(y11 + εy22).

We have

εz11 = εp1 + εp2 +O(ε2),
εz12 = p2−p4 +p5 +O(ε2),
εz21 = p1−p3 +p5 +O(ε2).

Here, O(εi) collects terms of degree i or higher in ε. Now we take a second copy of the
partial matrix multiplication above, with new variables. With these two copies, we can multiply
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2× 2-matrices with 2× 3-matrices (by identifying some of the variables in the copy). So we
can approximate 〈2,2,3〉 with 10 multiplications. If approximation would be as good as exact
computation, then we would get ω ≤ 2.78 out of this, an improvement over Strassen’s algorithm.

We will formalize the concept of approximation. We need to be more formal here, since we
want to control the degree of approximation in order to turn approximate into exact computations.
The role of the small quantity ε in the beginning of this chapter is now taken by the indeterminate
ε.

Definition 15.1. Let h ∈ N, t ∈ Fk⊗Fm⊗Fn.

1. Rh(t) = min{r | ∃uρ ∈ F[ε]k,vρ ∈ F[ε]m,wρ ∈ F[ε]n :
r∑

ρ=1
uρ⊗vρ⊗wρ = εht+O(εh+1)}.

2. R(t) = min
h
Rh(t). R(t) is called the border rank of t.

Remark 15.2. 1. R0(t) =R(t).

2. R0(t)≥R1(t)≥ ...=R(t).

3. For Rh(t) it is sufficient to consider powers up to εh in uρ,vρ,wρ.

Above, we have used an algebraic definition of border rank. There is an equivalent geometric
definition (see the end of this chapter), but the proof of equivalence is beyond the scope of this
lecture.

Theorem 15.3 (Alder [3]). Let U , V , and W be vector spaces over an algebraically closed
field. The set of all tensors t ∈ U ⊗V ⊗W with R(t)≤ r is the closure of the set of all tensors
s ∈ U ⊗V ⊗W with R(s)≤ r.

15.2 Properties of border rank

Theorem 15.4. Let t ∈ Fk⊗Fm⊗Fn, t′ ∈ Fk′⊗Fm′⊗Fn′. We have

1. ∀π ∈S3 :Rh(πt) =Rh(t).

2. Rh+h′(t⊗ t′)≤Rh(t) ·Rh′(t′).

Proof. 1. Clear.

2. Let t= (ti,j,l) and t′ = (t′i′,j′,l′). We have t⊗ t′ = (ti,j,l · t′i′,j′,l′) ∈ Fkk′⊗Fmm′⊗Fnn′ . Take
two approximate computations for t and t′ as above. Viewed as exact computations over
F[[ε]], their tensor product computes over the following:

T = εht+ εh+1s, T ′ = εh
′
t′+ εh

′+1s′
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with s ∈ F[ε]k⊗F[ε]m⊗F[ε]n and s′ ∈ F[ε]k′⊗F[ε]m′⊗F[ε]n′ . The tensor product of these
two computations computes:

T ⊗T ′ = (εhtijl+ εh+1sijl)(εh
′
t′i′j′l′+ εh

′+1s′i′j′l′)
= (εh+h′tijlt

′
i′j′l′+O(εh+h′+1))

= εh+h′t⊗ t′+O(εh+h′+1)
But this is an approximate computation for t⊗ t′.

15.3 From approximate to exact computations

The next lemma shows that we can turn approximate computations for matrix multiplication
into exact ones. So for matrix multiplication, border rank is the right measure.
Lemma 15.5. There is a constant ch such that for all t: R(t)≤ chRh(t). ch depends polynomially
on h, in particular ch ≤

(
h+2

2

)
.

Remark 15.6. Over infinite fields, even ch = 1 + 2h works.
Proof. Let t be a tensor with border rank r and let

r∑
ρ=1

(
h∑

α=0
εαuρα

)
⊗

 h∑
β=0

εβvρβ

⊗
 h∑
γ=0

εγwργ

= εht+O(εh+1)

The left-hand side of the equation can be rewritten as follows:
r∑

ρ=1

h∑
α=0

h∑
β=0

h∑
γ=0

εα+β+γuρα⊗vρβ⊗wργ

By comparing the coefficients of ε powers, we see that t is the sum of all uρα⊗vρβ⊗wργ with
α+β+γ = h. Thus to compute t exactly, it is sufficient to compute

(
h+2

2

)
products for each

product in the approximate computation.

The following theorem is the border rank version of Theorem 14.8.
Theorem 15.7. If R(〈k,m,n〉)≤ r then ω ≤ 3logkmn r.
Proof. Let N = kmn and let Rh(〈k,m,n〉)≤ r. By Theorem 15.4, we get R3h(〈N,N,N〉)≤ r3

and R3hs(〈N s,N s,N s〉)≤ r3s for all s. By Lemma 15.5, this yields R(〈N s,N s,N s〉)≤ c3hsr
3s.

Therefore,

ω ≤ logNs(c3hsr
3s) = 3s logNs(r) + logNs(c3hs) = 3logN (r) +

1
s

logN (poly(s))︸ ︷︷ ︸
→0

for s→∞. Since ω is an infimum, we get ω ≤ 3logN (r).

Corollary 15.8. ω ≤ 2.78.
Proof. Combine Theorem 15.7 with R(〈2,2,3〉)≤ 10.
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15.4 Degeneration

Degenerations relate to border rank like restrictions relate to rank. Again, we only give an
algebraic definition of degenerations and we simply state an equivalent topological definition.
Furthermore, we choose coordinate right from the beginning, since it simplifies the notations
somewhat.

Definition 15.9. Let t ∈ Fk⊗Fm⊗Fn, t′ ∈ Fk′⊗Fm′⊗Fn′ .

1. Let t′ =
r∑

ρ=1
uρ⊗ vρ⊗wρ as well as A(ε) ∈ F[ε]k×k′ , B(ε) ∈ F[ε]m×m′ , and C(ε) ∈ F[ε]n×n′ .

Define
(A(ε)⊗B(ε)⊗C(ε))t′ =

r∑
ρ=1

A(ε)uρ⊗B(ε)vρ⊗C(ε)wρ.

(This is well-defined.)

2. t is a degeneration of t′ if there are A(ε) ∈ F[ε]k×k′ , B(ε) ∈ F[ε]m×m′ , C(ε) ∈ F[ε]n×n′ , and
q ∈ N such that

εqt= (A(ε)⊗B(ε)⊗C(ε))t′+O(εq+1).
We will write tEq t′ or simply tE t′.

As for the rank, it is very easy to prove the following lemma.

Lemma 15.10. Let s and t be tensors.

1. tE s⇒R(t)≤R(s).

2. R(t)≤ r⇔ tE 〈r〉.

The proof of the following theorem is beyond the scope of this lecture.

Theorem 15.11 (Strassen [74]). Let F be algebraically closed. Let U , V , and W be vector
spaces over F. Let t ∈ U ⊗V ⊗W .

{s ∈ U ⊗V ⊗W | sE t}= {s ∈ U ⊗V ⊗W | s≤ t}.

Since {s ∈ U ⊗V ⊗W | s E t} is constructible (it is the image of a constructible set un-
der a polynomial map, see Theorem 4.12), the Zariski closure and the C-closure coincide in
Theorem 15.11 (see Theorem 4.15).

Let t ∈ V ⊗V ⊗V and dimV = r. R(t) ≤ r is equivalent to t E 〈r〉. If t lives in a smaller
space U ⊗U ⊗U , we first embed it into V ⊗V ⊗V by choosing a injective linear map U → V .
By the above theorem, tE 〈r〉 is equivalent to

t ∈ End(V )×3〈r〉,

so again, we have a (monoid) orbit closure problem. Since GL(V ) lies dense in End(V ), we can
even just look at group orbits:

t ∈ GL(V )×3〈r〉.
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Border rank: a geometric complexity measure

In the same way as defining the border determinantal complexity via the determinantal
complexity, we define the border rank via the tensor rank.
As for the border determinantal complexity, border rank lower bounds can be defined
via an orbit closure question.

16 Symmetric and alternating tensors

Let V be a vector space. Recall that the characteristic is zero. The symmetric group Sd acts
on V ⊗d by (π,t= v1⊗·· ·⊗vd) 7→ πt= vπ−1(1)⊗·· ·⊗vπ−1(d) and linear extension to higher rank
tensors. (In the previous chapters, we defined this for d= 3.)

16.1 S2V and Λ2V

We start with the simplest examples. Let v1, . . . ,vn be a basis of V . The space S2V is defined as

S2V = 〈vi⊗vj +vj⊗vi | 1≤ i, j ≤ n〉.

We call it the space of symmetric 2-tensors of V .

Proposition 16.1. 1. S2V = 〈v⊗v | v ∈ V 〉.

2. For t ∈ V ⊗V , t ∈ S2V iff (1,2)t= t.

Proof. We start with the first item. We have

(vi+vj)⊗ (vi+vj)− (vi−vj)⊗ (vi−vj) = 2(vi⊗vj +vj⊗vi).

Therefore, the left-hand side is contained in the right-hand side. On the other hand, if v =
α1v1 + · · ·+αnvn, then

v⊗v =
∑
i<j

αiαj(vi⊗vj +vj⊗vi) +
∑
i

α2
i

1
2(vi⊗vi+vi⊗vi).

Thus, the right-hand side is also contained in the left-hand side.
For the second item, notice that every tensor t ∈ S2V fulfills (1,2)t= t, since the basis does.

For the other direction, let t=∑i,j αi,jvi⊗vj . If (1,2)t= t, then αi,j = αj,i for all i, j. Therefore,
t ∈ S2V .

The skew-symmetric 2-tensors of V are defined as

Λ2V = 〈vi⊗vj−vj⊗vi | 1≤ i, j ≤ n〉.

Exercise 16.2. Prove the following:
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1. Λ2V = 〈v⊗w−w⊗v | v,w ∈ V 〉.

2. For all t ∈ Λ2V , (1,2)t=−t.
By the first item of Proposition 16.1 and Exercise 16.2, the spaces S2V and Λ2V are

GL(V )-invariant (where GL(V ) acts simultaneously on both factors).
Proposition 16.3. V ⊗V = S2V ⊕Λ2V .

Proof. By the second item of Proposition 16.1 and Exercise 16.2, S2V ∩Λ2V = {0}. Furthermore,
vi⊗vj = 1

2(vi⊗vj +vj⊗vi) + 1
2(vi⊗vj−vj⊗vi).

Remark 16.4. Proposition 16.3 has a well-known interpretation for matrices: Every square
matrix A can be written uniquely as the sum of a symmetric matrix and a skew-symmetric
matrix. The decomposition is given by

A= 1
2(A+AT ) + 1

2(A−AT )

16.2 Symmetric tensors

Let πS : V ⊗d→ V ⊗d be the map that is defined on rank-one tensors by

πS(v1⊗·· ·⊗vd) = 1
d!
∑
σ∈Sd

vσ(1)⊗·· ·⊗vσ(d).

Definition 16.5. The dth symmetric power of V is defined as SdV := πS(V ⊗d).
Note that this generalises the definition of S2V in the previous section. We write v1v2 . . .vd :=

πS(v1⊗v2⊗·· ·⊗vd).
Proposition 16.6. For all t ∈ V ⊗d, πS(πS(t)) = πS(t), that is, πS is a projection.

Proof. We have

πS(πS(v1⊗·· ·⊗vd)) = 1
d!
∑
τ∈Sd

1
d!
∑
σ∈Sd

vτ(σ(1))⊗·· ·⊗vτ(σ(d)).

Since τ is a bijection, all d! inner sums are the same.

Proposition 16.7. If w1, . . . ,wn is a basis of V , then (wj1 · · ·wjd)1≤j1≤···≤jd≤n, is a basis of
SdV .

Proof. If {j1, . . . , jd}= {i1, . . . , id}, then

πS(wj1⊗·· ·⊗wjd) = πS(wi1⊗·· ·⊗wid).

On the other hand, if {j1, . . . , jd} 6= {i1, . . . , id}, then the terms appearing in the sums πS(wj1⊗
·· ·⊗wjd) and πS(wi1 ⊗ ·· ·⊗wid) are all distinct. Therefore, any linear dependency between
wj1 . . .wjd , 1≤ j1 ≤ ·· · ≤ jd ≤ n would translate into a linear dependency between wj1⊗·· ·⊗wjd ,
1≤ j1, . . . , jd ≤ n.

Corollary 16.8. dimSdV =
(n+d−1

d

)
.
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16.3 Alternating tensors

Let πΛ : V ⊗d→ V ⊗d be the map that is defined on rank-one tensors by

πΛ(v1⊗·· ·⊗vd) = 1
d!
∑
σ∈Sd

sgn(σ)vσ(1)⊗·· ·⊗vσ(d).

Definition 16.9. The dth alternating power of V is defined as ΛdV := πΛ(V ⊗d).

Exercise 16.10. πΛ is a projection.

Again, this generalises the space Λ2V of the first section. We write v1 ∧ v2 ∧ ·· · ∧ vd :=
πΛ(v1⊗v2⊗·· ·⊗vd).

Proposition 16.11. vτ(1)∧·· ·∧vτ(d) = sgn(τ)v1∧·· ·∧vd.

Proof. We have:

vτ(1)∧·· ·∧vτ(d) = 1
d!
∑
σ∈Sd

sgn(σ)vσ(τ(1))⊗·· ·⊗vσ(τ(d))

= 1
d!
∑
σ∈Sd

sgn(σ ◦ τ−1)vσ(1)⊗·· ·⊗vσ(d)

= sgn(τ−1) 1
d!
∑
σ∈Sd

sgn(σ)vσ(1)⊗·· ·⊗vσ(d)

= sgn(τ)v1∧·· ·∧vd.

The third line follows from the fact that σ 7→ σ ◦τ−1 is a bijection and the last line from the fact
that sgn(τ) = sgn(τ−1).

Proposition 16.12. We have v = v1∧·· ·∧vd = 0 if and only if v1, . . . ,vd are linearly dependent.

Proof. If two of the vectors are the same, say v1 = v2, then we can group the summands in
πΛ(v) into pairs such that the two summands in the pair cancel. (Namely, if we switch the two
identical vectors, we get the same tensor product but with opposite sign.)

In the general case, we can w.l.o.g. write v1 = α2v2 + · · ·+αdvd. Now by using linearity, we
get a sum of tensors, each of which has two identical vectors.

For the other direction, assume that v1, . . . ,vd are linearly independent. Enlarge the set
{v1, . . . ,vd} to a basis of V . Then in

v1∧·· ·∧vd = 1
d!
∑
σ∈Sd

sgn(σ)vσ(1)⊗·· ·⊗vσ(d),

all vσ(1)⊗·· ·⊗vσ(d) are distinct basis vectors of V ⊗d, hence v1∧·· ·∧vd cannot vanish.

Proposition 16.13. If w1, . . . ,wn is a basis of V , then wj1 ∧·· ·∧wjd, 1≤ j1 < · · ·< jd ≤ n, is
a basis of ΛdV .
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Proof. Given any tensor v1∧·· ·∧vd, we can express each vi as a linear combination of the basis
vectors. Using linearity, we get a sum of alternating products of the basis vectors. Whenever
two of the basis vectors are the same, the product vanishes by the previous proposition. Each
product with pairwise distinct basis vectors can be brought into the form of the statement by
permuting the vectors.

The vectors in the statement are obviously independent.

Corollary 16.14. dimΛdV =
(n
d

)
.

Now let d= n= dimV . Then ΛnV ∼= C. GL(V ) acts on ΛnV by

g(v1∧·· ·∧vn) = gv1∧·· ·∧gvn.

Let gvi =∑n
j=1 γj,ivj . Then

g(v1∧·· ·∧vn) = (
n∑
j=1

γj,1vj)∧·· ·∧ (
n∑
j=1

γj,nvj)

=
∑

j1,...,jn

γj1,1 . . .γjn,nvj1 ∧·· ·∧vjn .

In the last sum, only summands with pairwise distinct indices j1, . . . , jn are non-zero. Let σ be
the permutation such that σ(h) = jh for all h. By Proposition 16.11, we have vj1 ∧ ·· ·∧vjn =
sgn(σ)v1∧·· ·∧vn. Thus

g(v1∧·· ·∧vn) = det(g)v1∧·· ·∧vn.

This is called the alternating representation.

Symmetric and alternating tensors

Two types of tensors of high importance are the symmetric and alternating tensors.
They are defined by symmetrization and skew-symmetrization of tensors, respectively.
These important tensors will serve as building blocks in the representation theory of
GLn.

17 The construction of the irreducible representations of the
general linear group

We wish to understand much better the representation theory of coordinate rings of orbit
closures. A first step into the right direction is to understand the building blocks: The irreducible
representations of GLn. They are completely understood in terms of combinatorial objects called
Young tableaux. We follow the exposition in [35, Ch. 8] very closely.
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17.1 Young tableaux

A Young diagram is a left-justified top-aligned array of boxes. To each partition λ we assign its
Young diagram by interpreting λi as the number of boxes in row i. For example, the Young
diagram corresponding to the partition (5,3,3,1) is

.

We often identify partitions with their Young diagrams. The number of boxes in a Young
diagram shall be denoted by |λ| :=∑

iλi.
If we fill the boxes of a Young diagram with numbers, we obtain a so-called Young tableau.

For example,
6 2 4 4 8
2 1 6
4 3 1
3

is a Young tableau. The partition corresponding to its Young diagram is called the shape of the
Young diagram.

To simplify the notation, we define µi to be the number of boxes of the i-th column of λ.
We call µ= (µ1,µ2, . . .) the transpose of λ. The Young diagram of µ is obtained by transposing
the Young diagram of λ.

We will need the notion of an exchange. This depends on a choice of two columns and a
choice of k boxes in each column. For a Young tableau T of shape λ (with entries in any set) the
corresponding exchange is the Young tableau S obtained from T by interchanging the entries in
the two chosen sets of boxes, maintaining the vertical order in these; the entries outside these
boxes are unchanged.

For example, if λ= (4,3,3,2) and the chosen boxes are the top two in the third column and
the second and fourth in the second column, then the exchange takes

T =
1 5 2 1
1 3 4
2 4 5
3 5

to S =
1 5 3 1
1 2 5
2 4 5
3 4

.

Sometimes we fix two columns and fix a subset of boxes in the right chosen column. The set
of all corresponding exchanges are defined to have the same exchange type, i.e., an exchange
type is a pair of columns together with a set of boxes from the right column.

17.2 Construction as a quotient space

Let E = Cn with the standard action of GLn. All linear maps in the following constructions are
equivariant, which defines the action of GLn on the target space.
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We write E×λ =E⊕E⊕·· ·⊕E (|λ| times) and we associate each summand E with a position
in the Young diagram of λ. In particular, if we write vectors in the boxes of λ, then we obtain
an element of E×λ and every element of E×λ is obtained in this way. Next, we map E×λ into
E⊗|λ|. Then we mod out by some relations. These relations make the columns alternating, and
between the columns we introduce the so-called exchange relations.

More formally: For a vector space E×k = E⊕·· ·⊕E (k times) we define the linear map to
E⊗E⊗·· ·⊗E via (`1, . . . , `k) 7→ `1⊗·· ·⊗ `k. We can compose this with an antisymmetrization
map and obtain a linear map E×k→ E∧k. We can tensor several of these maps to obtain the
map ψ : E×λ→⊗λ1

i=1
∧µiE. Now

Eλ :=
(
∧µ1 E⊗·· ·⊗∧µ`E

)
/Qλ(E), (17.1)

where Qλ(E) is the subrepresentation of ⊗λ1
i=1
∧µiE generated by all elements of the form

ψ(~v)−∑ψ(~w), where for some fixed exchange type t the sum is over all ~w obtained from ~v by
an exchange of type t. Eλ is called a Schur module.

Suppose we have an ordered basis {e1, . . . ,em} of E. Then for any Young tableau of T of
shape λ with elements in {1, . . . ,m} we get an element of E×λ by replacing every i in a box of T
by the element ei. We call this element êT . The image of this element in Eλ is denoted by eT .

One can now easily verify that the map ϕ : E×λ→ Eλ has the following three properties:

(1) ϕ is multilinear

(2) ϕ is alternating in the entries of any column of λ

(3) For any ~v ∈ E×λ and any exchange type t we have ϕ(~v) =∑
ϕ(~w), where the sum is over

all ~w obtained from ~v by an exchange of the type t.

17.3 A more explicit quotient space

Lemma 17.1. If e1, . . . ,em is a basis of E, then Eλ ' F/Q, where F is the vector space whose
basis is the set êT for all Young tableaux T of shape λ with entries from {1, . . . ,m} and Q⊆ F
is generated by the elements

(i) êT if T has two equal entries in a column,

(ii) êT + êT ′ where T ′ is obtained from T by interchanging two entries in a column,

(iii) êT −
∑
S êS, where for some exchange type t the sum is over all S obtained from T by an

exchange of type t.

Proof. For every Young tableau T of shape λ we get an element in E×λ and these elements
generate E×λ. Therefore their images eT generate Eλ, i.e., the map F → Eλ is surjective.
Properties (2) and (3) imply that the generators of Q map to zero, so F/Q� Eλ is surjective.
We now routinely check that this is an isomorphism as follows. The vectors eT for Young
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tableaux T give a basis of the tensor product E⊗λ. The vector space obtained by the relations
(i) and (ii) is exactly the tensor product

∧µ1E⊗·· ·⊗∧µλ1E

(and the êT with all columns strictly increasing forms a basis for this vector space). The relations
(iii) then generate the vector space of relations Qλ(E), as follows from multilinearity and the
fact that the ei generate E. The lemma therefore follows from (17.1).

The image of êT under the map F → Eλ is denoted by eT . For example,

e 2 1
3 4

= e 1 2
3 4

+e 2 3
1 4

= e 1 2
3 4
−e 1 3

2 4
Since this notation is clumsy, we usually write T instead of eT . For example, using this

notation we have

1 2 3 4 = 3 1 4 2 = 2 4 1 3

and

1
2
3
4

= −
2
1
3
4

=
1
3
4
2

17.4 Sylvester’s lemma

Amultilinear function f :V ×d→C is called alternating if f(v1, . . . ,vi,vi+1, . . . ,vd) =−f(v1, . . .vi−1,vi+1,vi,vi+2, . . . ,vd).

Lemma 17.2. A multilinear function f : V ×d→ C is alternating iff f(v1, . . . ,vd) = 0 whenever
vi = vi+1.

Proof. Clearly, if f is alternating, then

f(v1, . . . ,vi,vi,vi+2, . . . ,vd) =−f(v1, . . . ,vi,vi,vi+2, . . . ,vd)

and thus f(v1, . . . ,vi,vi,vi+2, . . . ,vd) = 0 (because char(C) 6= 2).
For the other direction,

f(v1, . . . ,vi,vi+1,vi+2, . . . ,vd)
= f(v1, . . . ,vi,vi,vi+2, . . . ,vd) +f(v1, . . . ,vi,vi+1−vi,vi+2, . . . ,vd)
= f(v1, . . . ,vi,vi+1−vi,vi+2, . . . ,vd)
= f(v1, . . . ,vi−vi+1,vi+1−vi,vi+2, . . . ,vd) +f(v1, . . . ,vi+1,vi+1−vi,vi+2, . . . ,vd)
= −

(
f(v1, . . . ,vi+1−vi,vi+1−vi,vi+2, . . . ,vd) +f(v1, . . . ,vi+1,vi−vi+1,vi+2, . . . ,vd)

)
= −

(
f(v1, . . . ,vi+1,vi−vi+1,vi+2, . . . ,vd)

)
= −

(
f(v1, . . . ,vi+1,vi−vi+1,vi+2, . . . ,vd) +f(v1, . . . ,vi+1,vi+1,vi+2, . . . ,vd)

)
= −f(v1, . . . ,vi+1,vi,vi+2, . . . ,vd).
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Corollary 17.3. For V = Cp the only alternating multilinear function V p+1→ C is the zero
function.

Proof. If f is alternating, to calculate f(v) we express v ∈ V p+1 over the standard basis. By
the pigeonhole principle at least one standard vector appears at least twice. By Lemma 17.2
f(v) = 0.

For the explicit construction of the irreducibles we need the following lemma, proved by
Sylvester in 1851.
Lemma 17.4. For any p×p matrices M and N , and 1≤ k ≤ p,

det(M) ·det(N) =
∑

det(M ′) ·det(N ′),

where the sum is over all pairs (M ′,N ′) of matrices obtained from M and N by interchanging a
fixed set of k columns of N with any k columns of M , preserving the ordering of the columns.

Proof. By the alternating property of determinants, w.l.o.g. the fixed set of columns of N are
the first k columns. For vectors v1, . . . ,vp ∈ Cp we write det(v1 · · ·vp) for the determinant of the
matrix with these column vectors. We have to prove

det(v1 · · ·vp)det(w1 · · ·wp) =
∑

i1<···<ik
det(v1 · · ·w1 · · ·wk · · ·vp)det(vi1 · · ·vikwk+1 · · ·wp),

where in the sum the vectors w1, . . . ,wk are interchanged with the vectors vi1 , . . . ,vik . It suffices
to show that the difference of the two sides is an alternating function in the p+ 1 vectors
v1, . . . ,vp,w1, since any such function must vanish (see Cor. 17.3). For this it suffices to show
(see Lemma 17.2) that the two sides are equal when two successive vectors vi and vi+1 are equal
(which is easy to see: The left hand side is zero and we can pair the nonzero summands on the
right hand side such that each pair cancels out) and when vp = w1. In the latter case, fixing
vp = w1, it suffices to show that the difference of the two sides is an alternating function of
v1, . . . ,vp,w2. Again, the case when vi = vi+1 is immediate. This time vp = w2 means w1 = w2
and thus both sides vanish.

Let Zi,j be variables, 1≤ i≤ n, 1≤ j ≤m. We write C[Z] := C[Z1,1, . . . ,Zn,m].
For each p-tuple (i1, . . . , ip) of integers from {1, . . . ,m}, with p≤ n, we define the symbolic

determinant

Di1,i2,...,ip := det

Z1,i1 · · · Z1,ip
... . . . ...

Zp,i1 · · · Zp,ip

 .
For a Young tableau T we take the product of the column determinants:

DT :=
λ1∏
j=1

DT (1,j),T (2,j),...,T (µj ,j),

where T (i, j) is the entry of T in the i-th row and j-th column of T .
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Lemma 17.5. There is a well-defined (canonical) homomorphism from Eλ to C[Z] that maps
eT to DT for all Young tableaux T .

Proof. Using Lemma 17.1, for well-definedness it suffices to show that the elements DT satisfy
the corresponding properties (i)-(iii) of Lemma 17.1. Properties (i) and (ii) follows from the
alternating property of determinants. Property (iii) follows from Sylvester’s lemma 17.4, applied
to appropriate matrices. For this, suppose the two columns of T in which the exchange takes
place have entries i1, . . . , ip in the first and j1, . . . , jq in the second. Set

M :=

Z1,i1 · · · Z1,ip
... . . . ...

Zp,i1 · · · Zp,ip

 N :=

Z1,j1 · · · Z1,jq 0
... . . . ... Idp−q

Zp,j1 · · · Zp,jq


Here the matrix N has a lower right identity matrix of size p− q, and an upper right q× (p− q)

block of zeros. Note that detN = det

Z1,j1 · · · Z1,jq
... . . . ...

Zq,j1 · · · Zq,jq

. Sylvester’s lemma, applied to M and

N and the fixed subset of columns in N being specified by the subset of the right column of T
used in the exchange, translates precisely to the required equation.

17.5 An explicit basis of the Schur module

Definition 17.6. A Young tableau is called semistandard if each row read from left to right is
nondecreasing and each column read from top to bottom is strictly increasing.

Example of a semistandard Young tableau:

1 1 1 1 2 2 2 3
2 2 2 3 4
3 3 4 4

Theorem 17.7. If e1, . . . ,em is a basis of E, then eT is a basis of Eλ, where T runs over all
semistandard tableaux of λ with entries from {1, . . . ,m}.

Proof. On the set of Young tableaux we define an ordering:

• T ′ � T if in the right-most column which is different, the lowest box where they differ has
a larger entry in T ′.

We first prove that the eT generate Eλ. We also use Eλ = F/Q from Lemma 17.1. We must
show that, given any T that is not semistandard, we can write eT as a linear combination of
elements eS with S � T and elements in Q, because then we can use this process recursively to
express every eT as a linear combination of eS with S semistandard and elements in Q.

We may assume that the entries in each column of T are strictly increasing by using relations
(i) and (ii); Note that by making the the columns strictly increasing in T replaces T by T ′ with
T ′ � T .
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If the columns are strictly increasing, but T is not semistandard, then suppose the k-th entry
of the j-th column is strictly larger than the k-th entry of the (j+ 1)-st column. Then we have
a relation eT ≡

∑
S eS , the sum over all S obtained from T by exchanging the top k entries of

the (j+ 1)-st column with k entries in the j-th column (preserving their order). Since each such
S has S � T , we proved that the eT for semistandard T generate Eλ.

To prove that the eT are linearly independent, we use Lemma 17.5, so it suffices to prove
that the DT are linearly independent as T varies over all semistandard tableaux T . For this we
order the variables Zi,j in the order: Zi,j < Zi′,j′ if i < i′ or both i= i′ and j < j′. We order the
monomials in these variables lexicographically: M1 <M2 if the smallest Zi,j that occurs to a
different power occurs to a smaller power in M1 than in M2. Note that if M1 <M2 and N1 <N2,
then M1N1 <M2N2. It follows immediately from this definition that the smallest monomial that
appears in a determinant Di1,...,ip if i1 < · · ·< ip is the diagonal term Z1,i1 · · ·Zp,ip . Therefore the
smallest monomial occurring in DT , if T has increasing columns, is ∏(Zi,j)mT (i,j), where mT (i, j)
is the number of times j occurs in the i-th row of T . This monomial occurs with coefficient 1.

Now order the semistandard tableaux by saying that T < T ′ if the first row where they differ,
and the first entry where they differ in that row, is smaller in T than in T ′. Equivalently, T < T ′

if for the smallest i for which there is a j with mT (i, j) 6=mT ′(i, j) and for the smallest such j we
have mT (i, j)<mT ′(i, j). It follows that if T < T ′, then the smallest monomial occurring in DT

is smaller than the smallest monomial occurring in DT ′ and thus smaller than any monomial
occurring in DT ′ . From this the linear independence follows: If ∑αTDT = 0, take T minimal
such that αT 6= 0, then the coefficient of ∏(Zi,j)mT (i,j) in ∑αTDT is αT .

Remark 17.8. The proof of Theorem 17.7 provides an algorithm to express any eT for a tableau
T over the basis (eT ′) with T ′ semistandard. This algorithm is called the straightening algorithm.
Together with the upcoming Lemma 17.9 this gives an algorithmic way of computing the action
of GLn in Eλ.

17.6 Highest weight vectors

Lemma 17.9. Fix an arbitrary ordering on the set of boxes of a Young diagram λ. Let T be a
Young tableau and let 1≤ j1, . . . , jn ≤m be the entries in its boxes. We write T = λ(j1, . . . , jn).
If g ∈ GLm, then

geT =
∑

(i1,...,in)∈{1,...,m}n
gi1,j1 · · ·gin,jneλ(i1,...,in).

Proof. This is not only true for Eλ, but it is already true for E⊗|λ|. More precisely, for a Young
tableau T consider the vector in E×λ obtained from replacing each i in T by ei. Let ẽT denote
its image under the map E×λ→ E⊗|λ|. The action on E⊗|λ| is given by

g(v1⊗·· ·⊗v|λ|) = (gv1)⊗·· ·⊗ (gv|λ|).

Thus by multilinearity of the tensor product we have

gẽT =
∑

(i1,...,in)∈[m]n
gi1,j1 · · ·gin,jn ẽT (i1,...,in),
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The claim follows by (17.1).

Using part (a’) and (a) of Theorem 11.15, the following lemma finishes the explicit construction
of the polynomial irreducible representations of the general linear group and proves part (c) of
Theorem 11.15, where the Eλ are the required irreducible representations.

Lemma 17.10. Up to multiplication with a nonzero scalar, the only highest weight vector in
Eλ is the vector eT , where T is the semistandard tableau of shape λ whose i-th row contains
only the integer i as entries.

Proof. Let T be the semistandard tableau of shape λ whose i-th row contains only the integer i
as entries. Let g ∈ Un be an upper triangular matrix with 1s on the main diagonal, i.e., gi,j = 0
if i > j. From Lemma 17.9 it follows that the only nonzero eT ′ that can occur in geT is eT itself
and therefore eT is a HWV.

Similary suppose that the p-th row of T is the first row that contains an element larger than
p. Let q > p be the smallest such misplaced element in row p. Define g to be the elementary
matrix that has 1s on the main diagonal and an entry α in row p and column q. We see that
geT =∑

αcT ′eT ′ , where the sum is over all tableaux T ′ by exchanging some set (possibly empty)
of the qs appearing in T to ps, and cT ′ is the number of such exchanges. Considering this as a
univariate polynomial in α and looking at the linear coefficient, this is a sum over T ′ in which a
single q is switched to a p. Some of these T ′ could have p appear in a column twice, but the
other T ′ are pairwise distinct semistandard tableaux and there is at least one of them. Thus
geT 6= eT and hence eT is not a HWV.

The explicit construction of the irreducible representations of the general
linear group

This chapter finalizes our classification of the polynomial irreducible representations of
GLn: The irreducibles are indexed by partitions λ that have at most n parts.
We will use the explicit quotient space from Lemma 17.1 for several constructions in
Chapters 19 and 20, in particular we will use it to construct the irreducibles of the
symmetric group (the so-called Specht modules).

18 The algebraic Peter-Weyl theorem

In this chapter we prove the algebraic Peter-Weyl theorem. It will be used in Chapter 19 to prove
the Schur-Weyl duality that is used to understand the highest weight vectors in C[GLn2detn].
Moreover, we will see that it can directly be used to find upper bounds on the multiplicities
for example in C[GLn2detn] by using so-called Kronecker coefficients. We will see how these
coefficients can then be used in the multiplicity based approach outlined in section 12.4.
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18.1 Regular functions

Let G= GLN and v ∈ A, where A has a polynomial G-action. The coordinate ring C[Gv] is a
subring of the algebra C[Gv] that we define next. The ring C[Gv] will have a particulary nice
representation theory.

Definition 18.1. A regular function f on a locally closed set X ⊆ A is a function f : X → C
defined on the whole of X as follows: There exist finitely many fractions of polynomials fi

gi
with

fi,gi ∈ C[A] such that
∀x ∈X ∃i : gi(x) 6= 0

and
∀x ∈X ∀i : either gi(x) = 0 or fi(x)

gi(x) = f(x).

For a locally closed set X define C[X] to be the algebra of regular functions on X.

The following example is called the glued double cusp and was provided by Prof. Dr. Eike
Lau.

Example 18.2. Let the closed set Y ⊆ C5 be cut out by the polynomials T 3
1 −T 2

2 , T 3
3 −T 2

4 ,
T1T3−T 2

5 , and T2T4−T 3
5 . Since {0} ⊆ Y is closed, X := Y \{0} is a locally closed set. One can

check that X is parameterized by two variables as follows:

X = {(t1, t2, t3, t4, t5) | α,β ∈ C,α 6= 0 or β 6= 0,
t1 = α2, t2 = α3, t3 = β2, t4 = β3, t5 = αβ}.

Now consider the following regular function defined by two fractions of polynomials:

f = t5t1
t2

= t4
t3
,

whose value is just β in the above syntax. Although f is defined on the whole X, the two
fractions of polynomials are not, because their denominators both have zeros in X. In fact, one
can show that f cannot be written as a single fraction of polynomials.

If Gv is a cone, then C[Gv] is graded with the same argument as at the end of chapter 4.

Remark 18.3. If X in Definition 18.1 is Zariski-closed, then C[X] coincides with our earlier
definition of the coordinate ring, i.e., C[X] = C[A]/I(X).

Our main interest in C[X] stems from the map

ι : C[Gv]δ ↪→ C[Gv]δ

that is the restriction of functions. Clearly ι is a linear map. We show that ι is injective: If
ι(f) = 0, then f(w) = 0 for all w ∈Gv. Since f is continuous, f(w) = 0 for all w ∈Gv. �

With Corollary 12.5 we obtain

multλ(C[Gv]δ)≤multλ(C[Gv]δ). (18.1)
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18.2 Invariants under the stabilizer

Definition 18.4. Let a group G act on a set S. For v ∈ S define the stabilizer of v under the
action of G as

stabG(v) := {g ∈G | gv = v}.

Definition 18.5. Let H be a group. For an H-representation V define the set of H-invariants

V H := {v ∈ V | ∀g ∈H : gv = v}.

For a group G the group algebra C[G] is defined as the set of finite formal sums of group
elements from G. If G is finite, then C[G]' C|G| as a vector space. The group G×G acts on
C[G] via

((g1,g2)f)(g) = f(g−1
1 gg2).

Theorem 18.6. Let G be a finite group, let V be a G-representation, and let v ∈ V . Let
C[G]stabG(v) denote the set of right stabG(v)-invariants, i.e., the elements fixed under the action
of {1}× stabG(v). Note that C[G]stabG(v) is a representation of G×{1} 'G. Then the map

ϕ : C[Gv]→ C[G]stabG(v), f 7→
(
g 7→ f(gv)

)
is an isomorphism of G-representations.

Proof. The finiteness of G implies that C[Gv] is the vector space of all functions on Gv and C[G]
is the vector space of all functions on G, without any additional constraints on the functions.

First of all, we verify that ϕ is well-defined, i.e., that κ : g 7→ f(gv) is invariant under stabG(v).
Let g2 ∈ stabG(v). Then (g2κ)(g) = κ(gg2) = f(gg2v) = f(gv) = κ(g), thus κ is fixed under g2.

The map ϕ is clearly linear.
The inverse map ϕ−1 maps the stabG(v)-invariant ψ to

(
gv 7→ ψ(g)

)
∈ C[Gv]. But ψ(g)

depends on g and not just gv, so we have to verify that this is well-defined: If g′v = gv, then we
have to show that ψ(g) coincides with ψ(g′). We have v = g′−1gv, thus g′−1g ∈ stabG(v). Since
ψ is stabG(v)-invariant, ψ = (id,g′−1g)ψ and therefore (id,g′)ψ = (id,g)ψ. In particular, if we
evaluate both sides at the identity we obtain ψ(g′) = ψ(g).

It is easy to verify that both maps are inverses of each other.
For the G-equivariance we have to show that g(ϕ(f)) = ϕ(gf).
We have ϕ(f) = (g′ 7→ f(g′v)) and hence g(ϕ(f)) = (g′ 7→ f((g−1g′)v)). Therefore ϕ(gf) =

(g′ 7→ (gf)(g′v)) = (g′ 7→ f(g−1g′v)) = g(ϕ(f)).

Without giving the proof we state that Theorem 18.6 also holds for large classes of groups,
including GLN . This is particularly interesting because the representation theoretic structure of
C[G]stabG(v)

δ can be obtained in Theorem 18.9 below.
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18.3 Algebraic Peter-Weyl theorem

Proposition 18.7. Let G and H be groups and let V be a G-representation and W an H-
representation. Then V ⊗W is an irreducible G×H-representation iff both V and W are
irreducible. Moreover, every irreducible G×H-representation is isomorphic to some V ⊗W for
V , W irreducible.

We omit the proof, but refer the reader to [49].

Definition 18.8. If V is a G-representation, then the dual space V ∗ is also a G-representation
via (g`)(v) := `(g−1v) for all ` ∈ V ∗, v ∈ V . This representation is called the dual representation
of V .

Clearly dimV = dimV ∗. Moreover, V is irreducible iff V ∗ is irreducible.
If V is a polynomial representation, then V ∗ is not necessarily also a polynomial representation.

Indeed, for GLN we have that both V and V ∗ are polynomial representations iff the type of V is
(0,0, . . . ,0).

Theorem 18.9 (Algebraic Peter-Weyl theorem for finite groups). Let G be a finite group. On
C[G] we have an action of G×G via ((g,g′)f)(g̃) := f(g−1g̃g′) and we have

C[G] =
⊕
λ

{λ}∗⊗{λ},

where λ runs over all isomorphism types of irreducible G-representations and {λ} denotes an
irreducible G-representation of type λ.

Proof. We follow [53, Thm. 8.6.4.3].
Let V be a G-representation. Define the G×G-equivariant linear map

iV : V ∗⊗V → C[G], iV (`⊗v)(g) = `(gv),

defined via linear continuation on all tensors.
We first show that if V is irreducible, then iV is injective: ker(iV ) is a subrepresentation

of V ∗⊗V . Since iV 6= 0, ker(iV ) 6= V ∗⊗V . V ∗⊗V is an irreducible G×G-representation
(Proposition 18.7). Thus ker(iV ) = 0. Hence iV is injective.

This already proves that the right-hand side is contained in the left-hand side.
To finish the proof we show that iV (V ∗⊗V ) equals the isotypic component of type V ∗ w.r.t.

the action of G×{1}.
Let W ∗ be an irreducible G×{1}-representation that is isomorphic to V ∗. Let j :W ∗→C[G]

be a G×{1}-morphism. We need to show that j(W ∗)⊆ iV (V ∗⊗V ).
We identify W ∗ and V ∗. Let ` ∈ V ∗ be arbitrary. Define v ∈ V via `(v) := j(`)(1G). Note

that (g−1`)(v) = (g−1(j(`)))(1G) = j(g−1`)(1G). Then j(`) = iV (`⊗v) because:

(j(`))(g) = (j(`))(g ·1G) = (g−1 ·j(`))(1G) = (j(g−1 ·`))(1G) = (g−1`)(v) = `(gv) = (iV (`⊗v))(g).
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The group algebra C[G] for finite groups G is isomorphic (as a G×G-representation) to
the coordinate ring of G (where G is interpreted as finite subset of matrices in the set of all
invertible matrices of some fixed size). The key fact is that with the coordinate ring interpretation
Theorem 18.9 generalizes to all reductive algebraic groups, in particular for G= GLN . There the
sum is over all types λ of rational representations, which includes all polynomial representations.
In particular, using Theorem 18.6, the following corollary holds.

Corollary 18.10.
multλ(C[Gv]) = dim({λ∗}stabG(v)).

Proof.

multλ(C[Gv]) Thm. 18.6= multλ(C[G]stabG(v)) Thm. 18.9= multλ((
⊕
µ

{µ}⊗{µ}∗)stabG(v))

= dim({λ∗}stabG(v)),

where the last equality holds because multλ({µ}) = 1 iff λ= µ and 0 otherwise.

Several variants of Theorem 18.9 are also true, with minor changes in the proof: On CN×N
we have the action of GLN ×GLN via (g1,g2)M = g1Mgt2. The algebraic Peter-Weyl theorem
implies the decomposition of the coordinate ring of the matrix space

C[CN×N ]d =
⊕
λ`Nd
{λ}⊗{λ}. (18.2)

This generalizes to a GLa×GLb action on Ca×b:

C[Ca×b]d =
⊕

λ`min(a,b)d

{λ}a⊗{λ}b, (18.3)

where {λ}a denotes the irreducible GLa-representation of type λ.

18.4 The determinant and rectangular Kronecker coefficients

Combining (18.1) and Corollary 18.10 we see that

multλ(C[Gv])
(18.1)
≤ multλ(C[Gv]) Cor. 18.10= dim({λ∗}stabG(v)), (18.4)

which could potentially be used to find multiplicity or even occurrence obstructions. If G= GLn2

and v = detn, then stabG(v) was determined by Frobenius in 1897 [34]:

H := stabGLn2 (detn) =
(
(GLn×GLn)/C∗

)
oZ2.

The multiplicities dim{λ}H are known as rectangular symmetric Kronecker coefficients sk(λ,n×
d). We have seen in (18.4) that if aλ(δ,d)> 0 and sk(λ,n×d) = 0, then the type λ occurs in the
vanishing ideal I(GLn2detn). We will see a working application of this approach in Chapter 22.

THEORY OF COMPUTING 104

http://dx.doi.org/10.4086/toc


INTRODUCTION TO GEOMETRIC COMPLEXITY THEORY

An upper bound for sk(λ,n×d) is given by a similar coefficient: Given a partition λ ofm with
at most n2 rows, we interpret it as a GLn×GLn-representation via the map (g,g′) 7→ g⊗g′, where
the matrix g⊗g′ is the Kronecker product of matrices. Then {λ} decomposes into irreducible
GLn×GLn-representations and the Kronecker coefficient k(λ,µ,ν) is defined as the multiplicity
of the irreducible GLn×GLn-representation {µ}⊗{ν} in {λ}. Mulmuley and Sohoni conjectured
that the vanishing of the Kronecker coefficients should give enough elements in the vanishing
ideal to separate VPs $VNP, but that was recently disproved [46] (and strengthened in [22]).

Coordinate rings of orbits

The coordinate rings of orbit closures are not well understood.
The coordinate rings of orbits are much better understood: Their multiplicities are
dimensions of stabilizer-invariant subspaces.
Moreover, we will use the Algebraic Peter-Weyl theorem to prove the Schur-Weyl
duality in Chapter 19.

19 Explicit HWV constructions via Schur-Weyl duality
In this chapter we give an explicit interpretation of C[A]d, A = C[X1, . . . ,Xm]n, in terms of
tensors. We understand the action of GLm using the famous Schur-Weyl duality. We derive
useful results on plethysm coefficients and potential candidates for partitions λ to separate the
determinant from the padded permanent, and related orbit closure questions. In particular we
will prove a result by Kadish and Landsberg [47] that the first row of λ must be large and we
will see that the degree d must be superpolynomially large.

As in Proposition 12.7, HWVλ(W ) denotes the vector space of highest weight vectors of
weight λ in the GLN -representation W .

19.1 Specht modules

In this section we describe without proof the irreducible representations of the symmetric group.
The irreducible representations of Sn are called Specht modules. The Specht modules of Sn are
indexed by partitions of n, i.e., partitions λ with |λ|= n. Note the difference to GLn, where the
irreducible polynomial representations are indexed by partitions λ with `(λ)≤ n, but where |λ|
is arbitrary.

The construction of the Specht modules works as follows. For n ∈ N let {λ} denote the
irreducible GLn-representation of type λ. We assume |λ| = n. Let {λ}0 denote the weight
space of {λ} of weight (1,1, . . . ,1) ∈ Nn. We embed Sn ⊆ GLn via permutation matrices as in
Lemma 11.10. Lemma 11.10 says that Sn acts on {λ}0. It turns out (without proof) that

• {λ}0 is irreducible as an Sn-representation,

• if λ 6= µ, then {λ}0 and {µ}0 are non-isomorphic Sn-representations,

• all irreducible representations of Sn are obtained as {λ}0 for some λ with |λ|= n.

THEORY OF COMPUTING 105

http://dx.doi.org/10.4086/toc
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We denote by [λ] := {λ}0 the Specht module of type λ.

Example 19.1. 1. Xn
1 is a HWV in V = C[X1, . . . ,XM ]n of weight λ = (n,0, . . . ,0). For

n=M we have a unique line of weight (1,1, . . . ,1) = (1n), which is C ·X1X2 · · ·Xn. Thus
{(n)}0 = [(n)] is 1-dimensional. The action of Sn permutes the positions of the variables in
the monomial X1X2 · · ·Xn, so the action of Sn is trivial: [(n)] is the trivial representation.

2. Take V = C. GLn acts on V via gv := det(g)v. The weight is (1,1, . . . ,1) = (1n). Thus
[(1n)] is 1-dimensional. Moreover, if %(π) ∈ GLn denotes the permutation matrix of the
permutation π ∈Sn, then det(%(π)) = sign(π), so [(1n)] is the alternating representation:
πv = sign(π)v.

A semistandard Young tableau with n boxes in which each number 1,2, . . . ,n appears exactly
once is called a standard Young tableau. A basis of [λ] is given by eT , where T goes over the
standard Young tableaux of shape λ, see Section 17.3. For example, [(2,1)] is 2-dimensional and
we have (when writing T instead of eT )

(2 3) 1 2
3 = 1 3

2

and
(1 2) 1 2

3 = 2 1
3 = 1 2

3 + 2 3
1 = 1 2

3 − 1 3
2 .

19.2 Explicit Schur-Weyl duality

We write λ �
N d to denote that λ is a partition of d into at most N parts.

The group Sd×GLN acts on ⊗dCN via

(π,g)(v1⊗·· ·⊗vN ) := (gvπ−1(1))⊗·· ·⊗ (gvπ−1(N)).

Its decomposition into irreducibles is known as the Schur-Weyl duality.

Theorem 19.2 (Schur-Weyl duality).⊗dCN ∼=
⊕
λ
�
N d

{λ}⊗ [λ].

Proof sketch. We follow [48].
In (18.3), let d= a and take the GLd-weight (1,1, . . . ,1) space:

C[Cd×b]0d =
⊕

λ
�
min(d,b) d

[λ]⊗{λ}b.

A partition with d boxes cannot have more than d rows, so `(λ)≤ d is a void restriction. We
obtain

C[Cd×b]0d =
⊕
λ
�
b d

[λ]⊗{λ}b.
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Degree d polynomials on Cd×b that have GLd-weight (1,1, . . . ,1) are linear combinations of the
monomials x1,j1x2,j2 · · ·xd,jd , 1≤ ji ≤ b. These are in bijection to the rank 1 tensors xj1⊗xj2⊗
·· ·⊗xjd , 1≤ ji ≤ b. This gives a canonical isomorphism

C[Cd×b]0d ∼=
⊗dCb

and the result follows.

The highest weight vectors in Theorem 19.2 can be described explicitly as follows.
We denote by X1, . . . ,XN the standard basis vectors of CN . Let λ `D and µ denote the

transpose of λ, so µi denotes the number of boxes in the i-th column of λ. For j ≤N we note
that vj×1 :=X1∧X2∧·· ·∧Xj is a highest weight vector of weight j×1: If we use the definition
of xii′(α) from the proof of Lemma 11.13, then for i < i′ we have

xii′(1)X1∧X2∧·· ·∧Xj =X1∧X2∧·· ·∧Xj +X1∧·· ·∧Xi′−1∧Xi∧Xi′+1∧·· ·∧Xj︸ ︷︷ ︸
=0

We define now:
vλ := vµ1×1⊗ . . .⊗vµλ1×1 ∈

⊗DV. (19.1)
It is easy to check that vλ is a nonzero highest weight vector of weight λ.

Proposition 19.3. Let λ �
dimV D. Then the vector space HWVλ(⊗DV ) is spanned by the

SD-orbit of vλ.

Proof. Schur-Weyl duality provides a GL(V )×SD-isomorphism⊗DV '
⊕

λ
�
dimV D

{λ}⊗ [λ].

Recalling that HWVλ({λ}) is one-dimensional, we see that HWVλ(⊗DV ) is isomorphic to [λ] as
an SD-module. From the irreducibility of [λ] it follows that HWVλ(⊗DV ) is spanned by the
SD-orbit of any of its nonzero elements.

Note that Prop. 19.3 is even more explicit:

The isomorphism ⊗DV '
⊕

λ
�
dimV D

{λ}⊗ [λ] maps vλ to T ⊗S, (19.2)

where T is the semistandard tableau with only letters i in row i and S is the so-called superstandard
tableau: S contains the entries 1, . . . , |λ| ordered columnwise from left to right, top to bottom.
For example, v(3,2,1) corresponds to

1 1 1
2 2
3

⊗
1 4 6
2 5
3

.

This provides a new basis for ⊗DV given by pairs (T,S) of semistandard (T ) and standard (S)
tableaux. This is a special case of the so-called Robinson-Schensted-Knuth-correspondence.

THEORY OF COMPUTING 107

http://dx.doi.org/10.4086/toc
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19.3 Polynomials as symmetric tensors: Plethysms

We follow [22].
In this section we establish the fundamental connection between tensors and the coordinate

rings C[A]d, A = C[X1, . . . ,Xm]n. This leads to several results concerning the possible partitions
λ that can be used to separate orbit closures.

19.3.1 Wreath products and symmetric powers of symmetric powers

We have seen in Section 16.2 that the dth symmetric power SymdW of a vector space W can
be defined as the Sd-invariant subspace of ⊗dW . This construction is easily seen to work
for arbitrary GLN -representations W . In fact, if V = CN we can choose W = SymnV and
define SymdSymnV := Symd(SymnV ) as the space of Sd-invariants in

⊗d(SymnV ). This is a
subrepresentation of ⊗d(⊗nV ) in a natural way that we want to understand now.

We partition the position set [dn] := {1, . . . ,dn} into the blocks B1, . . . ,Bd, where Bu :=
{(u−1)n+v | 1≤ v ≤ n}. The subgroup of Sdn of permutations that preserve the partition into
blocks is called the wreath product Sn oSd. It is generated by the permutations leaving the blocks
invariant, and the permutations of the form (u−1)n+v 7→ (τ(u)−1)n+v with τ ∈Sd, which
simultaneously permute the blocks. Structurally, the wreath product is a semidirect product
Sn oSd ' (Sn)doSd. Note that its order equals d!n!d. Symmetrizing over Sn oSd, we obtain
the projection

Σd,n(w) := 1
d!n!d

∑
σ∈SnoSd

σ(w) (19.3)

onto the Sn oSd-invariant subspace (⊗dnV )SnoSd ⊆⊗dnV .
It is crucial and readily verified that

(⊗dnV )SnoSd = SymdSymnV. (19.4)

Example 19.4. We give an example that will naturally lead to the connection with polynomials.
First, it is easy to verify that in [(2,2)] (recall Section 17.3 and Section 19.1 for the relations on
tableaux)

1 2
3 4 + 2 1

3 4

is invariant under S2 oS2. We write a∧ b := 1
2(a⊗ b− b⊗ a) and a� b := 1

2(a⊗ b+ b⊗ a). In
particular a� a = a⊗ a. We write x := e1 and y := e2 and omit the tensor symbol between
them (caveat: the omitted symbol is not the symmetric product, but the tensor product).
We convert tableaux to tensors using (19.2), so in particular 1

2 = x∧ y = 1
2(xy− yx) and
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1 3
2 4 = (x∧y)⊗ (x∧y) = 1

4(xyxy−xyyx−yxxy+yxyx).

1 2
3 4 + 2 1

3 4 = 1 2
3 4 + 1 2

3 4 + 2 3
1 4 = 2 1 2

3 4 −
1 3
2 4

= 1
2(xxyy−yxxy−xyyx+yyxx)− 1

4(xyxy−yxxy−xyyx+yxyx)
= 1

2xxyy−
1
4yxxy−

1
4xyyx+ 1

2yyxx−
1
4xyxy−

1
4yxyx

= 1
2(xxyy+yyxx)− 1

4(xyxy+yxxy+xyyx+yxyx)
= 1

2(xxyy+yyxx)− 1
4(xy+yx)⊗2

= 1
2(2(x�2)� (y�2))− 1

4(2x�y)�2

= ((x�2)� (y�2))− (x�y)�2

= ((x�2)� (y�2))− (x�y)�2,

which reminds us of the discriminant function, but without the coefficients.

Why did we choose 1 2
3 4 + 2 1

3 4 in the previous example? We will see this in the Re-
mark 19.11.

19.3.2 Polynomials as symmetric tensors

Let W = CN with standard basis X1, . . . ,XN . For a list I = (i1, . . . , id) ∈ {1, . . . ,N}d we define

XI :=Xi1⊗Xi2⊗·· ·⊗Xid ∈
⊗dW

Let CN (d) denote the set of all α∈NN with |α|= d. These α are called compositions of d. For
I ∈ {1, . . . ,N}d we define the type ζ(I) ∈ CN (d), letting ζ(I)i denote the number of appearances
of i in I. For example ζ(1,2,5,3,4,2,1,3,2) = (2,3,2,1,1). We associate with α ∈ CN (d) the
monomial

Xα := 1(d
α

) ∑
ζ(I)=α

XI , (19.5)

where the sum is over all α ∈ CN (d) such that ζ(I) = α and
(m
α

)
is the multinomial coefficient(

d

α1 α2 · · · αN

)
:= d!

α1!α2! · · ·αN ! .

This agrees with our definition:

Xα =Xα1�·· ·�Xαd = 1
d!
∑
π∈Sd

π(Xα1⊗·· ·⊗Xαd)

Note that Xα is a symmetric tensor: Xα ∈ Sym|α|.
Given a homogeneous degree d polynomial f we can interpret the evaluation at a point p via

f(p) = 〈f,p⊗d〉, (19.6)
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where 〈,〉 is the inner product that is inherited from the standard inner product on CN : Eq. (19.6)
is easily checked for monomials f , and since evaluation is a linear function, eq. (19.6) holds for
all homogeneous polynomials f . The inner product of two tensors is called a tensor contraction.

We formalize this correspondence as follows.

Proposition 19.5. For a GLN -representation W there is a GLN -isomorphism C[W ]d ' SymdW
given by mapping monomials as in (19.5), which implies that evaluating polynomials is given by
tensor contraction as in (19.6).

Iterating Proposition 19.5 twice we obtain the following corollary.

Corollary 19.6. There is a natural GLN -isomorphism C[A]d ' SymdSymnV , where A =
C[X1, . . . ,XdimV ]n.

Example 19.7. The tensor that corresponds (up to scale) to the discriminant via Corollary 19.6
is the tensor from Example 19.4:

2xxyy+ 2yyxx−yxxy−xyyx−xyxy−yxyx.

We evaluate the discriminant at aX2 + bXY + cY 2, which is a contraction with the tensor
(ax2 + bx�y+ cy2)⊗2, according to (19.6). In order to do so, we expand first:

(ax2 + bx�y+ cy2)⊗2 = (axx+ b
2xy+ b

2yx+ cyy)2

= a2xxxx+ ab
2 xxxy+ ab

2 xxyx+acxxyy

+ab
2 xyxx+ b2

4 xyxy+ b2

4 xyyx+ bc
2 xyyy

+ab
2 yxxx+ b2

4 yxxy+ b2

4 yxyx+ b
2cyxxx

+acyyxx+ bc
2 yyxy+ bc

2 yyyx+ c2yyyy.

The contraction is color-coded and yields 4ac− b2, which is the evaluation of (the negative of)
the discriminant at aX2 + bXY + cY 2.

We study (19.6) in more detail in Section 20.1 in the situation of Corollary 19.6.

19.3.3 Plethysm coefficients

In Section 12.4.1 we defined aλ(d,n) as the multiplicity of λ in C[A]d with A = C[X1, . . . ,XN ]n.
By Proposition 12.7 we know that

aλ(d,n) = dimHWVλ(C[A]d).

With Corollary 19.6 we obtain

aλ(d,n) = dimHWVλ(SymdSymnV ).

Proposition 19.8. Formally aλ(d,n) depends on m := dimV , i.e., we would need a symbol
aλ,m(d,n). For `(λ)> dimV we have aλ,dimV (d,n) := 0, as there exists no GLdimV -representation
of type λ. If `(λ)≤m1 and `(λ)≤m2, then aλ,m1(d,n) = aλ,m2(d,n).
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Proposition 19.8 justifies the notation aλ(d,n). This was claimed in Section 12.4.1.

Proof of Proposition 19.8. Note that by Schur-Weyl duality and (19.4) we have

aλ(d,n) = dimHWVλ(SymdSymnV )
(19.4)= dimHWVλ((⊗ndV )SnoSd)

= dimHWVλ((
⊕

µ
�
dimV nd

{µ}⊗ [µ])SnoSd)

= dim(
⊕

µ
�
dimV nd

HWVλ({µ})⊗ ([µ])SnoSd)

= dim[λ]SnoSd ,

provided `(λ)≤ dimV .

19.3.4 Semistandard tableaux again: Gay’s theorem

We follow [45, Sec. 4.3(A)]. Since the HWVs of type λ in SymdSymnV are explicitly described
by Sn oSd-invariants in [λ] (see the proof of Proposition 19.8), we study those invariants now.

Recall that a standard tableau indexes a vector in [λ] = {λ}0, but via Schur-Weyl duality it
also indexes a vector in HWVλ(⊗dnV )∼= [λ]. This can be confusing at first, but this beautiful
correspondence makes things a lot easier.

Lemma 19.9. Let V be an Sn oSd-representation. Then we have an action of Sd on the
invariant space V Sdn. Moreover, V SnoSd = (V Sdn)Sd.

Proof. Interchanging the block structure of invariant blocks keeps the blocks invariant, so we
have an Sd-action. The second statement follows from our definition of Sn oSd.

It turns out that the Sd
n-invariants of [λ] can be easily understood using semistandard

tableaux. Let {λ}d×n denote the d×n weight space in {λ} (recall that a basis of {λ}d×n is given
by the eT where T is semistandard of shape λ and content d×n). Consider the map

ϕ : {λ}0→{λ}d×n (19.7)

that replaces each entry 1,2, . . . ,n by 1, each entry n+1,n+2, . . . ,2n by 2, and so on. This is
an application of a matrix in End(C|λ|), for example:

ϕ


2 1 3 5 8
4 7 9 10
6 12
11

 =
1 1 1 2 3
2 3 3 4
2 4
4

for n= 3,d= 4

THEORY OF COMPUTING 111

http://dx.doi.org/10.4086/toc
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is obtained by applying the matrix

1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



·
2 1 3 5 8
4 7 9 10
6 12
11

=
1 1 1 2 3
2 3 3 4
2 4
4

.

For a standard tableau T there are two cases:

1. ϕ(T ) is semistandard or

2. ϕ(T ) has a column with a repeated entry.

Using the relations in the columns, we see that only the semistandard tableaux correspond
to nonzero vectors. Moreover, distinct semistandard tableaux correspond to linearly independent
vectors in {λ}d×n.

The map ϕ gives a way of representing the Sd
n-invariants:

Lemma 19.10 (Gay’s theorem [37]). Let Sd act on [λ] by permuting the d blocks, i.e., for
example the transposition (1 2) switches 1 with n+ 1, switches 2 with n+ 2, . . ., and switches n
with 2n. The map ϕ is Sd-equivariant. Moreover, if we restrict ϕ to the invariant space [λ]Sdn,
then it becomes an isomorphism of Sd-representations [λ]Sdn and {λ}d×n.

Proof. Permuting blocks and then setting the whole block to a number has the same effect as
setting the whole block to a number and then permuting the blocks. Thus ϕ is Sd-equivariant.

The inverse function ϕ−1 is given (up to scale) by summing over all ways of replacing each
entry i in the semistandard tableau by all entries i(n−1) + j, 1≤ j ≤ n. For example

ϕ−1( 1 1
2 2 ) 7→ 1 2

3 4 + 2 1
3 4 + 1 2

4 3 + 2 1
4 3

Remark 19.11. Note that

1 2
3 4 + 2 1

3 4 + 1 2
4 3 + 2 1

4 3 = 2
( 1 2

3 4 + 2 1
3 4

)
,

which explains the choice at the end of Section 19.3.1.
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Taking Sd-invariants in Lemma 19.10 we obtain:

Corollary 19.12. aλ(d,n) = dim({λ}d×n)Sd.

The following example shows how we can calculate plethysm coefficients using tableaux.

Example 19.13. For λ= (2,2) there is a unique semistandard tableau of shape λ with rectan-
gular content 2×2:

1 1
2 2 .

Thus dim[λ]S2
2 = 1. Let us consider the action of S2:

1
2

( 1 1
2 2 + (1 2) 1 1

2 2
)

= 1 1
2 2

and thus dim[λ]S2oS2 = 1 = a(2,2)(2,2). This invariant tableau can therefore now be used with
the above constructions to find the unique HWV of weight (2,2): The discriminant, as it was
done in Example 19.4.

Corollary 19.14. Via Schur-Weyl duality we identify tableaux S of shape λ that have content
(1,1 . . . ,1) with vectors vS ∈ HWVλ(⊗d⊗nV ). The vector space HWVλ(⊗dSymnV ) has as a
basis the highest weight vectors ϕ−1(T ), where T ranges over all semistandard tableaux of shape
λ with content d×n. Moreover, the vector space HWVλ(SymdSymnV ) is spanned by the highest
weight vectors

∑
π∈Sd ϕ

−1(πT ), where T ranges over all semistandard tableaux of shape λ with
content d×n.

Example 19.15.
Sym2Sym2Cm = {(2,2)}⊕{(4)} for all m≥ 2.

Proof. • There is a unique semistandard tableau of shape (2,2) and rectangular content
2×2:

1 1
2 2 .

It is invariant under S2.

• There is a unique semistandard tableau of shape (4,0) and rectangular content 2×2:

1 1 2 2 .

It is invariant under S2.

• There is a unique semistandard tableau of shape (3,1) and rectangular content 2×2:

1 1 2
2 . (19.8)

It vanishes under symmetrization over S2.
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• There are no semistandard tableaux of shape (2,1,1) or (1,1,1,1) with rectangular content
2×2.

Some more small examples:

Theorem 19.16 (Howe’s theorem [43, Thm. 4.3]). Let d > 1. Let d×n := (n,n, . . . ,n) denote
the partition of nd whose Young diagram is rectangular with n columns and d rows.

ad×n(d,n) =
{

1 if n is even,
0 otherwise.

Proof. There is exactly 1 semistandard tableau of shape d×n and rectangular content d×n.
For example:

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4

.

Applying a transposition (i j) ∈ Sd gives a sign change for each column. So the tableau is
invariant iff n is even.

Proposition 19.17. A partition λ is called a nontrivial hook if λ = (k,1m) := (k,1,1, . . . ,1︸ ︷︷ ︸
m times

)

with k ≥ 1 and m≥ 1. If λ is a partition of nd and λ is a nontrivial hook, then the plethysm
coefficient aλ(d,n) is zero.

Proof. This generalizes the vanishing of eq. (19.8) under symmetrization.
Let λ ` nd be a nontrivial hook. Pick any Young tableau T of shape λ with rectangular

content d×n. Then T will have at least two numbers a and b appearing in the first column, for
example

1 1 1 2 2 3 3 4 4
2
3
4

Then pick two numbers a and b that appear in the first column. Then T + (a b)T = 0 and thus
T vanishes when symmetrizing over a cardinality 2 subgroup of Sd, therefore T also vanishes
when symmetrizing over the whole Sd.

Explicit construction of HWVs

The explicit construction of highest weight vectors gives us first results about plethysm
coefficients. In Chapter 20 we will lift these techniques to multiplicities in coordinate
rings of orbit closures.
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20 Tensor contraction
In this chapter we describe a combinatorial interpretation of the contraction in (19.6) and give
several applications, including strong restrictions on the shape of partitions λ that can potentially
serve as obstructions. We will see that those λ require a very long first part.

20.1 Contracting highest weight vectors in plethyms with rank one tensors

In this section we give a combinatorial interpretation of the contraction in (19.6). This will
enable us to deduce restrictions on the possible λ that can serve as obstructions.

Let V = CN and let s : {1, . . . ,dn}→ CN .
We view λ ` dn as a Young diagram and, for convenience, denote by λ also the set of boxes

of the diagram. Recall the map ϕ from (19.7).

Definition 20.1. Let T be a tableau of shape λ with content d×n and ϑ : λ→ [dn] be a
bijection. This results in a tableau Sϑ with content (1, . . . ,1). We say that ϑ respects T iff there
exists a permutation τ ∈Sd such that ϕ(Sϑ) = Tτ(T ).

Clearly for a given T there are (n!)dd! maps ϑ that respect T , which is the size of the wreath
product group Sn oSd.

Pictorially, the composition s◦ϑ puts vectors in the tableau cells.
Let j = (j1, . . . , jk) be a list of vectors in CN . We define

det(j1, . . . , jk) := 〈e1∧e2∧·· ·∧ek, j1⊗ j2⊗·· ·⊗ jk〉, (20.1)

which is the determinant of the top k×k submatrix of the N ×k matrix j.
Suppose ϑ : λ→ [dn] respects the tableau T of shape λ with content d×n, and take a map

s : {1, . . . ,dn}→ CN . We define the value valϑ(s) of ϑ at s : {1, . . . ,dn}→ CN by

valϑ(s) :=
∏

column c of λ
det(s(ϑ(1, c)), . . . ,s(ϑ(µc, c)), (20.2)

where µ= λt. This is natural in the following sense:

valϑ(s) = 〈e1∧·· ·∧eµ1⊗·· ·⊗e1∧·· ·∧eµλ1
,s(ϑ(1,1))⊗s(ϑ(2,1))⊗·· ·⊗s(ϑ(µλ1 ,λ1))〉

Pictorially, s ◦ ϑ places vectors in the tableau and valϑ(s) is the product over the column
determinants.

Theorem 20.2. Let T be a tableau of shape λ ` dn with content d× n and let vT be the
corresponding HWV in HWVλ(⊗dSymnV ) (Cor. 19.14). Let ṽT := 1

d!
∑
π∈Sd πvT be the HWV

in HWVλ(SymdSymnV ). Let s : {1, . . . ,dn}→ CN be a map. Then

〈ṽT ,s(1)⊗ . . .⊗s(dn)〉= 1
d!n!d

∑
ϑ

valϑ(s),

where the sum is over all bijections ϑ : λ→{1, . . . ,dn} respecting T .
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Proof. Let S be a tableau with content (1,1, . . . ,1) such that ϕ(S) = T . Let π ∈ Sdn any
permutation such that πS0 = S, where S0 is the standard tableau that is ordered columnwise
from left to right, top to bottom.

〈ṽT ,s(1)⊗ . . .⊗s(dn)〉 = 1
d!n!d

∑
σ∈SdoSd

〈σvS ,s(1)⊗ . . .⊗s(dn)〉

= 1
d!n!d

∑
σ∈SdoSd

〈vS ,σ(s(1)⊗ . . .⊗s(dn))〉

= 1
d!n!d

∑
σ∈SdoSd

〈πvS0 ,σ(s(1)⊗ . . .⊗s(dn))〉

= 1
d!n!d

∑
σ∈SdoSd

〈vS0 ,π
−1σ(s(1)⊗ . . .⊗s(dn))〉

= 1
d!n!d

∑
ϑ

valϑ(s),

where the last equality follows from vS0 = e1∧·· ·∧eµ1⊗·· ·⊗e1∧·· ·∧eµλ1
.

20.2 Applications: Waring rank and a proof of Weintraub’s conjecture

20.2.1 The discriminant

We let
T := 1 1

2 2
and aim to evaluate ṽT at a tensor of Waring rank 1: `2, where ` ∈ CM .

We observe (`2)⊗2 = `⊗ `⊗ `⊗ ` and set s= (`,`,`,`).

〈ṽT ,(`2)⊗2〉 = 1
8

∑
ϑ respecting T

valϑ(s)

But every summand valϑ(s) is zero, because it is a product of 2×2 determinants in which both
columns are `. Therefore the discriminant vanishes on Waring rank 1 polynomials.

20.2.2 Too many rows

The following observation generalizes the discriminant.

Observation 20.3. Let T be a semistandard tableau of shape λ and content d×n with more
than k rows. Then ṽT vanishes on all points of border Waring rank ≤ k.

Proof. Let h= `n1 + `n2 + · · ·+ `nk for linear forms `i.

〈ṽT ,h⊗d〉 =
∑

1≤a1,...,ad≤k
〈ṽT , `na1⊗·· ·⊗ `

n
ad
〉

= 1
d!(n!)d

∑
1≤a1,...,ad≤k

∑
ϑ

valϑ(`a1 , . . . , `a1 , `a2 , . . . , `a2 , . . . , . . . , `ad , . . . , , `ad)
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As for the discriminant, each summand vanishes independently. Indeed, for

s= (`a1 , . . . , `a1 , `a2 , . . . , `a2 , . . . , . . . , `ad , . . . , , `ad),

the map s◦ϑ places the `i in the tableau such that each position that has the same number in
T gets the same `i. But the first column of T has more than k different numbers. So by the
pigeonhole principle s◦ϑ puts at least two coinciding `i in the first column. Thus valϑ(s) = 0
because a determinant with a repeating column is zero.

20.2.3 Aronhold’s invariant

We can do a little bit better, i.e., use fewer rows, as Aronhold’s invariant in Sym4Sym3V shows
(and this can be generalized):

T :=
1 1 1 2
2 2 3 3
3 4 4 4

.

Let h ∈ Sym3V be of Waring rank 3, h= `31 + `32 + `33. Then

h⊗4 = `31⊗ `31⊗ `31⊗ `31 + `31⊗ `31⊗ `31⊗ `32 + · · ·+ `33⊗ `33⊗ `33⊗ `33.

〈ṽT ,h⊗4〉 =
∑

1≤a,b,c,d≤3
〈ṽT , `3a⊗ `3b ⊗ `3c ⊗ `3d〉

= 1
4!(3!)4

∑
1≤a,b,c,d≤3

∑
ϑ

valϑ(`a, `a, `a, `b, `b, `b, `c, `c, `c, `d, `d, `d)

Again each summand vanishes independently. Indeed, for s= (`a, `a, `a, `b, `b, `b, `c, `c, `c, `d, `d, `d),
the map s◦ϑ places the `i in the tableau such that each position that has the same number in
T gets the same `i. For a nonzero summand it is required that ϑ puts different vectors `i on the
numbers 1,2,3 because of the first column. But in T the number 4 shares columns with each
1,2,3 and there is no 4th different vector `i. Thus for every ϑ there is at least one column in
which the determinant vanishes because of a repeated column.

20.2.4 Proof of Weintraub’s conjecture

With one additional idea it is now straightforward to prove Weintraub’s conjecture that allows
us to create nonzero ṽT :

Theorem 20.4 ([17]). Let n be even. Given a partition λ of dn into at most d parts such that
all λi are even. Then aλ(d,n)> 0.

Proof. If λ is even, `(λ)≤ d, then we can fill it with content d×n such that each column appears
twice (for example in a greedy fashion, taking the column pair with the most empty rows first).
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For example

T =
1 1 1 1 4 4 2 2 3 3 4 4
2 2 2 2 1 1
3 3 3 3
4 4

.

Now choose a homogeneous polynomial h as the sum of d many homogeneous degree n linear
forms with real coefficients:

h= `n1 + · · ·+ `nd ,

where each `i ∈ Rd. Here we choose each `i in a “generic” way, i.e., its entries should be
algebraically independent or at least all top k×k determinants of all subsets of k vectors `i
should be nonzero. We will see that

〈ṽT ,h⊗d〉> 0. (20.3)
Indeed,

〈ṽT ,h⊗d〉 = 1
d!(n!)d

∑
1≤a1,a2,...,ad≤d

∑
ϑ

valϑ(`a1 , . . . , `a1 , `a2 , . . . , `a2 , . . . . . . , `ad , . . . , `ad)

When expanding we get a sum of products of determinants, but in each product each
determinant appears an even number of times. Therefore we sum over squares of real numbers!
Since squaring nonzero real numbers results in positive real numbers, (20.3) will be positive. It
remains to show that there is at least one positive summand, but that is given for example for
the summand ϑ in which `i is placed on i.

20.3 Application: Obstructions require long first rows

For a partition λ we define λ̄ to be its body, i.e., λ̄ is obtained from λ by removing its first row.
The following insight is due to Kadish and Landsberg [47]. It puts a strong restriction on

the types λ that can be used to separate the determinant from the padded permanent.

Proposition 20.5 ([47]). Let Ωn,m := GLn2(Xn−m
1,1 perm). If λ ` nd occurs in C[Ωn,m]d, then

`(λ)≤m2 + 1 and |λ̄| ≤md.

Proof. Suppose that λ ` nd satisfies `(λ)>m2 + 1 or |λ̄|>md. We need to show that λ does
not occur in C[Ωn,m]d. We will show that 〈ṽT ,h⊗d〉 = 0 for every semistandard tableau T of
shape λ with content d×n and every h ∈Ωn,m. So fix a tableau T of shape λ with content d×n
and fix a point h ∈ Ωn,m.

Assume first that ` := `(λ)>m2 + 1. We prove that 〈ṽT ,h⊗d〉= 0. We use an argument that
is very similar to Observation 20.3. For this, it suffices to show that 〈ṽT , t〉= 0 for all tensors
t= s(1)⊗·· ·⊗s(dn), where s : {1, . . . ,dn}→ {e1, . . . ,em2+1} and ei are the standard basis vectors
of Cm2+1. Indeed, for every ϑ we have valϑ(s) = 0 because the determinant that corresponds to
the first column is zero: It is a determinant of a `× ` matrix, ` >m2 + 1, whose last `− (m2 + 1)
rows are zero. Thus 〈ṽT ,h⊗d〉= 0.

Assume now |λ̄| >md, so that λ1 < (n−m)d. For g ∈ GLn2 let Z := gX1,1 so that Zn−m ·
gperm ∈ GLn2(Xn−m

1,1 perm). Let q := Zn−mgperm. We can express q⊗d as a linear combination
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of tensors t= s(1)⊗·· ·⊗s(dn), where s : {1, . . . ,dn}→ CM maps at least (n−m)d elements to
the vector Z. Fix such a tensor t. It suffices to show that 〈ṽT , t〉= 0. Indeed, each summand
of ∑ϑvalϑ(s) vanishes independently. This can be seen as follows. Since λ1 < (n−m)d, the
partition λ has less than (n−m)d columns. By the pigeonhole principle, there is a column c in
which s◦ϑ puts a vector Z in at least two boxes. Thus the determinant corresponding to this
column vanishes.

Explicit construction of HWVs

Evaluation of highest weight vectors can be defined via tensor contraction. In several
cases this tensor contraction can be fully understood, so that nontrivial results about
multiplicities in coordinate rings of orbit closures can be deduced, for example equations
for Waring rank.

21 Good occurrence obstructions for determinant vs padded
permanent do not exist

In this chapter, we will see that showing (X1)n−mperm /∈ GLn2detn for superpolynomially large
n cannot be achieved with occurrence obstructions. The padding is crucial for the proof of this
result. It is astonishing that such a seemingly small modification has such a large impact (on
the proof, the complexity of the polynomial is of course not changed by much). Multiplicity
obstructions might still work, as well as occurrence obstructions in models of computation where
no padding is involved. One such example is homogeneous iterated matrix multiplication. The
hope that multiplicity obstructions might work (at least in models without padding) comes from
the fact that in many situations group orbits and orbit closures can be reconstructed without
loss of information from the multiplicities in their coordinate rings [57, 82, 21].

We roughly follow [22]. The crucial tool is the semigroup property that is explained in
Section 21.2.1. It is a well-known theorem of independent interest: If λ and µ occur in the
coordinate ring of a GLn-orbit closure, then λ+µ occurs as well. This means that we only have
to prove the occurrence for a large enough set of building blocks so that we can obtain every
partition as a sum of building blocks. We will see that this essentially works in the range of all
“interesting” partitions. This splitting of partitions into building blocks is the main argument,
see Section 21.2.2. The range of all “interesting” partitions is cut down significantly by the
requirement to have a long first row and only very few rows, see Section 20.3. Moreover, we rule
out that a polynomially bounded number of boxes in the Young diagram suffices, see Section 21.1.
This means that we have only polynomially many rows, but superpolynomially many columns
and a very long first row. We show directly that the rectangular partitions with even number
of columns and an additional long first row occur (rectangular blocks with an even number
of columns are particularly easy to understand, and the long first row is handled by a lifting
theorem, see Section 21.1.3), so using these building blocks we can construct any partition that
has even row lengths, few rows, and a long first row. If there were no odd row lengths, then
we would be done at this point. We handle odd row lengths by proving that wide rectangular
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blocks with one additional other column and an additional long first row also occur. For this
type of building block we can prove occurrence directly by evaluating on a padded power sum,
see Section 21.2.3.

21.1 The degree lower bound

In this section we prove a lower bound on the degree d that (polynomial) obstructions must
have: d >

√
n
m . In particular if we want to prove superpolynomial lower bounds on the border

determinantal complexity of the permanent, we need superpolynomially high degree.

21.1.1 Padded low rank embedding

We will apply the following theorem with s=md.

Theorem 21.1. Let n,s,d be positive integers such that n≥ sd and Z,v1,1, . . . ,v1,s,v2,1, . . . , . . . ,vd,s ∈
V . Then we have Zn−s(v1,1v1,2 · · ·v1,s+ · · ·+vd,1vd,2 · · ·vd,s) ∈ GLn2detn.

Proof. Let X1,1, . . . ,Xd,s, . . . ,Xn denote the standard basis of V (that last n−ds variables are
indexed by just one integer). Writing the polynomial X1,1X1,2 · · ·X1,s+ · · ·+Xd,1Xd,2 · · ·Xd,s as
a formula requires at most (s−1)d+d−1 = sd−1 many additions and multiplications. Valiant’s
construction [79] implies that X1,1X1,2 · · ·X1,s + · · ·+Xd,1Xd,2 · · ·Xd,s has the determinantal
complexity at most sd≤ n, i.e., it can be written as the determinant of an n×n-matrix with
affine linear entries in X1,1, . . . ,Xd,s. The determinantal complexity is invariant under invertible
linear transformations. Hence the determinantal complexity of v1,1v1,2 · · ·v1,s+ · · ·+vd,1vd,2 · · ·vd,s
is at most n, for any linearly independent system v1,1, . . . ,vd,s of linear combinations ofX1, . . . ,Xn2 .
By homogenizing with respect to a new variable Y and then substituting Y by Z ∈ V , we see that
Zn−s(v1,1v1,2 · · ·v1,s+ · · ·+vd,1vd,2 · · ·vd,s) ∈ GLn2detn. Since GLn2detn is closed, we can drop the
assumption that the vi,j are linearly independent, by taking limits.

21.1.2 Low rank evaluation

We present now a useful lemma on the evaluation of polynomials at “points of low rank”.

Lemma 21.2. Let f ∈ SymdW be such that f(∑r
j=1 vj) 6= 0 for some v1, . . . ,vr ∈W . Then there

exists S ⊆ {1, . . . , r} with |S| ≤ d and f(∑j∈S vj) 6= 0.

Proof. (an alternative proof is given in [22, Lem. 3.1]) Let [r] := {1, . . . , r}. For a subset
S ⊂ [r] we write vS := vS1 + vS2 + · · ·+ vS|S| . Let v := v[r]. For a map σ : [d]→ [r] we write
vσ := vσ(1)⊗vσ(2)⊗·· ·⊗vσ(d). In the following inclusion/exclusion calculation we can assume all
sets Si to have at most i elements. We will express f(v) as a linear combination of evaluations
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f(vS), where |S| ≤ d, S ⊆ [r]. A two-headed arrow “�” indicates a surjective map.

f(v) = 〈f,v⊗d〉=
∑

σ:[d]→[r]
〈f,vσ〉

=
∑
Sd⊂[r]

∑
σ:[d]�Sd

〈f,vσ〉

=
∑
Sd⊂[r]

f(vSd)−
∑

σ:[d]→Sd not surj
〈f,vσ〉


=

∑
Sd⊂[r]

f(vSd)−
∑

Sd−1(Sd

∑
σ:[d]�Sd−1

〈f,vσ〉


=

∑
Sd⊂[r]

f(vSd)−
∑

Sd−1(Sd

f(vSd−1)−
∑

Sd−2(Sd−1

∑
σ:[d]�Sd−2

〈f,vσ〉



=
∑
Sd⊂[r]

f(vSd)−
∑

Sd−1(Sd

f(vSd−1)−
∑

Sd−2(Sd−1

· · ·
 ∑
S1(S2

∑
σ:[d]�S1

〈f,vσ〉︸ ︷︷ ︸
=f(vS1 )

 · · ·




Hence we see that f(v) can be expressed as a linear combination of evaluations f(vS), where
|S| ≤ d. Since f(v) 6= 0 there exists S such that f(vS) 6= 0.

A direct corollary of Lemma 21.2 (using vj to be the monomial basis) is the following.

Corollary 21.3. Let V be a finite dimensional C-vector space and d,n≥ 1. If f ∈ SymdSymnV
is nonzero, then there exists a polynomial h ∈ SymnV that has at most d nonzero coefficients
such that f(h) 6= 0.

21.1.3 The inner degree tableau lifting

Given a tableau with shape λ and content d×n we define the lifted tableau to be the tableau of
shape λ+ (d) where we append the entries 1, . . . ,d to the first row. For example:

1 1 1 1 4 4 2 2 3 3 4 4
2 2 2 2 1 1
3 3 3 3
4 4

lifting7→
1 1 1 1 4 4 2 2 3 3 4 4 1 2 3 4
2 2 2 2 1 1
3 3 3 3
4 4

If ṽT is a HWV in SymdSymnV , then ṽT ′ is a HWV in SymdSymn+1V , where T ′ is the lifted
tableau of T . The lifting is an injective map HWVλ(SymdSymnV ) ↪→HWVλ+(n)(SymdSymn+1V ).
The proof can be readily obtained from the semigroup property of the partitions in the coordinate
ring C[GLd(X1X2 · · ·Xd)], but we omit the details, see [22].

We can apply the lifting several times and also call the result a lifted tableau.
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Recall the monomial
Xα = 1

d!
∑
π∈Sd

π(Xα1⊗·· ·⊗Xαd)

We define a linear map SymnV → Symn+1V that is suited to this lifting (and which is basically
a rescaled multiplication with X1):

X1� (
∑
π∈Sd

π(Xα1⊗·· ·⊗Xαd)) := 1
k

∑
π∈Sd+1

π(Xα1⊗·· ·⊗Xαd⊗X1)

where k = |{j | αj = 1}|+ 1 is the X1-degree of the right-hand side. The crucial property is that
the summands on the left-hand side are in bijection (taking into account the rescaling factor 1

k )
to the summands on the right-hand side which have X1 as their last tensor factor. In terms of
monomials, this is a rescaled multiplication with X1. The rescaling factor is chosen so that is
works well with the lifting map ṽT 7→ ṽT ′ :

〈ṽT ,(p)⊗d〉= 〈ṽT ′ ,(X1�p)⊗d〉 (21.1)

which can be seen immediately by comparing summands in the tensor contractions (this is
also the reason why we state (21.1) in terms of tensors and not monomials, which would
also be perfectly possible. In fact, [22, Sec. 5(b)] gives a more algebraic presentation of this
construction). Applying X1�h to a polynomial preserves the number of monomials that have
a nonzero coefficient, but it changes the coefficients individually, depending on the number of
occurrences of X1 in each monomial. We write (X1)n−m�p :=X1� (X1� (· · ·�p)).

Corollary 21.4. Let n,s,d be positive integers such that n≥ sd and Z,v1,1, . . . ,v1,s,v2,1, . . . , . . . ,vd,s ∈
V . Then we have Zn−s� (v1,1v1,2 · · ·v1,s+ · · ·+vd,1vd,2 · · ·vd,s) ∈ GLn2detn.

Proof. Zn−s� (v1,1v1,2 · · ·v1,s + · · ·+ vd,1vd,2 · · ·vd,s) has the required format for applying The-
orem 21.1 directly: Zn−s� (v1,1v1,2 · · ·v1,s + · · ·+ vd,1vd,2 · · ·vd,s) = Zn−s(ṽ1,1ṽ1,2 · · · ṽ1,s + · · ·+
ṽd,1ṽd,2 · · · ṽd,s) for some ṽi,j .

We write λ]D for the partition of the “lifted shape” λ+ (D− |λ|), that arises from λ by
extending the first row so that λ]D has D boxes.

Corollary 21.5. If aλ(d,n)> 0, then aλ]dN (d,N)> 0 for all N ≥ n.

Proof. If aλ(d,n) > 0, then there is some nonzero ṽT ∈ HWVλ(SymdSymnV ) and therefore
some h ∈ SymnV such that ṽT (h) 6= 0. We obtain ṽT ′ that satisfies ṽT ′(XN−n

1 �h) = ṽT (h) 6= 0
according to (21.1). As ṽT ′ is a nonzero HWV of weight λ]dN , we get that aλ]dN (d,N)> 0.

We will use the following proposition with M =md.

Proposition 21.6. Suppose that λ ` nd satisfies λ2 ≤M and λ2 + |λ̄| ≤Md. Then every HWV
of weight λ in SymdSymnV is obtained by lifting a HWV in SymdSymMV of weight µ, where
µ `Md such that µ̄= λ̄.
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1 1 1 1 1 1 1 2 2 2 3 3 3 3 4 4 4
2 2 2 2 4 4
3 3 3
4 4

shortening7→
1 1 1 1 1 1 2 2 3 3 3 4 4
2 2 2 2 4 4
3 3 3
4 4

Figure 10: Shortening the first row. Here n= 7, d= 4, M = 6, λ2 + |λ̄|= 18≤ 24 =Md λ= (16,6,4,2).
Then µ= (12,6,4,2). The crucial property is that for each number there is a singleton box
containing that number in the left tableau.

Proof. Note that λ2 + |λ̄| ≤Md is the number of boxes of λ that appear in columns that are not
singleton columns. We can therefore shorten the given λ to a partition µ `Md by removing
singleton columns, see Figure 10 for an example. Indeed, if T is semistandard of shape λ with
content d×n, then each number can appear in non-singleton columns at most M times, because
λ2 ≤M . Therefore shortening T to shape µ `Md can be done by removing (n−M) of each
number 1, . . . ,d from singleton columns, which gives the HWV we searched for.

21.1.4 The degree lower bound

If we want to separate with polynomials, then the following proposition gives a lower bound on
the possible degree.

Proposition 21.7. Let λ ` nd be such that there exists a positive integer m satisfying |λ̄| ≤
md and d ≤

√
n
m . Then every nonzero HWV of weight λ in Symd(SymnV ) does not vanish

on GLn2detn.
In particular, to show superpolynomial lower bounds on the border determinantal complexity

of perm we need superpolynomially high degree d.

Proof. The case d= 1 is trivial as (n) occurs in C[GLn2detn]1. So suppose d≥ 2.
Let F ∈ HWVλ(SymdSymnV ). We have λ2 ≤ |λ̄| ≤md and λ2 + |λ̄| ≤ 2|λ̄| ≤ 2md ≤md ·d.

Therefore, we are in the setting of Proposition 21.6 with respect to the lifting SymdSymmdV →
SymdSymnV . We conclude that F arises by an inner degree lifting from a HWV f ∈SymdSymmdV
of weight λ− (d(n−m)).

By Corollary 21.3, there are v1,1, . . . ,vd,md ∈ V such that f does not vanish on

p := v1,1v1,2 · · ·v1,md+ · · ·+vd,1vd,2 · · ·vd,md.

Using (21.1) we see that F does not vanish on q := Xn−m
1 � p. By Corollary 21.4 we have

q ∈ GLn2detn since n≥md ·d (i.e., d≤
√

n
m). Therefore, F does not vanish on GLn2detn.

21.1.5 A first row that is too long

In a mostly analogous way one can prove the following proposition that takes care of cases with
a huge λ1. We omit the details.
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Proposition 21.8. Let λ ` nd and assume there exist positive integers s,m such that `(λ)≤m2,
λ1 ≥ nd−s, m2s2 ≤ n, and m2s≤ d. Then every nonzero h ∈ HWVλ(SymdSymnV ) of weight λ
does not vanish on GLn2detn.

21.2 No occurrence obstructions

In this section we prove that occurrence obstructions cannot prove superpolynomial lower bounds
on dc(perm).

Theorem 21.9. Let n,d,m be positive integers with n ≥ m25 and λ ` nd. If λ occurs in
C[Zn−mperm], then λ also occurs in C[GLn2detn]. In particular occurrence obstructions cannot
show superpolynomial lower bounds on dc(perm).

Proof. We may assume that m≥ 2, as the case m= 1 is trivial. Suppose that λ ` nd occurs in
C[Zn−mperm] and n≥m25. Proposition 20.5 implies that |λ̄| ≤md and `(λ)≤m2.

In the case of “small degree”, where n ≥md2, Proposition 21.7 implies that λ occurs in
C[GLn2detn].

So we may assume that d >
√
n/m. In this case we have d≥

√
m25/m=m12. We conclude

by two further case distinctions.
If |λ̄| < m10, we can apply Proposition 21.8 with s := m10 since λ2 ≤ |λ̄| ≤ s (note that

λ1 ≥ nd−s iff λ2 ≤ s), m2s2 =m22 ≤ n, and m2s=m12 ≤ d. Thus λ occurs in C[GLn2detn]d.
We handled the case where the d is small or |λ| is small. Finally, we come to the most

interesting case. If |λ̄| ≥m10, then an explicit construction (Corollary 21.22) tells us that λ occurs
in C[GLn2detn]d.

The explicit construction mentioned in the proof crucially uses the so-called semigroup
property that we introduce in the next section.

21.2.1 The semigroup property

To have an explicit construction of HWVs in C[GLn2detn] we use the semigroup property, which
allows us to construct HWVs as products of HWVs of smaller degrees.

Let A := CN . A Zariski-closed subset Z ⊆ A is called an irreducible subvariety if Z is not a
union of two distinct proper Zariski-closed subsets of Z. More generally, in a topological space a
subset is irreducible if it is not the union of two distinct proper closed subsets.

Lemma 21.10. The affine space A := CN is irreducible.

Proof. Let V (f1, . . . ,fr) denote the simultaneous vanishing set of f1, . . . ,fr, where fi ∈ C[A]. If
A is reducible, then A = V (f1, . . . ,fr)∪V (g1, . . . ,gs), where fi,gj ∈ C[A], fi,gj 6= 0. In particular
A ⊆ V (f1)∪V (g1) = V (f1g1). Since f1g1 6= 0 there exists a point x ∈ A with (f1g1)(x) 6= 0
(Lemma 1.9). But this means that A 6⊆ V (f1g1), which is a contradiction.

Lemma 21.11. The image f(X) of an irreducible set X under a continuous map f is irreducible.
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Proof. If f(X) = Y1∪Y2 with nontrivial distinct Zariski-closed subsets Yi, then X = f−1(Y1)∪
f−1(Y2). Since f is continuous, f−1(Yi) is closed. Moreover, if f−1(Y1) =X, then f(X) = Y1, in
contradiction to Y1 $ f(X). Analogously it holds f−1(Y2) 6=X. Thus X is a union of nontrivial
closed subsets, in contradiction to X being irreducible.

Lemma 21.12. The closure Y of every irreducible set Y is irreducible.

Proof. Assume that Y is not irreducible, i.e., Y = S∪T with closed subsets S ⊆ Y and T ⊆ Y ,
and S,T 6= Y . We have Y ⊆ Y ⊆ S∪T . Thus Y = (S∪T )∩Y = (S∩Y )∪ (T ∩Y ), where both
(S ∩Y ) and (T ∩Y ) are closed in Y (subspace topology). The decomposition is nontrivial: if
S∩Y = Y , then Y ⊆ S, and therefore Y ⊆ S = S and thus Y = S, a contradiction. Analogously
for T . Therefore Y is not irreducible.

Lemma 21.13. The orbit closure GLn2detn ⊆ C[X1, . . . ,Xn2 ]n is an irreducible subvariety.

Proof. By Lemma 21.10 the affine matrix space Cn2×n2 = Endn2 is irreducible. Hence the orbit
Endn2detn is irreducible by Lemma 21.11. Its closure is irreducible by Lemma 21.12.

Remark 21.14. Lemma 21.13 holds in high generality: The orbit closure of any connected
algebraic group under a polynomial group action is irreducible.

Claim 21.15. In a domain (i.e., a ring without zero divisors) we have:

If ax= ay with a 6= 0, then x= y.

Proof.
ax= ay⇒ a(x−y) = 0⇒ a= 0 or x= y.

Lemma 21.16. For an irreducible subvariety Z the coordinate ring C[Z] has no zero divisors.

Proof. Let f,g with fg = 0 in C[Z], i.e., fg(z) = 0 for all z ∈ Z. Since fg vanishes on Z,
Z = V (fg)∩Z = (V (f)∩Z)∪(V (g)∩Z). Since Z is irreducible, V (f)∩Z and V (g)∩Z cannot be
both proper subsets of Z. Therefore either V (f)∩Z =Z or V (g)∩Z =Z. W.l.o.g. V (f)∩Z =Z,
thus f = 0 in C[Z].

Proposition 21.17 (The semigroup property). Let G= GLm act polynomially on A. Let the
cone Z ⊆A be an irreducible subvariety that is closed under the action of G. Then the coordinate
ring of Z in degree d is a G-representation and we have the following:

If the type λ occurs with positive multiplicity m1 in C[Z]d1 and the type µ occurs with positive
multiplicity m2 in C[Z]d2, then the type λ+µ occurs with multiplicity at least max(m1,m2) in
C[Z]d1+d2.
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Proof. W.l.o.g. let m1 ≤m2. Let f be a HWV of weight λ in C[Z]d1 . Let F1, . . . ,Fm2 be a basis
of HWVs of weight µ in C[Z]d2 . Then fF1, · · ·fFm2 are linearly independent HWVs of weight
λ+µ in C[Z]d1+d2 , as can be seen as follows.

Assume a nontrivial linear combination of zero:

α1fF1 + ...+αm2fFm2 = 0

We conclude
f(α1F1 + ...+αm2Fm2) = f0.

Since C[Z] has no zero divisors, using Claim 21.15 it follows α1F1 + ...+αm2Fm2 = 0, a contra-
diction to the linear independence of the Fi.

Corollary 21.18. Let G = GLn2 and v = detn or v = Zn−mperm. If multλ(C[Gv])d1 > 0 and
multµ(C[Gv])d2 > 0, then

multλ+µ(C[Gv])d1+d2 >max(multλ(C[Gv])d1 ,multµ(C[Gv])d2).

Moreover, if aλ(d1,n)> 0 and aµ(d2,n)> 0, then aλ+µ(d1 +d2,n)>max(aλ(d1,n),aµ(d2,n)).

Proof. Both facts are direct corollaries of Prop. 21.17.

21.2.2 Building blocks and the splitting technique

We construct as “building blocks” certain partitions that occur in C[GLn2detn] and combine
them with the semigroup property Corollary 21.18.

A first building block is the following.

Proposition 21.19. Let n≥ k` and ` be even. Then (k× `)]nk occurs in C[GLn2detn]k.

Proof. Let T denote the tableau of shape k× ` with content k× ` from Theorem 19.16. Suppose
n≥ k` and let F ∈ SymkSymnV denote the lifting of vT ∈ SymkSym`V . Hence F is a highest
weight vector of weight (k× `)]nk. Choose p ∈ Sym`V with at most k nonzero coefficients and
the property that vT (p) 6= 0 (Corollary 21.3). Applying (21.1), we obtain with q := Xn−`

1 �p
that 〈F,q⊗k〉= 〈vT ,p⊗k〉 6= 0. Even if we rescale its coefficients, the determinantal complexity of
p is less than k`≤ n. Therefore F does not vanish on GLn2detn and the assertion follows.

We postpone the proof of the following technical result to Section 21.2.3. (It is based on an
explicit construction of a highest weight vector.)

Theorem 21.20. Let 2≤ b,c≤m2 and let n≥ 24m6. Then there exists an even i≤ 2m4, such
that

λ= b×1 + c× i+ 1× j

occurs in C[GL2
ndetn]3m4 for j = 3m4n− b− ic.

The splitting strategy in the following proof is a refinement of the one in [46]. The proof
relies on Theorem 21.20 and on the semigroup property (Corollary 21.18).
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Proposition 21.21. Given a partition λ with |λ| = nd such that there exists m ≥ 2 with
`(λ)≤m2, m10 ≤ |λ̄| ≤md, n≥ 24m6, and d > 4m6. Then λ occurs in C[GLn2detn]d.

Proof. Let L := `(λ) and ck denote the number of columns of length k in λ for 1≤ k ≤ L. Let
K be the index k ≥ 2, for which ck is maximal, i.e., cK = max(ck;k = 2, . . . ,L). By assumption,
we have 2≤K ≤m2 and

m10 ≤ |λ̄|=
L∑
k=2

(k−1)ck ≤ cK
L∑
k=2

(k−1)≤ cK
L2

2 ≤ cK
m4

2 ,

hence cK ≥ 2m6.
Let S denote the set of integers k ∈ {2, . . . ,L} for which ck is odd. For k ∈ S we define the

partition
ωk := k×1 +K× ik,

where the even integer ik ≤ 2m4 is taken from Theorem 21.20, so that ω]3nm
4

k occurs in
C[GLn2detn]3m4 . (Here we have used the assumption n≥ 24m6.)

Assume first that K 6∈ S, that is, cK is even. Then we can split λ vertically in rectangles as
follows:

λ= 1× c1 +
L∑
k=2

k 6∈S∪{K}

k× ck +
L∑
k=2
k∈S

k× ck +K× cK

= 1× c1 +
L∑
k=2

k 6∈S∪{K}

k× ck +
L∑
k=2
k∈S

k× (ck−1) +
∑
k∈S

ωk +K×
(
cK −

∑
k∈S

ik
)
.

If, for k≤L, we set dk := ck if k 6∈ S∪{K} and dk := ck−1 if k ∈ S, and define dK := cK−
∑
k∈S ik,

then the above can be briefly written as

λ= 1× c1 +
L∑
k=2

k×dk +
∑
k∈S

ωk. (21.2)

By construction, all dk are even. It is crucial to note that, using ik ≤ 2m4,

dK = cK −
∑
k∈S

ik ≥ cK − (m2−1) ·2m4 ≥ cK −2m6 ≥ 0.

The last inequality is due to our observation at the beginning of the proof.
In the case where K ∈ S, we achieve the same decomposition as in (21.2) with the modified

definition dK := cK −1−∑k∈S ik. Here, as well dK ≥ 0 and all dk are even.
We need to round down rational numbers to the next even number, so for a ∈Q we define

TaU := 2ba/2c. Note that TaU≥ a−2 for all a∈Q. Hence Tn/kU≥ n/k−2≥ 2 for all 2≤ k≤m2,
since n≥ 4m2.
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Using division with remainder, let us write dk = qkTnkU+ rk with 0 ≤ rk < TnkU. Then we
split k×dk = qk(k×TnkU) +k× rk. Since dk is even and Tn/kU is even, rk is even as well. From
(21.2) we obtain that the partition

µ :=
L∑
k=2

qk((k×Tn/kU)]nk) +
L∑
k=2

(k× rk)]nk +
∑
k∈S

ω]3nm
4

k (21.3)

coincides with λ in all but possibly the first row.
Since Tn/kU≤ n/k, rk ≤ n/k, and both Tn/kU and rk are even, Proposition 21.19 implies that

(k×Tn/kU)]nk and (k×rk)]nk occur as highest weights in C[GLn2detn]k. Moreover, Theorem 21.20
tells us that ω]3nm

4

k occurs as a highest weight in C[GLn2detn]3m4 . The semigroup property
implies that µ occurs in C[GLn2detn].
Claim. |µ| ≤ dn.

Let us finish the proof assuming the claim. If |µ| ≤ dn, we can obtain λ from µ by adding
boxes to the first row of µ. Note that |λ|− |µ| is a multiple of n. Since (n) ∈ C[GLn2detn], the
semigroup property implies that λ occurs in C[GLn2detn]d.

It remains to verify the claim. From (21.3) we get

|µ| ≤
L∑
k=2

(qknk+nk+ 3nm4).

We have, using TaU≥ a−2,
qk ≤

dk
Tn/kU

≤ kdk
n−2k .

This implies

|µ| ≤ n
L∑
k=2

( k2dk
n−2k +k+ 3m4

)
.

Using dk ≤ ck and L≤m2, we get

|µ| ≤ n
L∑
k=2

m2

n−2m2kck +n
m2∑
k=2

k+ 3nm4(m2−1).

Noting that ∑L
k=2 kck = |λ̄|+λ2 ≤ 2|λ̄|, we continue with

|µ| ≤ nm2

n−2m2 ·2|λ̄|+n
(m2(m2 + 1)

2 + 3m4(m2−1)
)

≤ nm2

12m6−m2 · |λ̄|+n
(
3m6− 5

2m
4 + 1

2m
2
)
,

where we have used n > 24m6 for the second inequality. Plugging in the assumptions |λ̄| ≤ dm
and d > 4m6, we obtain

|µ| ≤ dnm3

11m6 + 3nm6 ≤ dn

11 + 3nm6 ≤ dn

11 + 3dn
4 < dn,

which shows the claim and completes the proof.
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Corollary 21.22. Let m ≥ 2, n ≥m25, λ ` nd, |λ̄| ≤md, `(λ) ≤m2, d >
√
n/m, |λ̄| ≥m10.

Then λ occurs in C[GLn2detn]d.

Proof. To apply Proposition 21.21 we need to ensure that n ≥ 24m6 and d > 4m6. Indeed,
n≥m25 ≥ 32m20 ≥ 24m6 and d >

√
n/m≥

√
m24 =m12 ≥ 4m10 ≥ 4m6.

At this point, to finish the proof of Theorem 21.9 it just remains to prove Theorem 21.20.

21.2.3 Explicit constructions of tableaux and positivity of plethysms

The goal of this section is to provide the proof of Theorem 21.20, which finishes the proof
of Theorem 21.9. We achieve this by a direct construction of a HWV of type λ. The first
Proposition 21.23 treats a simple case, while Proposition 21.24 covers the full generalization.
Since the degree is low enough, we can then use the methods from Section 21.1 to show that λ
occurs in C[GLn2detn].

Proposition 21.23. Let t ≥ r, i ≥ 2t+ 3 be positive integers and let n ≥ i and d ≥ 2t+ i+ 1.
Let ν = (t+ 1)× i+ (r+ 1)×1 + (j), where j = dn− (t+ 1)i− (r+ 1). Then aν(d,n)> 0.

Proof. We may assume that n = i and d = 2t+ i+ 1 (see Lemma 21.18 for d > 2t+ i+ 1 and
Corollary 21.5 if n > i).

Let T be a tableau of shape ν labeled with the integers 1,2,3, . . . ,d, each appearing n times,
as explained in Figure 11 for the case t= 5, r = 3 and i= 13. Formally, if 1≤ k ≤ r, the row

11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 1 1 ...

1 1 10 10 10 10 10 10 10 10 10 10 10 10
2 2 2 9 9 9 9 9 9 9 9 9 9 9
3 3 3 3 8 8 8 8 8 8 8 8 8 8
4 4 4 4 4 7 7 7 7 7 7 7 7
5 5 5 5 5 5 6 6 6 6 6 6 6

.

i︷ ︸︸ ︷
r

t

Figure 11: Prop. 21.24: t= 5, r = 3, i= 13, d= 24, n= 13, D = 10, dn= 312, j = 230.

k+ 1 of T has i+ 1 boxes: k+ 1 boxes are labeled k, and the remaining i−k boxes are labeled
2t+1−k. If r < k ≤ t, then the row k+1 of T has i boxes: k+1 boxes are labeled k and the
remaining i−k−1 boxes labeled 2t+1−k. The first row of T starts with the first i+1 boxes
labeled with 2t+ 1, . . . ,d= 2t+ i+ 1, respectively, and all the remaining j labels are put in the
singleton columns of T such that each integer in 1, . . . ,d appears exactly n times. Note that each
integer 1, . . . ,d appears in at least one singleton column, since n≥ i≥ 2t+ 3.

Put D := 2t. By construction, for any 1≤ u≤D in T , u appears in row 1 and in a unique
row ku+1 for some 1≤ ku ≤ t. Let β(u) denote the number of occurrences of u in row ku+1.
Note that 2≤ β(1)< β(2)< .. . < β(D) by construction.
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We consider now the tensor

Φ :=
D⊗
u=1

(
e
⊗β(u)
ku+1 ⊗e

⊗(n−β(u))
1

)
⊗

d⊗
u=D+1

en1 ,

which, more precisely, is defined by the map, s : [dn]→ CN ,

s(u−1)n+v =
{
eku+1 if 1≤ u≤D and 1≤ v ≤ β(u)
e1 otherwise.

Since Φ is of rank 1, the tensor contraction 〈ṽT ,Φ〉 from Section 20.1 simplifies: Since the β(u) are
all distinct, the only nonzero summands in the expansion of 〈ṽT ,Φ〉 satisfy (s◦ϑ)(�) = erow(�).
These summands have valϑ(s) = 1, which makes the overall contraction nonzero.

By generalizing this construction in the proof, we can show the following.

Proposition 21.24. Let t, r be positive integers, i∈ [ (r+2t)2

2t , (r+2t)2

2t +r+t+1], and let n> 6t+2r
and d > r+2t+ i. Let ν = (t+1)× i+(r+1)×1+(j), where j = dn− (r+1)− (t+1)i. Then
aν(d[n])> 0.

Proof. If r < t then we can directly apply Proposition 21.23, noticing that

2t+ 2< (1 + 2t)2

2t ≤ (r+ 2t)2

2t ≤ i≤ (t+ 2t)2

2t + r+ t+ 1≤ 11
2 t+ r+ 1≤ 6t+ r ≤ n.

Let now r ≥ t. The proof is similar to the proof of Proposition 21.23, so we describe a more
general construction which applies in the case r < t as well. Define e := 2(b(r−1)/(2t)c+ 1), so
that r ≤ te≤ r+ 2t−1 and e is even. Put

i′ := (te+ 1)e2 ≤ (r+ 2t)e2 ≤ (r+ 2t)(br−1
2t c+ 1) ≤ (r+ 2t)(r+ 2t−1)

2t ≤ i.

We will prove the statement for i = i′. When i > i′, the tableau construction below can be
modified by increasing the number of appearances of the t largest labels by i− i′ ≤ r+ t in the
subtableau T ′ as defined below. By assumption, n> 6t+2r≥ te+2 and d > r+2t+ i≥ te+ i+1.
Indeed, we will prove the statement for the more general case in which we do not require
n > 6t+ 2r and d > r+ 2t+ i, but only n ≥ te+ 2 and d ≥ te+ i+ 1. It suffices to prove the
statement with n= te+ 2 and d= te+ i+ 1.

Let T be a tableau of shape ν filled with the labels 1,2,3, . . . ,d = te+ i+ 1, each number
appearing n= te+ 2 times, as in Figure 12 for the case t= 2, r = 8,e= 4, i= 18,n= 10,d= 27.

In the first row and in the first i+1 colums we have the labels te+1, . . . , te+ i+1. In the
first column and in the rows 2 to r+ 1 we have the labels te, te−1 . . . , te− r+ 1. The remaining
rectangular t× i subshape of T , denoted T ′, consisting of the columns 2 to i+ 1 and the rows 2
to t+1, is filled with the remaining labels 1, . . . , te, so that each label appears a different number
of times. More precisely, for each 1≤ s≤ te, let the label s appear in T ′ exactly s times and
only in row min(`,2t− `+1), where s≡ ` (mod 2t), 1≤ `≤ 2t. (Note that the first row in T ′,
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9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 1 1 1 ...

8 1 4 4 4 4 5 5 5 5 5 8 8 8 8 8 8 8 8
7 2 2 3 3 3 6 6 6 6 6 6 7 7 7 7 7 7 7
6
5
4
3
2
1

︸ ︷︷ ︸
i

t

r

Figure 12: Prop. 21.24: t= 2, r = 8,e= 4, i= 18,n= 10,d= 27.

which we are referring to, is actually the second row in T .) So the row k of T ′ contains the e
different labels k,2t+1−k,2t+k,4t+1−k, . . . , t(e−2)+k,te+1−k, each appearing that many
times, adding up to the row length of

e/2∑
α=1

(
(2(α−1)t+k) + (2αt+ 1−k)

)
= (te+ 1)e2 = i.

The remaining labels of each kind are then put in the singleton boxes of T .
As in Proposition 21.23, we show that the corresponding highest-weight vector ṽT in

HWVν(SymdSymnV ) is nonzero by contracting it with a particular monomial tensor Φ. For
each label u, 1≤ u≤ d, let the associated monomial be

mu =
⊗

�∈T, label(�)=u
Xrow(�),

where the product goes over all boxes of T labeled u and for each such box we take the variable
X whose index is the row the box is in. Again, let Φ :=⊗du=1mu be the tensor. The nonvanishing
of the contraction 〈vT ,Φ〉 can be seen analogously as in Proposition 21.23.

Finally we can complete the proof of the promised technical result.

Proof of Theorem 21.20. We apply Proposition 21.24 with r = b−1 ≤m2−1 and t = c−1 ≤
m2−1. We have

(r+ 2t)2

2t = (b+ 2c−3)2

2(c−1) ≤max
(

(b+ 1)2

2 ,
(b+ 2m2−3)2

2(m2−1)

)
≤m4,

where we use the fact that (b+ 2c−3)2/(2(c−1)) is a convex function of c and so attains its
maximum at the end points of the interval [2,m2]. We can then find an even integer i in the
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interval [ (r+2t)2

2t , (r+2t)2

2t + r+ t+ 1]⊆ [1,m4 + 2m2]. By Proposition 21.24, there exists a highest
weight vector f of weight ν = b×1 + c× i+ 1× j′ in SymdSymNV for

d := 3m4 > 3m2 + 2m2 +m4 ≥ r+ 2t+ i, N := 8m2 > 6t+ 2r.

By Proposition 21.3 we have 〈f,hd〉 6= 0 for a generic polynomial h ∈ SymNV that has at
most d nonzero coefficients. Moreover, by Corollary 21.4, q :=Xn−N

1 �p is contained in GLn2detn
for all n≥ dN , in particular for n≥ 24m6. Consider the lifting F ∈ SymdSymnV of f ; it has
the weight λ= ν]dn with dn= 3m4n. By (21.1) we see that F (Xn−m

1 �h) = f(h) 6= 0. Therefore,
λ occurs in C[GLn2detn]3m4 .

No occurrence obstructions

By an explicit construction of HWVs in C[GLn2detn] we showed that occurrence obstruc-
tions are too weak to separate Zn−mperm from GLn2detn for n being superpolynomially
large in m.
The proof relied heavily on the padding of the permanent (i.e., the partition having a
very long first part). Other algebraic computational models do not have that property.
Multiplicity obstructions could also still be an option to prove Valiant’s conjecture.

22 Occurrence obstructions for matrix multiplication
In this last chapter we show that obstructions can indeed show complexity lower bounds. In
most parts we follow [19], [20], and [45].

We will construct occurrence obstructions that show the border rank lower bound

R(〈m,m,m〉)≥ 3
2m

2−2.

Recall from the end of Chapter 14 that

R(〈m,m,m〉)≤ n iff 〈m,m,m〉 ∈ GL3
n〈n〉,

which is equivalent to GL3
n〈m,m,m〉 ⊆ GL3

n〈n〉 (see Lemma 3.16). By Proposition 18.7 the
irreducible polynomial representations of GL3

n are given by triples λ= (λ(1),λ(2),λ(3)) of partitions
into at most n parts each. For odd m and n≥ 3

2m
2−1 let κ := m2−1

2 and set λ(1) = λ(2) = λ(3) =
((2κ+ 1)×1) + (1×κ) and d= |λ|= 3κ+ 1. We will show that

multλ(C[GL3
n〈n〉]d) = 0 (22.1)

< 1 = multλ(C[GL3
n〈m,m,m〉]d) (22.2)

The irreducible representation in the coordinate ring of the ambient space is unique: multλ(C[⊗3Cn]) =
1, which is proved in [68, Thm. 2.1], see also [69, Thm. 3(4.)]. We construct the HWV of weight
λ and evaluate it at a point in GL3

n〈m,m,m〉 where the evaluation is nonzero, which proves
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(22.2), see Section 22.3. For (22.1) we present two proofs. In the first one we examine the HWV
that we constructed (see Section 22.2), while in the second one (see Section 22.4) we use the
approach presented in (18.4), i.e., we study

multλ,λ′,λ′′(C[GL3
n〈n〉])≤multλ,λ′,λ′′(C[GL3

n〈n〉]) = dim({λ}⊗{λ′}⊗{λ′′})stab〈n〉. (22.3)
After developing the general theory in Section 22.1 and the theory tailored to equations for

low border rank tensors in Section 22.2, the triple hook partitions λ that we use here can be
found in small cases by hand. Proving that these specific HWVs vanish on GL3

n〈n〉 then follows
from the general theory with a quick argument, see Section 22.2. One main problem with this
approach is to prove that the HWV that we construct is not the zero function. We do this be
evaluating at a point in the orbit of the matrix multiplication tensor. This point is carefully
chosen so that we can completely understand the evaluation of the HWV at this point and verify
that it is nonzero, see Section 22.3. There are many points that one could use here. Our analysis
of the nonvanishing of the evaluation is quite long, but we are not aware of a point for which
this part would be significantly shorter (and the evaluation still nonzero).
Remark 22.1. [56] proved R(〈m,m,m〉) ≥ 2m2−m. [55] improved this to R(〈m,m,m〉) ≥
2m2− log2m− 1. Barriers to these proof methods were discovered in [31, 36]. There are no
known barriers for using occurrence obstructions or multiplicity obstructions for the border
rank of matrix multiplication. [38] use representation theory in a different way to prove
R(〈m,m,m〉)≥ 5

4m
2.

22.1 Highest weight vectors in the tensor setting

In this section we describe the HWVs in ⊗d(⊗3Cn), because each HWV in Symd(⊗3Cn) arises
from one in⊗d(⊗3Cn) via symmetrization over Sd. This is analogous to studying semistandard
tableaux with rectangular content in Section 19.3. The natural equivalent to semistandard
tableaux with rectangular content are triples of standard tableaux, but we want to use a more
graphical description via hypergraphs.

22.1.1 Highest Weight Vectors

For a partition λ ` d recall the definition of vλ from (19.1). We want to use the convenient
bra-ket notation

〈λ̂| := vλ. (22.4)
We write λ �∗ d to denote that λ= (λ(1),λ(2),λ(3)) with λ(1) � d, λ(2) � d, and λ(3) � d. For a

partition triple λ �
n
∗ d we define

〈λ̂| := reorder3,n
(
〈λ̂(1)|⊗ 〈λ̂(2)|⊗ 〈λ̂(3)|

)
, (22.5)

where for a,b ∈ N the linear isomorphism reordera,b : ⊗a⊗bCn→
⊗b⊗aCn is defined on rank 1

tensors as follows:
a⊗
i=1

 b⊗
j=1

vij

 7→ b⊗
j=1

(
a⊗
i=1

vij

)
, vij ∈ Cn. (22.6)
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Since 〈λ̂(i)| is a HWV of weight λ(i) in ⊗dCn, 〈λ̂| is a highest weight vector of weight λ in⊗d⊗3Cn. Moreover, since the 〈λ̂(i)|π, π ∈ Sd, generate HWVλ(i)(
⊗dCn) as a vector space

(cf. Proposition 19.3), we also see following:

Claim 22.2. The highest weight vector space HWVλ(⊗d⊗3Cn) is generated by 〈λ̂|π with π ∈S3
d.

Embed Sd ↪→S3
d, π 7→ (π,π,π). Let Pd :⊗d⊗3Cn→ Symd⊗3Cn denote the symmetrization

over Sd. Since the actions of GL3
n and S3

d commute, we draw the following important conclusion.

Claim 22.3. The tensors 〈λ̂|πPd with π ∈S3
d span HWVλ(Symd⊗3Cn).

These tensors span the HWV space, but they are rarely a basis, because the symmetrization
operator Pd has a nonzero kernel.

22.1.2 Set Partitions

In this subsection we start deriving a more graphical interpretation of the highest weight vectors.
Let ℘(S) denote the powerset of a finite set S, i.e., the set of all subsets of S. Given a set S,
we call a subset Λ⊆ ℘(S) of the powerset ℘(S) a set partition of S, if for all s ∈ S there exists
exactly one set es ∈ Λ with s ∈ es. We call es the hyperedge corresponding to s. If |es|= 1, then
es is called a singleton hyperedge. The type of a set partition Λ is defined as the partition µ � |S|
obtained from sorting the multiset {|e| : e ∈ Λ} and transposing the partition afterwards. Let
V (Λ) :=⋃

e∈Λ e= S denote the ground set.
For a given partition λ � d, we can define a canonical set partition Λ of {1, . . . ,d} as follows,

where µ is the transpose of λ: Let ωi :=∑i
j=1 |µj | be the number of boxes in the first i columns

of λ. We define the disjoint hyperedges

ei := {ωi−1 + 1,ωi−1 + 2, . . . ,ωi}

and set Λ := {ei | 1≤ i≤ λ1}. For example, if λ= (4,3,1), then µ= (3,2,2,1) and e1 = {1,2,3},
e2 = {4,5}, e3 = {6,7}, e4 = {8}, corresponding to the superstandard tableau Tλ (see Section 19.2)
of shape λ, see Figure 13.

1 4 6 8
2 5 7
3

7→
3
2
1

5
4

7
6

8

Figure 13: The superstandard tableau Tλ of shape λ= (4,3,1) and its set partition.

Analogously, from any standard Young tableau T of λ we obtain a set partition ΛT of
{1, . . . ,d} with type λ by grouping together each column in a hyperedge.
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The map T 7→ ΛT is not injective in general. Our aim is to classify the fibers. Two Young
tableaux T and T ′ are mapped to the same ΛT = ΛT ′ , iff T ′ can be obtained from T by permuting
entries inside of columns and by permuting whole columns of the same length. This observation
gives rise to the following definition (see the right hand side of Figure 14 for an example).

Definition 22.4. An ordered set partition Λ of a vertex set V (Λ) := {1, . . . ,d} of type λ is a set
partition of V (Λ) of type λ endowed with (1) linear orderings on each hyperedge e ∈ Λ and (2)
for each length 1≤ `≤ `(λ) a linear ordering on the set {e ∈ Λ : |e|= `} of hyperedges with the
same cardinality `.

(
1 2 3 4 5 6 7 8
2 6 5 1 7 8 3 4

)
!

4 8 2 6
1 3 5
7

!

7
1
4

3
8

5
2

6

Figure 14: The bijections between permutations, Young tableaux, and ordered set partitions of type
λ= (4,3,1). The orderings are shown with arrows pointing from the smaller element to the
bigger.

The above discussion gives an explicit bijection between the set of Young tableaux T of λ
and the set of ordered set partitions of type λ by grouping together each column of T in one
hyperedge, ordered from top to bottom, and ordering hyperedges of equal length by their
appearance in T from left to right, see Figure 14 for an example. The columns of T are ordered
from left to right and this induces an additional linear ordering on the set of hyperedges of
an ordered set partition, which is consistent with the single linear orderings of hyperedges of
the same length. In particular we can speak of the ith hyperedge of Λ. Additionally, since the
hyperedges are linearly ordered, we have a linear order on the set of vertices V (Λ) and hence we
can write V (Λ)i for the ith element of V (Λ).

The permutations π ∈Sd are in bijection to the Young tableaux of type λ via replacing the
entry i in Tλ with the integer π−1(i). Hence we get an explicit bijection between Sd and the set
of ordered set partitions of type λ. For a given ordered set partition Λ of type λ we denote by
πΛ the corresponding permutation. We can state a first observation:

πΛ(V (Λ)i) = i. (22.7)

The crucial property of our bijection is shown in the upcoming Claim 22.5, for whose statement
we introduce some notation.

The group Sd acts naturally on (Cn)d by permuting the positions as follows:

π(ζ1, ζ2, . . . , ζd) := (ζπ−1(1), ζπ−1(2), . . . , ζπ−1(d)).

Given a linearly ordered subset (e,≺)⊆ {1, . . . ,d} with ` elements, `≤ d, where the order ≺
is not necessarily consistent with the natural order on {1, . . . ,d}, we define the list elements
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e1, . . . ,e` via e= {e1, . . . ,e`} satisfying e1 ≺ . . .≺ e`. For example, for the leftmost hyperedge e in
Figure 14 we have e1 = 4, e2 = 1, and e3 = 7. Given a vector ζ ∈ (Cn)d, we define the restriction
ζ
e
of ζ to e as

(ζ1, ζ2, . . . , ζd)
e

:= (ζe1 , . . . , ζe`).

Claim 22.5. Fix λ �
n d and let ei denote the ith column of Tλ. Let Λ be an ordered set partition.

Then, for the ith hyperedge e of Λ, we have

(ζ1, ζ2, . . . , ζd)
e

=
(
πΛ(ζ1, ζ2, . . . , ζd)

)
ei

for all ζ ∈ (Cn)d.
Proof. Note that πΛ(ej) = (ei)j according to (22.7). Now the proof is straightforward as follows:

(ζ1, . . . , ζd)
e

= (ζe1 , . . . , ζed) = (ζπ−1
Λ ((ei)1), . . . , ζπ−1

Λ ((ei)|ei|))

= (πΛ(ζ1, . . . , ζd))
ei

From set partition triples to highest weight vectors Our main motivation for looking
at set partitions is the construction of highest weight vectors. For each ordered set partition Λ
of type λ �

n d we have πΛ ∈Sd and hence obtain a nonzero highest weight vector

fΛ := πtΛ(〈λ̂|)

of weight λ, provided n≥ `(λ). We conveniently write fΛ = 〈λ̂|πΛ. This roughly corresponds to
vT in Chapter 20.

We next want to determine the projective stabilizer Yλ ⊆Sd of 〈λ̂|, which is defined as

Yλ := {τ ∈Sd : 〈λ̂|τ =±〈λ̂|}. (22.8)

Consider the Young subgroup Y inner
λ := S(e1)×·· ·×S(eλ1), where we recall that ei denotes the

ith column of Tλ. For τ ∈ Y inner
λ we have 〈λ̂|τ = sgn(τ)〈λ̂|, hence Y inner

λ ⊆ Yλ. Let Y outer denote
the group that interchanges columns of the same length in Tλ while preserving the order in each
column. For τ ∈ Y outer

λ we have 〈λ̂|τ = 〈λ̂|, hence Y outer
λ ⊆ Yλ. One can prove that the projective

stabilizer Yλ is the group generated by Y inner
λ and Y outer

λ .
We are interested in classifying the left cosets of Yλ ⊆ Sd. The ordered set partition

corresponding to π and the ordered set partition corresponding to τπ for τ ∈ Y inner
λ are the

same up to reordering the elements in each hyperedge. For τ ∈ Y outer
λ the ordered set partitions

corresponding to π and τπ are the same up to reordering the hyperedges. All reorderings can be
obtained by applying elements of Yλ. If we forget about the orderings of ordered set partitions,
we obtain the following claim.
Claim 22.6. For a fixed partition λ � d there is a bijection between the left cosets of Yλ ⊆Sd

and the set of set partitions of type λ.
Hence a set partition Λ of type λ �

n d uniquely determines a highest weight vector of weight λ

fΛ :=±〈λ̂|πΛ ∈
⊗dCn

up to a sign, where πΛ is the permutation corresponding to some ordering of Λ.
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Contraction We proceed as in Chapter 20. A finite sequence ζ = (ζ1, . . . , ζd) of vectors ζi in
Cn is called a list. A map whose domain is a vertex set is sometimes called a labeling of the
vertex set. If a vertex set e is linearly ordered, then we can identify lists and labelings with
codomain Cn. Given a list ζ = (ζ1, . . . , ζd), we write |ζ〉 := |ζ1〉⊗ · · ·⊗ |ζd〉. We want to analyze
how the scalar product 〈λ̂|π|ζ〉, for π ∈Sd and |ζ〉 ∈⊗dCn, can be interpreted combinatorially
using set partitions.

For a fixed π ∈Sd and a list ζ we define ζ̃ := πζ to obtain

〈λ̂|π|ζ〉= 〈λ̂|ζ̃〉=
λ1∏
i=1
〈t̂λi|ζ̃

ei
〉.

Note that for `≤ n and a list ζ̃ = (ζ̃1, . . . , ζ̃`) with ζ̃i ∈ Cn `× `-matrix
(
〈i|ζ̃j〉

)
i,j
, see also (20.1).

Now fix an ordered set partition Λ. Given a hyperedge e ∈ Λ and a hyperedge labeling
ζe : e→ Cn, we can interpret ζe as a list (since e is linearly ordered) and write |ζe〉. We define
the evaluation

vale(ζe) := 〈̂̀|ζe〉 ∈ C.

Note that the evaluation vale(ζe) is, up to sign, invariant under changing the linear order of e.
For a labeling ζ : V (Λ)→Cn we define the evaluation of the ordered set partition Λ at the labeling
ζ by

valΛ(ζ) :=
∏
e∈Λ

vale(ζ
e
).

Proposition 22.7. Let Λ be an ordered set partition. Let ζ : V (Λ)→Cn be a labeling. We have

valΛ(ζ) = 〈λ̂|πΛ|ζ〉.

Proof. According to Claim 22.5, for the ith hyperedge e of Λ we have

ζ
e

= (πΛζ)
ei
.

Therefore, if e has size `, then

vale(ζ
e
) = 〈̂̀|ζ

e
〉= 〈̂̀|(πΛζ)

ei
〉.

The claim follows by definition of 〈λ̂| in (22.4).

22.1.3 Obstruction Designs

We want to describe the highest weight vectors of ⊗d⊗3Cn with set partitions as we did for⊗dCn. For this we make the following definition, analogously to Definition 22.4.

Definition 22.8. An ordered set partition triple H consists of a vertex set V (H) = {1, . . . ,d}
and three ordered set partitions E(k) := E(k)(H), k ∈ {1,2,3}, of V (H). The elements of each
E(k) are called hyperedges.

The ordered set partition triple H is said to have type λ, where λ �∗ d is a partition triple, if
the set partition E(k) has type λ(k) for all 1≤ k ≤ 3.
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Via our explicit bijections between Sd and the set of set partitions of a fixed type, we get an
explicit bijection between S3

d and the set of ordered set partition triples of type λ, see Figure 15.
The permutation triple corresponding to an ordered set partition H is denoted by πH.

σ(1) =
(

1 2 3 4
1 2 3 4

)
σ(2) =

(
1 2 3 4
1 3 4 2

)
σ(3) =

(
1 2 3 4
1 2 4 3

) ! 1

4

2

3

Figure 15: A set partition triple H of type (λ,λ,λ), where λ = (2,1,1) (and thus µ = (3,1)), and its
corresponding permutation triple πH with inverse σ. The solid lines represent the first
hyperedge set partition, the dashed lines represent the second one, and the dotted lines
represent the third one. To simplify the picture, the hyperedge orderings respect the natural
ordering on the natural numbers and are not depicted.

Analogously to (22.8), for partition triples λ �∗ d we define the projective stabilizer Yλ of
〈λ̂|= reorder3,n

(
〈λ̂(1)|⊗ 〈λ̂(2)|⊗ 〈λ̂(3)|

)
, see (22.5), as

Yλ := {τ ∈S3
d : 〈λ̂|τ =±〈λ̂|}.

One can show that Yλ = Yλ(1) ×Yλ(2) ×Yλ(3) , where Yλ(k) is the projective stabilizer defined
in (22.8). Therefore we can again forget about the orderings and arrive at the following
definition.

Definition 22.9. A set partition triple H consists of a vertex set V (H) = {1, . . . ,d} and three
set partitions E(k), k ∈ {1,2,3} of V (H).

The above discussion implies the following claim, analogously to Claim 22.6.

Claim 22.10. For a fixed partition triple λ �∗ d there is a bijection between the left cosets of
Yλ ⊆Sd and the set of set partition triples of type λ.

So each set partition triple H defines (up to sign) the highest weight vector

fH :=±〈λ̂|πH ∈
⊗d⊗3Cn

of weight λ∗, where λ �
n
∗ d denotes the type of H.

Triple Contraction A finite sequence of vectors in (Cn)3 shall be called a triple list. Given a
triple list ζ containing d triples, we write

ζ =

ζ
(1)
1 , . . . , ζ

(1)
d

ζ
(2)
1 , . . . , ζ

(2)
d

ζ
(3)
1 , . . . , ζ

(3)
d

 .
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Moreover, we write ζ(k) := (ζ(k)
1 , . . . , ζ

(k)
d ) and ζi := (ζ(1)

i , ζ
(2)
i , ζ

(3)
i ), and we write |ζ〉 := reorder3,d(|ζ(1)〉⊗

|ζ(2)〉⊗ |ζ(3)〉) ∈⊗d⊗3Cn, where reorder3,d is the linear map defined in (22.6). We want to ana-
lyze how the tensor contraction 〈λ̂|π|ζ〉 can be interpreted combinatorially using set partitions.
For an ordered subset e⊆ V (H) of vertices we identiy triple lists (ζ1, . . . , ζ|e|) with labelings on e
whose codomain is (Cn)3.

We define the evaluation function for ordered set partition triples as follows: Given a labeling
ζ : V (H)→ (Cn)3, we set

valH(ζ) := valE(1)(H)(ζ(1)) ·valE(2)(H)(ζ(2)) ·valE(3)(H)(ζ(3)).

Proposition 22.11. Let H be an ordered set partition triple of type λ. Let ζ : V (H)→ (Cn)3

be a labeling. We have
valH(ζ) = 〈λ̂|πH|ζ〉.

Proof. By (22.5) we have 〈λ̂|= reorder3,d
(
〈λ̂(1)|⊗ 〈λ̂(2)|⊗ 〈λ̂(3)|

)
. The claim follows with Propo-

sition 22.7.

Symmetrization Let Pd : ⊗dCn� SymdCn denote the symmetrization over Sd. Since τPd =
Pd for all τ ∈Sd, we get 〈λ̂|πPd = 〈λ̂|πτPd for all τ ∈Sd. Hence the polynomial described by a
set partition triple is independent of the numbering of its vertices. This explains the following
definition.

Definition 22.12. An obstruction predesign is defined to be an equivalence class of set partition
triples under renumbering of the vertices. When depicting obstruction predesigns, we omit the
vertex numbering of the corresponding set partition triple.

So each obstruction predesign describes some polynomial 〈λ̂|πPd ∈ Symd⊗3Cn of degree d
up to sign. Since we do not care about the sign, we abuse notation in the following way: For
every obstruction predesign H we implicity fix an ordered set partition triple H′ in a way such
that H is obtained from H′ by forgetting about orderings and vertex numbers. Then we define
valH(ζ) := valH′(ζ).

Corollary 22.13. Let H be an ordered set partition triple with d vertices. Let ξ : V (H)→ (Cn)3

be a labeling. We have
1
d!

∑
ζ∈Sdξ

valH(ζ) = 〈λ̂|πHPd|ξ〉.

Proof. Follows from Proposition 22.11 and the definition of the symmetrization Pd.

It is straightforward to verify (see e.g. [45, Lemma 7.2.7]) that the polynomials described by
obstructions predesigns are the zero function if they are not obstruction designs:

Definition 22.14. An obstruction design H is an obstruction predesign H which satisfies

|e1∩e2∩e3| ≤ 1 for all hyperedge triples (e1,e2,e3) ∈ E(1)×E(2)×E(3).
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Proposition 22.15. For a partition triple λ we have

HWVλ(Symd⊗3Cn) = span{fH : H is an obstruction design of type λ}.

In particular
k(λ) = dimspan{fH : H is an obstruction design of type λ}.

Proof. According to Claim 22.3, for λ �
n
∗ d, we have that

HWVλ(Symd⊗3Cn) = span{〈λ̂|πHPd : π ∈S3
d}.

But since obstruction designs H determine fH = 〈λ̂|πHPd up to a sign, the first assertion follows.
The rest of the proposition follows from the fact that k(λ) = dimHWVλ(Symd⊗3Cn).

Polynomial Evaluation We now describe how to evaluate the polynomial fH corresponding
to an obstruction design H at a point |w〉=∑r

i=1 |w
(1)
i 〉⊗ |w

(2)
i 〉⊗ |w

(3)
i 〉 ∈

⊗3Cn. We calculate

fH(w) = 〈λ̂|πPd|w⊗d〉= 〈λ̂|π|w⊗d〉=
∑

J∈{1,...,r}d
〈λ̂|π|wJ1wJ2 · · ·wJd〉

Prop. 22.11=
∑

J∈{1,...,r}d
valH(wJ1 ,wJ2 , . . . ,wJd). (22.9)

We can interpret ζ := (wJ1 ,wJ2 , . . . ,wJd) as a vertex labeling ζ : V (H)→ (Cn)3 and see that the
sum in (22.11) is over all vertex labelings ζ : V (H)→ (Cn)3 with ζ(y) ∈ {wi | 1≤ i≤ r} for all
y ∈ V (H).

22.1.4 The obstruction design for the hook triple

The obstruction design H := Hκ that we construct consists of d vertices divided into disjoint sets
V (1) ∪̇ V (2) ∪̇ V (3) ∪̇ {y0}, where |V (k)|= κ for all 1≤ k ≤ 3. There are only three hyperedges
of size larger than 1, called e(k) for 1 ≤ k ≤ 3. We set e(k) := V (k+1) ∪V (k+2) ∪{y0}, where
V (k) := V (k−3) for k > 3. The obstruction design H is depicted in Figure 16.

22.2 Vanishing at low rank points

In this subsection we prove (22.1), relying on our precise knowledge of the obstruction design H

defined in Section 22.1.4. A second proof that only uses the invariance properties of the unit
tensor is presented in Section 22.4.

Let A ∈ (C3κ×3κ)3 be arbitrary. We define the triple list

w :=
(
(A(1)|1〉,A(2)|1〉,A(3)|1〉), . . . ,(A(1)|3κ〉,A(2)|3κ〉,A(3)|3κ〉)

)
.

According to (22.9) we have

fH(〈3κ〉) =
∑

J∈{1,...,3κ}3κ+1

valH(AwJ1 , . . . ,AwJ3κ+1). (∗)

THEORY OF COMPUTING 140

http://dx.doi.org/10.4086/toc


INTRODUCTION TO GEOMETRIC COMPLEXITY THEORY

y0

e(1)

e(2)

e(3)

· · ·︸ ︷︷ ︸
|V (1)|=κ

· · ·︸ ︷︷ ︸
|V (2)|=κ

· · ·︸ ︷︷ ︸
|V (3)|=κ

Figure 16: The family of obstruction designs corresponding to the hook partition triple.

The crucial property of H is that for each pair of vertices {y1,y2} there exists a hyperedge e of H
containing both y1 and y2. By the pigeon-hole principle, for each labeling J : V (H)→{1, . . . ,3κ}
there exists a pair of vertices {y1,y2} such that J(y1) = J(y2). The crucial property of H implies
that y1 and y2 lie in a common hyperedge e. Hence vale((AwJ1 , . . . ,AwJ3κ+1)

e
) = 0, because it is

the determinant of a matrix with two equal columns. Therefore, each summand in (∗) vanishes,
which proves (22.1).

This argument is analogous to Section 20.2.3.

22.3 Nonvanishing at the matrix multiplication tensor

In this rather technical section we prove (22.2) by an explicit construction of a matrix triple A=
(A(1),A(2),A(3)) consisting of maps A(k) : Cm×m→ Cm2 . We make use of the fact that m is odd.

For notational convenience, we define the triples

tijl :=
(
|(ij)〉, |(jl)〉, |(li)〉

)
∈ (Cm×m)3 (22.10)

and the triple list w of length m3 obtained by concatenating all tijl for 1 ≤ i, j, l ≤m in any
order. Recall that

〈m,m,m〉=
∑
i,j,l

t
(1)
ijl ⊗ t

(2)
ijl ⊗ t

(3)
ijl .

We put
T := {tijl | 1≤ i, j, l ≤m}.

fH(A〈m,m,m〉) =
∑

J∈{1,...,m3}d
valH(AwJ1 , . . . ,AwJd). (∗)
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Consider the polynomial ring Γ = C[X1, . . . ,XN ], where Xi are indeterminates. According to
Lemma 1.9, if a function f ∈ Γ is nonzero, then there exist values αi ∈ C, 1≤ i≤N , such that
f(α1, . . . ,αN ) 6= 0. We will define the m2×m2 matrix triple A with matrix entries being affine
linear in the indeterminates Xi. Hence we write the sum fH(A〈m,m,m〉) as an element of Γ.
We will provide a monomial of fH(A〈m,m,m〉) in the Xi with nonzero coefficient in (22.11).

Invariance in each V (k) We use the short notation vale(ζ) := vale(ζ (k)
e

) for a hyperedge
e ∈ E(k) and a triple labeling ζ. We start out with the following easy claim.

Claim 22.16. Let σ : V (H)→ V (H) be a bijection satisfying σ(V (k)) = V (k) for all 1≤ k ≤ 3.
For every triple labeling ζ : V (H)→ (Cm2)3 we have

valH(ζ) = valH(ζ ◦σ).

Proof. It suffices to show the claim for a transposition τ = σ exchanging two elements of V (1),
because the situation for V (2) and V (3) is completely symmetric. We have ∏e∈E(1) vale(ζ) =∏
e∈E(1) vale(ζ ◦ τ), because up to reordering both products have the same factors. For 2≤ k ≤ 3

we have vale(ζ) = vale(ζ ◦τ) for every singleton hyperedge e∈E(k) and vale(k)(ζ) =−vale(k)(ζ ◦τ).
Therefore ∏e∈E(k) vale(ζ) = −∏e∈E(k) vale(ζ ◦ τ). As a result we get valH(ζ) = (−1)2valH(ζ ◦
τ).

Special structure of the matrix triple Recall that m is odd and κ= m2−1
2 . Let a := m+1

2 .
Define the set Om := {1, . . . ,m}×{1, . . . ,m}\{(a,a)} consisting of m2−1 pairs. Fix an arbitrary
bijection

ϕ : Om→{2, . . . ,m2}.

Let ī :=m+1− i for 1≤ i≤m. (We may think of the map i 7→ ī as a reflection at a; note ā= a.)
Let

Γ := C[{X(k)
i : 1≤ k ≤ 3, 1≤ i≤m}]

denote the polynomial ring in 3m variables. For each 1 ≤ k ≤ 3 we define the linear map
A(k) : Cm×m→ Cm2 by

A(k)|(ij)〉 :=


X

(k)
a |1〉 if i= j = a

|ϕ(i, ī)〉+X
(k)
i |1〉 if i 6= j and j = ī

|ϕ(i, j)〉 if j 6= ī

.
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Hence A(k) looks as follows:

X
(k)
a X

(k)
1 X

(k)
2 · · · X

(k)
a−1 X

(k)
a+1 · · · X

(k)
m−1 X

(k)
m

1
1

. . .
1

0
1

. . .
1

1

0 idm2−m



, (∗∗)

where we arranged the rows and columns as follows: The left m columns correspond to the
vectors |(īi)〉, where the leftmost one corresponds to |(a,a)〉. The top row corresponds to
the vector |1〉 and the following m− 1 rows correspond to the vectors |ϕ(i, ī)〉. Recall that
fH(A〈m,m,m〉) is a sum of products of determinants of submatrices of A(k).

Note that this is just a identity matrix with some additional entries in the top row (and the
top left entry changed from a 1 to a variable). These top row entries are put there intentionally,
so that the inner product with a column vector and the first standard basis vector is nonzero.
The specific arrangement of the variables in the top row is not so crucial, but it helps in analyzing
the evaluation fH(A〈m,m,m〉) later. Many other choices of matrices work here. This specific
choice of A strikes a balance: It has a lot of zeros, so it is possible to calculate the evaluation
fH(A〈m,m,m〉), but it has enough nonzero entries at the correct positions to actually ensure
fH(A〈m,m,m〉) 6= 0.

The sum fH(A〈m,m,m〉) is an element of Γ and we are interested in its coefficient of the
monomial X, where

X :=
3∏

k=1
X(k)
a

m∏
i=1

(
X

(k)
i

)|i−ī|
. (22.11)

We remark that the degree of X is 3(1 +∑m
i=1 |i− ī|). It is readily checked that ∑m

i=1 |i− ī|= κ.
Fix any numbering of the vertices of H. For J ∈ {1, . . . ,m3}d we abuse notation and define

the map J : V (H)→T via J(y) := wJy . With this notation, (∗) becomes∑
J

valH
(
AJ(1), . . . ,AJ(d)

)
,

or ∑J valH(AJ) in short notation. We call a triple labeling J : V (H)→ T nonzero, if the
coefficient of X in the polynomial valH(AJ) is nonzero. Note that the sum of the evaluations of
all nonzero triple labelings is the coefficient of X in the polynomial fH(A〈m,m,m〉). We will
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count and classify all nonzero triple labelings and show that they evaluate to the same nonzero
value. This implies that the coefficient of X in fH(A〈m,m,m〉) is a sum without cancellations
and is hence nonzero.

Separate Analysis of the Three Layers Given a triple labeling J : V (H)→T , we define
J (k) : V (H)→{|(ij)〉 | 1≤ i, j ≤m} by composing J with the projection to the kth component.

Claim 22.17. Fix a nonzero triple labeling J and fix 1 ≤ k ≤ 3. For all y ∈ V (k) we have
J (k)(y) = |(īi)〉 for some 1≤ i≤m.

Proof. Let y ∈ V (k). Since {y} ∈ E(k) we have 〈1|A(k)|J (k)(y)〉 6= 0. From the definition of A it
follows that J (k)(y) = |(ij)〉 and the third case j 6= ī is excluded. Hence j = ī.

Claim 22.18. For every nonzero triple labeling J we have J(y0) = (|(aa)〉, |(aa)〉, |(aa)〉).

Proof. Let J be a nonzero triple labeling. Hence the coefficient of X in valH(AJ(1), . . . ,AJ(d))
is nonzero. For the following argument it is important to keep the structure of the matrix A(k)

in mind, cf. (∗∗). Recall that fH(A〈m,m,m〉) is a sum of products of certain subdeterminants
of A(k) that are determined by the hyperedges in E(k)(H). Since the degree of X(k)

a in X is
1, we have that for all 1≤ k ≤ 3 there is exactly one vertex yk ∈ V (H) with J (k)(yk) = |(aa)〉.
Recall that the hyperedge e(k) has size 2κ+ 1 =m2. Since J is a nonzero triple labeling, J (k) is
injective on hyperedges and hence |{J (k)(y) : y ∈ e(k)}|=m2. But since the image J (k)(V (H)) has
cardinality at mostm2, J (k) is actually bijective on e(k). Since there is only one vertex y satisfying
J (k)(y) = |(aa)〉, namely the vertex y = yk, it follows yk ∈ e(k). Since e(1)∩e(2)∩e(3) = {y0}, it
remains to show that y1 = y2 = y3.

The structure of the matrix multiplication tensor implies that J(y1) = (|(aa)〉, |(ai)〉, |(ia)〉)
for some 1≤ i≤m. If a= i, then, by definition of y2 and y3 and uniqueness, we have y1 = y2 = y3
and we are done.

Now assume a 6= i and y1 6= y0. W.l.o.g. y1 ∈ V (3). Using Claim 22.17 we conclude that
J (3)(y1) = |īi〉 for some 1≤ i≤m. Hence ī= a contradicting i 6= a. Thus we have shown that
y1 = y0. Similarly, we show that y2 = y3 = y0.

Claim 22.19. For each nonzero triple labeling J we have J (k)(V (k)) = {|(īi)〉 | 1 ≤ i ≤m} \
{|(aa)〉}, where the preimage of each |(īi)〉 under J (k) has size |i− ī|.

Proof. According to Claim 22.18 we have J(y0) = |(aa)(aa)(aa)〉. For the following look again
at the structure of A(k), cf. (∗∗). Since A(k)|(aa)〉 is a multiple of |1〉, we have that vale(k)(J)
is a multiple of X(k)

a . Moreover, for i 6= a, the variable X(k)
i does not appear in the expansion

of vale(k)(J (k)). Since for a fixed 1 ≤ k ≤ 3 there are κ =∑m
i=1 |i− ī| many contributions of a

factor X(k)
i in the monomial X, these factors must be contributed at vertices in V (k). Since

|V (k)|= κ, the only possibility is that all y ∈ V (k) satisfy J (k)(y) = |īi〉 for some 1≤ i≤m, i 6= a.
The specific requirement for the number of factors X(k)

i which are encoded in X in (22.11) finishes
the proof.
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Coupling the Analysis of the Three Layers Define the bijective map

τ : Om→Om, τ(ij) = (jī),

which corresponds to the rotation by 90◦. Clearly, τ4 = id. The map τ induces a map ℘(Om)→
℘(Om) on the powerset, which we also call τ . Define the involution (taking the complement)

ι : ℘(Om)→ ℘(Om), S 7→Om \S.

Clearly, we have τ ◦ι= ι◦τ . We will only be interested in subsets S ⊆Om with exactly |Om|/2 = κ
many elements and their images under τ and ι. The subsets S ⊆Om that satisfy ι(S) = τ(S)
will be of special interest. Geometrically, these are the sets that get inverted when rotating
by 90◦, see Figure 17 for examples.

In the following we identify the sets J (k)(V (k′)), for 1≤ k,k′ ≤ 3, with their corresponding
subsets of Om.

In Claim 22.19 we analyzed the labels J (k)(V k). In the next claim we turn to J (k)(V k′),
where k 6= k′.

Claim 22.20. Every nonzero triple labeling J is completely determined by the image J (1)(V (3))
(up to permutations in the V (k), see Claim 22.16) as follows.

• J (2)(V (3)) = τ(J (1)(V (3))),
• J (2)(V (1)) = ι(J (2)(V (3))),
• J (3)(V (1)) = τ(J (2)(V (1))),
• J (3)(V (2)) = ι(J (3)(V (1))),
• J (1)(V (2)) = τ(J (3)(V (2))).

Moreover, τ(J (1)(V (3))) = ι(J (1)(V (3))).

Proof. According to Claim 22.19 we have that each vertex y ∈ V (3) satisfies

J(y) =
(
|(ij)〉, |(τ(ij))〉, |(̄ii)〉

)
for some 1≤ i, j ≤m, i 6= a. In particular, using that τ is injective, we have

τ(J (1)(V (3))) = J (2)(V (3)).

Since J is nonzero, J (2) is injective on e(2). We even have that J (2) is bijective on e(2), because
|e(2)|=m2. Using that e(2) = V (1) ∪̇ V (3) ∪̇ {y0} we see that

J (2)(V (1)) =Om \J (2)(V (3)) = ι(J (2)(V (3))).

For the same reason, we can deduce J (3)(V (1)) = τ(J (2)(V (1))) and J (3)(V (2)) = ι(J (3)(V (1))).
And applying these arguments one more time we get J (1)(V (2)) = τ(J (3)(V (2))) and J (1)(V (3)) =
τ(J (1)(V (2))). Summarizing (recall τ ◦ ι= ι◦ τ) we have

J (1)(V (3)) = τ3ι3(J (1)(V (3))) = τ−1ι(J (1)(V (3))),

which is equivalent to τ(J (1)(V (3))) = ι(J (1)(V (3))).
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Additionally to the constraint τ(J (1)(V (3))) = ι(J (1)(V (3))) given in Claim 22.20, Claim 22.19
implies that in J (1)(V (3)) there are |i− ī| many elements of the form |(īi)〉 for each 1≤ i≤m.

This motivates the following definition.

Definition 22.21. A subset S ⊆Om is called valid, if

(1) |S|= m2−1
2 = κ,

(2) τ(S) = ι(S),

(3) |p−1(i)|= |i− ī| for all 1≤ i≤m

where p : S→{1, . . . ,m} is the projection to the first component, see Figure 17 for an example.

i

j

Figure 17: In each of the four pictures the vertices with solid border form a valid set for m= 5. The
vertex in row i and column j represents the tuple (ij). The dotted vertices do not belong to
the valid sets. Note that each vertex that does not lie on one of the two diagonals either lies
in all valid sets or in no one. According to Lemma 22.23, there are no other valid sets for
m= 5.

Proposition 22.22. For all nonzero triple labelings J we have that J (1)(V (3)) is a valid set.
On the other hand, for every valid set S there exists exactly one nonzero triple labeling J with
J (1)(V (3)) = S up to permutations in the V (k).

Proof. For the first statement, property (2) of Definition 22.21 follows from Claim 22.20 and
property (3) of Definition 22.21 follows from Claim 22.19. The second statement can be readily
checked with Claim 22.18 and Claim 22.20.

The next claim classifies all valid sets.

Lemma 22.23. A set S ⊆Om is valid iff the following conditions are all satisfied (see Figure 18
for an illustration):

(1)
{

(ij) | (i < j and i < j̄) or (i > j and i > j̄)
}
⊆ S, represented by solid vertices in Figure 18.

(2)
{

(ij) | (i > j and i < j̄) or (i < j and i > j̄)
}
∩ S = ∅, represented by dotted vertices in

Figure 18.
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(3) For all 1≤ i≤ m−1
2 there are two mutually exclusive cases, (a) and (b), represented by the

two vertices xi and the two vertices xi, respectively, in Figure 18.

(a) {(ii), (̄i ī)} ⊆ S and {(īi), (̄ii)}∩S = ∅,
(b) {(īi), (̄ii)} ⊆ S and {(ii), (̄i ī)}∩S = ∅.

These choices results in 2m−1
2 valid sets.

i

j

x1 x1

x2 x2

x3 x3

x4 x4

x4 x4

x3 x3

x2 x2

x1 x1

Figure 18: The case m = 9. Vertices that appear in all valid subsets are drawn with a solid border.
Vertices that appear in no valid subset are drawn with a dotted border. Vertices that appear
in half of all valid subsets are drawn with a dashed border. These contain a vertex label xi
or xi. Each valid set corresponds to a choice vector x ∈ {true, false}4 determining whether
the xi or the xi are contained in S. This results in 24 = 16 valid sets S ⊆Om.

Proof. As indicated in Figure 18, for each tuple (ij) we call i the row of (ij). For S to be
valid, according to Definition 22.21(3), S must contain |i− ī| elements in row i and according to
Definition 22.21(2), τ(s) /∈ S for all s ∈ S.

In particular, S must contain m−1 elements in row 1. If (11) ∈ S, then (1m) /∈ S, because
τ(11) = (1m). Hence there are only two possibilities: (a): {(1j) | 1 ≤ j < m} ⊆ S or (b):
{(1j) | 1< j ≤m} ⊆ S. By symmetry, for row m we get (a’): {(mj) | 1≤ j < m} ⊆ S or (b’):
{(mj) | 1< j ≤m} ⊆ S. But since τ(1m) = (mm) and τ(m1) = (11), the fact τ(S) = ι(S) implies
that (a) iff (b’) and that (a’) iff (b). We are left with the two possibilities

(
(a) and (b’)

)
or(

(a’) and (b)
)
.

Now consider row 2. We have τ(21) = (1,m−1) ∈ S and hence (21) /∈ S. In the same manner
we see (2m) /∈ S. We are left to choose m−3 elements from the m−2 remaining elements in row
2. The same argument as for row 1 gives two possibilities: (a): {(2j) | 2≤ j < m−1} ⊆ S or
(b’): {(2j) | 2< j ≤m−1} ⊆ S. Analogously for row m−1 we have (a): {((m−1), j) | 2≤ j <
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m−1} ⊆ S or (b’): {((m−1), j) | 2< j ≤m−1} ⊆ S. With the same reasoning as for the rows
1 and m we get (a) iff (b’) and that (a’) iff (b). Again we are left with the two possibilities(
(a) and (b’)

)
or
(
(a’) and (b)

)
.

Continuing these arguments we end up with 2m−1
2 possibilities. It is easy to see that each of

these possibilities gives a valid set.

The following claim finishes the proof of (22.2).
Claim 22.24. All nonzero triple labelings J have the same coefficient of X in the polyno-
mial valH(AJ).
Proof. Take two nonzero triple labelings J and J ′. According to Proposition 22.22, both sets
J (1)(V (3)) and J ′(1)(V (3)) are valid sets. Because of Lemma 22.23, it suffices to consider only
the case where J (1)(V (3)) and J ′(1)(V (3)) differ by a single involution σ : Om→Om, where for
some fixed 1≤ i≤ m−1

2 we have σ(ii) = (īi) and σ(̄i ī) = (̄ii), and σ is constant on all other pairs.
We remark that σ restricted to the four pairs {(ii), (̄ii),(īi), (̄i ī)} corresponds to a reflection in
the second component.

We analyze the labels that are affected by this reflection. We only perform the analysis for
one of the two symmetric cases, namely for {|(ii)〉, |(̄i ī)〉} ⊆ J (1)(V (3)). Note that this implies{(

|(ii)〉, |(īi)〉, |(̄ii)〉
)
,
(
|(̄i ī)〉, |(̄ii)〉, |(īi)〉

)}
⊆ J(V (3)), (†)

according to Claim 22.19. We adapt the notation from (22.10) to our special situation and write
t000 := t̄i ī ī, t001 := t̄i ī i, . . ., t111 := tiii. Using this notation, (†) reads as follows: {t110, t001} ⊆
J(V (3)). Using Claim 22.20 we get

{t110, t001} ⊆ J(V (3)), {t101, t010} ⊆ J(V (2)), {t011, t100} ⊆ J(V (1)).

Applying the involution σ to J (1)(V (3)), we can use Claim 22.19 again to get{(
|(īi)〉, |(̄i ī)〉, |(̄ii)〉

)
,
(
|(̄ii)〉, |(ii)〉, |(īi)〉

)}
⊆ J ′(V (3)).

Applying Claim 22.20 and using our short syntax, we get:

{t100, t011} ⊆ J ′(V (3)), {t001, t110} ⊆ J ′(V (2)), {t010, t101} ⊆ J ′(V (1)).

We see that exactly the same triples occur in J(V (H)) as in J ′(V (H)). We focus now on J (1)

and J ′(1) and see the following:

{(ii), (̄i ī)} ⊆ J (1)(V (3)) and {(īi), (̄ii)} ⊆ J (1)(V (2))

and
{(īi), (̄ii)} ⊆ J ′(1)(V (3)) and {(̄i ī),(ii)} ⊆ J ′(1)(V (2)).

This gives exactly two switches of positions in e(1) = V (2) ∪̇ V (3) ∪̇ {y0}, hence

vale(1)(AJ) = (−1)2vale(1)(AJ ′) = vale(1)(AJ ′).

Analogously we can prove that vale(k)(AJ) = vale(k)(AJ ′) for all 2 ≤ k ≤ 3 and therefore
valH(AJ) = valH(AJ ′).

(22.2) is completely proved.
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22.4 The coordinate ring of the unit tensor orbit

In this section we determine the multiplicities in the coordinate ring of the unit tensor. This
proves (22.1) via (22.3). As a warm-up we study the closely related case of the power sum
polynomial.

22.4.1 Warm-up: The coordinate ring of the power sum orbit

We use the notation from [19]: m is now the number of variables and D is the degree. The
formulas in this subsection are unpublished calculations by Ikenmeyer and Panova. Parts also
appear in the unpublished preprint [65].

The power sum is the polynomial xD1 + · · ·+xDm. Let H := ZmDoSm denote its stabilizer (see
e.g. [25, Ch. 2]). Let λ `Dd.

If % � m d is a partition, then the frequency notation κ ∈ Nm is defined via

κi = |{j | %j = i}|.

E.g., the frequency notation of %= (3,3,2,0) is (0,1,2,0). We observe that |%|=∑
i iκi.

The group Sm acts on Nm by permuting the positions. Note that under this action we have
stab%= Sκ1×Sκ2×·· ·×Sκm .

Theorem 22.25. dim{λ}H =∑
%
�
m d

∑
µ1,µ2,...,µd
µi`κiDi

cλ
µ1,µ2,...,µd

∏d
i=1aµi(κi, iD), where κ is the fre-

quency notation of %, and cλ
µ1,µ2,...,µd is the multi-Littlewood-Richardson coefficient that denotes

the multiplicity of {λ} in the tensor product {µ1}⊗ . . .⊗{µd}.

Proof.

{λ}H = ({λ}ZmD )Sm =

 ⊕
γ∈Nm
|γ|=d

[λ]Gγ


Sm

where for γ ∈ Nm, |γ|= d, Gγ ⊆SdD is defined as the Young subgroup Sγ1D×·· ·×SγmD. The
last equality can be seen using the tableau bases on both sides: While a basis of {λ} is given
by semistandard tableaux, by symmetrizing the basis over ZmD we see that a basis of {λ}ZmD is
given by semistandard tableaux in which each entry 1, . . . ,m occurs a multiple of D times, i.e.,
the content is Dγ for γ ∈ Nm, |γ|= d. On the other hand, a basis of [λ] is given by standard
tableaux. Symmetrizing this basis over Gγ the images of basis vectors are sums in which each
summand can be obtained from another by applying an element of Gγ . We assign to this sum a
basis vector from {λ}ZmD in the following way. All numbers that can be exchanged with each
other under the action of Gγ get replaced with a single number: The first γ1D numbers are
replaced by a 1, the next γ2D numbers are replaced by a 2, and so on. This results in a tableau
with content Dγ. This map is a bijection between basis vectors (and maps zero vectors to zero
vectors). This process is very similar to the situation in [45, Sec. 4.3(A)].
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For a partition % � m d let Sm%⊆ Nm denote the orbit of %. Note that % is the only partition
in its orbit, while the other lists are not in the correct order. Grouping the right-hand side in
the previous equation we obtain

⊕
%
�
m d

 ⊕
γ∈Sm%

[λ]Gγ
Sm

,

so we can study each % independently.
Let stab%≤Sm denote the stabilizer of %.

Claim 22.26. dim
(⊕

γ∈Sm%[λ]Gγ
)Sm = dim

(
[λ]G%

)stab%
.

Proof. We construct an isomorphism of vector spaces.
Let W % := [λ]G% and W% := ⊕

γ∈Sm%W
γ . Let π1, . . . ,πr be a system of representatives of

left cosets for stab% ≤ Sm with π1 = id, i.e., Sm = π1stab% ∪̇ · · · ∪̇ πrstab% and we have
Sm%= {π1%, . . . ,πr%}. Therefore we have the decomposition

W% =
r⊕
j=1

πjW
%.

Let p :W%�W % be the projection according to this decomposition. We claim that the restriction

p : (W%)Sm → (W %)stab%

is an isomorphism of vector spaces. This then finishes the proof. We verify well-definedness,
injectivity, and surjectivity of p.

Well-definedness: The spaces π1W
%, . . . ,πrW

% are permuted by Sm. Every σ ∈ stab% fixes
W %, thus σv1 = v1 if v1 ∈W %. Thus the map v =∑r

j=1 vj
p7→ v1 maps W% to (W %)stab%.

Injectivity: If v ∈ (W%)Sm , then v = πv =∑
j πvj . Therefore vj = πjv1. If p(v) = 0, then

v1 = 0, thus all vj = 0, which proves injectivity.
Surjectivity: Let v1 ∈ (W %)stab%. Set vj := πjv1 and put v :=∑

j vj . Clearly p(v) = v1. It
remains to verify that v is Sm-invariant.

v =
r∑
j=1

πjv1 =
r∑
j=1

1
|stab%|

∑
τ∈stab%

πjτv1 = 1
|stab%|

∑
π∈Sm

πv1,

which is Sm-invariant.

We are left with determining dim
(
[λ]G%

)stab%
.

dim
(
[λ]G%

)stab%
= dimHWVλ({λ}⊗ ([λ]G%)stab%) = dimHWVλ((⊗dDV )G%ostab%)
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(⊗dDV )G%ostab% = (SymD%1V ⊗·· ·⊗SymD%mV )stab%

= (
κ1⊗
SymDV ⊗

κ2⊗
Sym2DV ⊗·· ·⊗

κd⊗
SymdDV )stab%

= Symκ1SymDV︸ ︷︷ ︸
=
⊕

µ1{µ1}
⊕a
µ1 (κ1,D)

⊗Symκ2Sym2DV ⊗·· ·⊗ SymκdSymdDV︸ ︷︷ ︸
=
⊕

µd
{µd}

⊕a
µd

(κd,dD)

(†)

where κ is the frequency notation of %. The multiplicity of {µi} in SymκiSymiDV is aµi(κi, iD).
Let cλ

µ1,µ2,...,µd denote the multiplicity of {λ} in the tensor product {µ1}⊗ . . .⊗{µd}. Using
distributivity we obtain that the multiplicity of {λ} in the representation (†) equals

∑
µ1,µ2,...,µd
µi`κiDi

cλµ1,µ2,...,µd

d∏
i=1

aµi(κi, iD)

We conclude

dim{λ}H =
∑
%
�
m d

∑
µ1,µ2,...,µd
µi`κiDi

cλµ1,µ2,...,µd

d∏
i=1

aµi(κi, iD).

22.4.2 From the power sum to the unit tensor

The stabilizer of 〈n〉 in GL3
m is H :=DmoSm, where

Dm := {(diag(α(1)
1 , . . . ,α(1)

m ), . . . ,diag(α(3)
1 , . . . ,α(3)

m )) | ∀i : α(1)
i α

(2)
i α

(3)
i = 1},

see [19, Prop. 4.1].
As a straightforward generalization of Gay’s theorem (Lemma 19.10) we define the generalized

plethysm coefficient aλ(µ,k) for a partition λ `mk, a partition µ `m and a natural number k
via the decomposition

{λ}m×k =
⊕
µ`m

[µ]⊕aλ(µ,k).

We obtain the classical plethysm coefficients aλ(m,k) when µ= (m) is a single row.

Theorem 22.27. dim{λ,λ′,λ′′}H =∑%
�
m d

∑
β,β′,β′′ jβ,%(λ)jβ′,%(λ′)jβ′′,%(λ′′)

(∏m
i=1 k(βi,β′i,β′′i)

)
,

where for κ being the frequency notation of %
• the sum for β is over all lists of partitions such that βi ` κi and analogously for β′ and β′′,

and
• jβ,%(λ) :=∑

ν1,...,νm
νi`iκi

cλν1,...,νm
(∏m

i=1aνi(βi, i)
)
,
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Proof. {λ,λ′,λ′′}= {λ}⊗{λ′}⊗{λ′′}.
{λ,λ′,λ′′} has a basis given by triples of tableaux and Dm rescales basis vectors. Thus a

vector is invariant if all basis vectors in its support are invariant.
Dm contains the subgroup

{(diag(α,1,1, . . . ,1),diag(α−1,1,1, . . . ,1), id)}

and all other such subgroups where α and α−1 are both on position i on two different diagonals.
A basis vector is invariant under these groups if all three tableaux have the same content. Since
Dm is generated by these groups, this precisely characterizes the invariants: {λ,λ′,λ′′}Dm has
as a basis those triples of tableaux in which all three tableaux share the same content γ ∈ Nm,
|γ|= d:

{λ,λ′,λ′′}Dm =
⊕
γ∈Nm,
|γ|=d

{λ}γ⊗{λ′}γ⊗{λ′′}γ ,

where {λ}τ denotes the vector space of tableaux of shape λ and content τ .⊕
γ∈Smτ{λ}

γ is an Sm-representation. As seen in the proof for the power sum, we group
together with respect to the content:

({λ,λ′,λ′′}Dm)Sm =
⊕
%
�
m d

(
⊕

γ∈Sm%
{λ}γ⊗{λ′}γ⊗{λ′′}γ)Sm

Completely analogously to the proof for the power sum, we can take stab%-invariants instead
of Sm-invariants:

dim(
⊕

γ∈Sm%
{λ}γ⊗{λ′}γ⊗{λ′′}γ)Sm = dim({λ}%⊗{λ′}%⊗{λ′′}%)stab%

We analyze the action of stab% separately on each of the three tableau spaces, i.e., we
decompose {λ}, {λ′}, and {λ′′} as stab%-representations. Once this is done, Kronecker coefficients
determine the stab%-invariant space dimension.

As seen in the proof for the power sum:

Claim 22.28.

{λ}%
stab%-repr
'

⊕
β1,...,βm
βi`κi

∑
ν1,...,νm
νi`iκi

cλν1,...,νm

(
m∏
i=1

aνi(βi, i)
)

︸ ︷︷ ︸
=:jβ,%(λ)

[β1]⊗·· ·⊗ [βm],

where κ is the frequency notation of %.

Proof. Recall that {λ}m×k =⊕
µ`maλ(µ,k)[µ].

We first prove (∗): ⊗iSymjV = (⊗ij V )S
i
j = ⊕

ν`ij{ν} ⊗ [ν]S
i
j = ⊕

ν`ij{ν} ⊗ {ν}i×j =⊕
ν`ij,ϕ`j aν(ϕ,j){ν}⊗ [ϕ], where for the last equality we use the generalized Gay’s theorem.
Now we can calculate:
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⊕
λ`d
{λ}⊗{λ}% =

⊕
λ`d
{λ}⊗ [λ]G% = (⊗dV )G% = Sym%1V ⊗·· ·⊗Sym%mV

= ⊗κ1Sym1V ⊗ ·· · ⊗
⊗κdSymdV

(∗)=
⊕

ν1`1κ1
β`κ1

aν1(β1,1){ν1}⊗ [β1] ⊗ ·· · ⊗
⊕

νd`dκd
β`κd

aνd(βd,d){νd}⊗ [βd]

=
⊕
ν,β

(
m∏
i=1

aνi(βi, i))({ν1}⊗ · · ·⊗{νm})⊗ [β1]⊗·· ·⊗ [βm].

Taking HWVs of weight λ on both sides we obtain

{λ}% =
⊕
ν,β

cλν1,...,νm(
m∏
i=1

aνi(βi, i))[β1]⊗·· ·⊗ [βm].

Since the dimension of the Sκi-invariant space of [βi]⊗ [β′i]⊗ [β′′i] is given by the Kronecker
coefficient k(βi,β′i,β′′i), we obtain:

dim({λ}%⊗{λ′}%⊗{λ′′}%)stab% =
∑

β,β′,β′′

jβ,%(λ)jβ′,%(λ′)jβ′′,%(λ′′)
(
m∏
i=1

k(βi,β′i,β′′i)
)
,

where the sum for β is over all lists of partitions such that βi ` κi and analogously for β′ and
β′′.

The following second proof for (22.1) is taken from the lecture notes [11]:

Corollary 22.29. As at the beginning of Chapter 22, let λ= λ′ = λ′′ be the hook partition with
3k+ 1 boxes and 2k+ 1 rows. Then mult(λ,λ′,λ′′)(GL3

3k〈3k〉) = 0.

Proof. We use the formula in Theorem 22.27. Since it has no signs, we can assume (for the
sake of contradiction) that the formula yields a is positive result and derive conditions on the
partitions that are involved in positive summands.

We use a few standard facts about Littlewood-Richardson coefficients, plethysm coefficients,
and Kronecker coefficients, each marked with a †.

First observation: ν1 = β1, because of the plethysm aν1(β1,1) = multν1(Sβ1(Sym1V )︸ ︷︷ ︸
={β1}

).

A multi-LR-coefficients can only be positive if all small partitions are contained in the large
partition, i.e., the small Young diagrams are subsets of the large Young diagram (†10). In our
case, all large partitions are hooks, so all νi are hooks. Thus also β1, β′1, β′′1 are hooks.

10cλν1,...,νm equals the multiplicity of {λ} in the tensor product {ν1}⊗ · · ·{νm}. [35, §5.2, Prop. 3] treats the
case m= 2. Expanding the tensor product {ν1}⊗ · · ·⊗{νm} via the two-factor Littlewood-Richardson rule show
that all {λ} that occur in {ν1}⊗ · · ·⊗{νm} must have νi ⊆ λ. See e.g. [35, §8.3, Cor. 2(c)] for this interpretation
of LR-coefficients.
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Let d be the number of boxes. For a hook ν1 define the inner leg length as `(ν1)−1. For
hook triples with inner leg lengths a1, a2, a3, Kronecker positivity requires (†, see e.g. [69, Pf. of
Thm. 3(4.)]):

2d−a1−a2−a3−2≥ 0.
Thus not all three a1,a2,a3 can be large. Indeed, let a= min{a1,a2,a3}, then 2d−3a−2≥ 0
and thus a≤ 2d−2

3 . In particular this holds for k(ν1,ν ′1,ν ′′1) = k(β1,β′1,β′′1)> 0. W.l.o.g. ν1 is
the shortest of ν1,ν ′1,ν ′′1. Then

`(ν1)−1≤ 2|ν1|−2
3 = 2

3 |ν
1|− 2

3
and thus

`(ν1)≤ 2
3 |ν

1|+ 1
3 .

All partitions appearing in ⊗aSymbV have at most a rows, as the basis of HWVs is given
by semistandard tableaux with content (b,b, . . . , b). Therefore the positive plethysm coefficients
in the formula imply

`(νi)≤ |βi|= κi = νi

i
Adding up the lengths we obtain

`(ν1) + · · ·+ `(ν`)≤ 2
3 |ν

1|+ 1
3 + 1

2(|ν2|+ · · ·+ |ν`|︸ ︷︷ ︸
=3k+1−|ν1|

)

= 2
3 |ν

1|+ 1
3 + 3

2k+ 1
2 −

1
2 |ν

1|= 3
2k+ 1

6 |ν
1|+ 5

6
We now use that for a positive multi-LRC the lengths of the small partitions add up to at

least the length of the large partition (†11):

`(ν1) + · · ·+ `(ν`)≥ `(λ) = 2k+ 1.

Therefore
3
2k+ 5

6 + 1
6 |ν

1| ≥ 2k+ 1⇔−1
2k−

1
6 + 1

6 |ν
1| ≥ 0⇔ |ν1| ≥ 3k+ 1.

Since |ν1|= κ1, this means that %1 = (13k+1), but the sum is only over %1 with at most 3k
rows.

Occurrence obstructions for matrix multiplication

The tensor setting is analogous polynomial setting, but the group GLn2 is replaced by
GLn×GLn×GLn.
One can explicitly construct occurrence obstructions that show border rank lower
bounds on the matrix multiplication tensor. Obstruction designs help visualizing the
arguments.

11This can be seen directly from a combinatorial description of the LR-coefficient, see e.g. [35, §5.2, Prop. 3]
and it readily generalizes to more than 2 factors.
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A Some basic algebraic vocabulary

This appendix contains some basic notions from algebra.
A monoid (G, ·,e) is set with a binary operation · : G×G→G and a so-called neutral element

e ∈G such that the following conditions hold:
1. Associativity: For all a,b,c ∈G we have a · (b · c) = (a · b) · c.
2. Existence of identity: For all a ∈G we have e ·a= a= a ·e.

We omit the multiplication dot if there is no possibility of confusion. For example, the set
Cn×n of complex n×n matrices with binary operation the matrix multiplication is a monoid. A
subset of a monoid G which contains the identity element and satisfies associativity is called a
submonoid of G. For example, the set of upper triangular complex n×n matrices is a submonoid
of the monoid of complex n×n matrices. A monoid G is called commutative if for all a,b ∈G
we have ab= ba. A monoid homomorphism from a monoid (G, ·,e) to a monoid (G′, ·′,e′) is a
map ϕ : G→G′ which satisfies ϕ(g ·h) = ϕ(g) ·′ϕ(h) for all (g,h) ∈G×G and ϕ(e) = e′.

A group is a monoid in which for each element a ∈ G we have an element a−1 ∈ G such
that a−1 ·a= e= a ·a−1. The element a−1 is called the inverse element of a. For example, the
set of invertible (i.e., nonzero determinant) complex n×n matrices with operation the matrix
multiplication is a group, the so called general linear group GLn, where a−1 is the matrix inverse.
Another example is the symmetric group on n letters Sn, which consists of all bijective maps
from the set {1,2, . . . ,n} to {1,2,. . . ,n} and the operation is the composition of maps, where
a−1 is the inverse permutation. A monoid homomorphism between groups is called a group
homomorphism. A group G is called abelian if it is commutative as a monoid. For example
the set (C,+,0) of complex numbers with addition is an abelian group. Moreover, the set
(C\{0}, ·,1) of complex numbers (without zero) with multiplication is an abelian group. Also
the set (Cn×m,+,0) of n×m matrices with addition is an abelian group.

A field (F,+, ·,0,1) is a set with two binary operations and two specific elements that satisfies:
1. (F,+,0) and (F\{0}, ·,1) are abelian groups, and
2. distributivity holds, i.e., for all a,b,c ∈ F we have a · (b+ c) = (a · b) + (a · c).

For example, the complex numbers C form a field.
If we do not require the existence of multiplicative inverse elements, then our algebraic

structure is called a ring, more precisely: A ring (R,+, ·,0,1) is a set with two binary operations
and two neutral elements that satisfies:

1. (R,+,0) is an abelian group,
2. (R, ·,1) is a monoid,
3. distributivity holds, i.e., for all a,b,c ∈R we have a · (b+ c) = (a · b) + (a · c).

If the monoid (R, ·,1) is commutative, then we call the ring R a commutative ring. For example,
the set C[X1,X2, . . . ,Xn] of polynomials in n variables is a commutative ring. The set Cn×n
of n×n matrices with matrix multiplication and addition is a noncommutative ring for n > 1.
A ring homomorphism between two rings R1 and R2 is a map from R1 to R2 which at the
same time is a group homomorphism for the additive structure and a monoid morphism for the
multiplicative structure. A bijective ring homomorphism is called a ring isomorphism.

An ideal I of a commutative ring (R,+, ·,0,1) is a subset I ⊆R that forms an abelian group
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(I,+) with the rings addition and moreover is closed under ring multiplication, i.e., for all a ∈R,
b ∈ I we have a · b ∈ I. For example, the set of polynomials f in C[X1,X2, . . . ,Xn] that are
divisible by X2 form an ideal of C[X1,X2, . . . ,Xn].

If F is a field, α ∈ F, and a is an element in a vector space over F, then we write α.a for the
scalar multiplication. A vector space over the complex numbers is also called a C-vector space.
A ring (A,+, ·,0,1) that is also C-vector space (with the same addition) is called a C-algebra, if
A satisfies (α.1) ·a= α.a for all α ∈ C and all a ∈A. If the C-algebra A is a commutative ring,
then we call A a commutative C-algebra. For example the set C[X1,X2, . . . ,Xn] of polynomials
in n variables is a commutative C-algebra.

A vector space V is a direct sum of linear subspaces Vi ⊆ V , written V =⊕
iVi, if the union⋃

iVi spans V and each intersection Vi ∩
∑
j 6=iVj is the zero space. If V = ⊕

iVi, then each
element in V has a unique representation as a sum of elements from the Vi.

A C-algebra A is called graded, if the vector space A is a direct sum A=⊕
d∈N≥0

Ad such
that the ring multiplication satisfies a · a′ ∈ Ad+d′ for all a ∈ Ad and a′ ∈ Ad′ . For example
the algebra C[X1,X2, . . . ,Xn] is graded as follows: The linear subspace C[X1,X2, . . . ,Xn]d is
spanned by the monomials of degree d, where the degree is the sum of exponents, e.g., the
monomial X2

1X
3
2 has degree 5. We call C[X1,X2, . . . ,Xn]d the homogeneous degree d component

of C[X1,X2, . . . ,Xn] and elements of C[X1,X2, . . . ,Xn]d are said to be homogeneous of degree d.
For example X2

1X
3
2 −X1X

3
2 is not homogeneous. The degree of a nonhomogeneous polynomial

is defined to be the maximal degree of its monomials. We define C[X1,X2, . . . ,Xn]≤d to be the
vector space of (not necessarily homogeneous) polynomials of degree at most d. A homomorphism
of C-algebras is a linear map that is a ring homomorphism. An isomorphism of C-algebras
is a linear map that is a ring isomorphism. An isomorphism of graded C-algebras f : A→ B
is defined to be an isomorphism of graded C-algebras such that the restriction of f to each
homogeneous degree i part Ai is a vector space isomorphism to Bi.
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