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Abstract: The Feedback Vertex Set problem (FVS), where the goal is to find a small subset
of vertices that intersects every cycle in an input directed graph, is among the fundamental
problems whose approximability is not well understood. One can efficiently find an Õ(logn)-
factor approximation, and efficient constant-factor approximation is ruled out under the
Unique Games Conjecture (UGC). We give a simpler proof that Feedback Vertex Set is hard
to approximate within any constant factor, assuming UGC.
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1 Introduction

Feedback Vertex Set (FVS) is a fundamental combinatorial optimization problem. Given a (directed)
graph G, the problem asks to find a subset F of vertices1 with the minimum cardinality that intersects
every cycle in the graph (equivalently, the induced subgraph G \F is acyclic). One of Karp’s 21 NP-
complete problems, FVS has been a subject of active research for many years. Recent results on the
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1The related Feedback Arc Set problem asks for a subset of edges to intersect every cycle. This problem is easy on undirected

graphs, and equivalent to FVS for directed graphs. In this paper, we deal with the vertex variant.
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problem study approximability and fixed-parameter tractability. In fixed-parameter tractability, both
undirected and directed FVS are shown to be in FPT [4, 5]. See recent results on a generalization of
FVS [8, 6] and references therein. In this work, we focus on approximability.

FVS in undirected graphs has a 2-approximation algorithm [1, 3, 7], but the same problem is not well
understood in directed graphs The best approximation algorithm [16, 11, 10] achieves an approximation
factor of O(min(logτ∗ log logτ∗, logn log logn)), where τ∗ is the optimal fractional solution in the natural
LP relaxation.2 The best hardness result follows from an easy approximation-preserving reduction from
Vertex Cover by Dinur and Safra [9], which implies that it is NP-hard to approximate FVS within a factor
of 1.36. Assuming the Unique Games Conjecture (UGC) of Khot [13], it is NP-hard (called UG-hard) to
approximate FVS in directed graphs within any constant factor [12, 17].

The first UG-hardness of approximating FVS within a constant factor is the corollary of the fairly
complicated result on the Maximum Acyclic Subgraph (MAS) by Guruswami et al. [12]. Svensson [17]
gave a simpler proof tailored for FVS with a stronger statement in completeness—deleting (1+ ε)/k
fraction of vertices ensures that there is no walk of length k. The main contribution of this work is a
simpler proof of the same statement. Let [i]k be the integer in {1, . . .k} such that i≡ [i]k mod k.

Theorem 1.1. Fix an integer k ≥ 3 and ε ∈ (0,1/(k+1)). Given a directed graph G = (VG,EG), it is
UG-hard to distinguish the following cases.

• Completeness: The vertex set can be partitioned into sets V0, . . . ,Vk such that

|Vi| ≥
(1− ε)

k
|VG|

for all i∈ {1, . . . ,k}, and each edge not incident on V0 goes from Vi to V[i+1]k for some i∈ {1, . . . ,k}.

• Soundness: Any subset of measure ε contains a k-cycle.

Consequently, it is UG-hard to approximate FVS within a factor of k, for any constant k.

Our proof differs from Svensson’s [17] in two aspects:

• The ingenious application of It Ain’t Over Till It’s Over Theorem is replaced by the standard
application of the more general Invariance principle of Mossel [15].

• The reduction from Unique Games is simpler, introducing only one long code for each vertex of a
Unique Games instance, while [17] used multiple long codes for each tuple of vertices of a certain
length. Instead we rely on the stronger (but equivalent) UGC proposed by Khot and Regev [14].

The idea of using the Invariance principle to prove hardness of FVS is inspired by the elegant paper
of Bansal and Khot [2] which showed structured hardness of k-Hypergraph Vertex Cover. Our main idea
for this result is to use a more restricted distribution for the dictatorship test than the one used in [2] to
ensure more structure in the completeness case. Our statement for the completeness case is stronger that
of Theorem 1.1 of Svensson [17], but his technique also proves our statement. At the same time we also
ensure that the distribution has certain properties so that the same soundness analysis can be applied.

2In unweighted cases, τ∗ is always at most n. In weighted cases, we assume all weights are at least 1.
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Notation. In a directed graph G = (VG,EG), an edge (u,v) indicates a directed edge from u to v. In
some cases G might be vertex-weighted or edge-weighted, and every weight will be normalized so that
the sum is 1. Given a subset S of either VG or EG, define µ(S), also called the measure of S, to be the sum
of the weights of the elements in S. Let [k] := {1,2, . . . ,k}. We often consider hypercube or long code
[k]R. We use superscripts x1, . . . ,xk ∈ [k]R to denote k different points of the hypercube and subscripts
x1, . . . ,xR to denote the value of each coordinate of one point x ∈ [k]R.

Organization. In Section 2, we propose our dictatorship test. It is a family of instances of FVS where
every small feedback vertex set must exhibit a certain structure, and the proposal and the analysis of the
dictatorship test is our main technical contribution. Using the dictatorship test, Section 3 shows the full
reduction from Unique Games to FVS, which is rather standard in the literature.

2 Dictatorship test

There is a simple gap-preserving reduction from FVS on vertex-weighted graphs to FVS on unweighted
graphs—replace each vertex v by a set of new vertices s(v) whose cardinality is proportional to the weight
of v, and replace each edge (u,v) by {(u′,v′) : u′ ∈ s(u),v′ ∈ s(v)}. Our proof will have all the weights
polynomially bounded, ensuring that this reduction runs in polynomial time. For the rest of the paper, we
focus on vertex-weighted graphs.

We propose a simple dictatorship test for FVS, which is used to prove that it is UG-hard to approximate
FVS within any constant factor. Given positive integers k, R, and ε > 0, our dictatorship test is a vertex-
weighted graph G = (VG,EG) where VG = ([k]∪{0})R and edges in EG are carefully chosen to prove the
following properties (informally stated).

• Completeness: For each 1≤ j ≤ R, depending only on the j-th coordinate, VG can be partitioned
to k+1 parts V0, . . . ,Vk with the following two properties.

– µ(V0) = ε , µ(V1) = · · ·= µ(Vk) = (1− ε)/k.
– In the subgraph induced by V1∪·· ·∪Vk, each edge goes from Vi to V[i+1]k for some 1≤ i≤ k.

It is easy to see that V0∪Vi for any 1≤ i≤ k gives a feedback vertex set with measure

ε +
1− ε

k
.

• Soundness: Any subset of measure at least ε that does not reveal any influential coordinate must
contain a k-cycle.

Before defining G, we first define a k-uniform hypergraph H = (VH ,EH) with VH =VG = ({0}∪ [k])R.
The graph G is then simply obtained by replacing a hyperedge (x1, . . . ,xk) by k edges (x1,x2), . . . ,(xk,x1).
The hypergraph H is vertex-weighted and edge-weighted. Both weights sum to 1 and induce probability
distributions, where the weight of vertex x is the sum of the weight of the hyperedges containing x divided
by k. The hyperedges of H are described by the following procedure to sample k vertices (x1, . . . ,xk)
from ({0}∪ [k])R, with the weight of each hyperedge equal to the probability that it is sampled in this
procedure.
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• For each coordinate 1 ≤ j ≤ R, sample (x1) j, . . . ,(xk) j as follows, independently of the other
coordinates.

– Sample a ∈ [k] uniformly at random.

– Set (x1) j = a,(x2) j = [a+1]k, . . . ,(xk) j = [a+ k−1]k.

– For each (xi) j, set (xi) j = 0 with probability ε independently.

This defines the hypergraph EH . In the above distribution to sample (x1, . . . ,xk), the marginal on each
xi is the same:

Pr[xi = (a1, . . . ,aR)] =
R

∏
j=1

µ(a j) ,

where µ : [k]∪{0} → R is defined by µ(0) = ε and µ(i) = (1− ε)/k for i ∈ [k]. Let the weight of
(x1, . . . ,xR) be this quantity. The sum of the vertex weights is also 1.

With nonzero probability a randomly sampled hyperedge (x1, . . . ,xk) might have xi = x j for some
i 6= j. We call such hyperedges defective since they do not make H k-uniform. However, xi = x j means
xi = x j = (0,0, . . . ,0), so the probability that it happens is at most ε2R and the sum of the weights of the
defective hyperedges is at most k2ε2R.

Finally, we define G. The vertex set VG =VH with the same vertex weights, and for each non-defective
hyperedge (x1, . . . ,xk) ∈ EH , we add k edges (x1,x2), . . . ,(xk,x1) to EG. The analysis dealing with edge
weights will be done in H, so we do not consider edge weights for the edges of G.

2.1 Analysis of dictatorship test

Completeness. Fix a coordinate 1≤ j ≤ R. For all 0≤ i≤ k, let Vi =
{
(x1, . . . ,xR) ∈VG : x j = i

}
. By

definition, µ(V0) = ε,µ(Vi) = (1− ε)/k. The distribution on (x1, . . . ,xk) satisfies that for any 1≤ i≤ k,
(x[i+1]k) j = [(xi) j + 1]k or at least one of (xi) j,(x[i+1]k) j is 0. This proves that if we delete V0 and the
edges incident on it, all the remaining edges will go from Vi to V[i+1]k .

Soundness. We introduce some definitions and properties of correlated spaces and Fourier analysis of
functions defined on (the products of) these spaces. See Mossel [15] for details.

Let Ω := [k]∪{0} and µ : Ω→ R such that µ(0) = ε and µ(i) = (1− ε)/k as defined previously.
Let (Ωk,µ ′) be the probability space defined by the distribution of (x1) j, . . . ,(xk) j for some j from our
hyperedge sampling. Note that the marginal distribution of each copy of Ω is µ . Given a probability
space (Ω1×Ω2,ν), we define the correlation between Ω1 and Ω2 as

ρ(Ω1,Ω2;ν) = sup
{
Cov[ f ,g] : f ∈ RΩ1 ,g ∈ RΩ2 ,Var[ f ] = Var[g] = 1

}
.

With more than two underlying spaces, the correlation of (Ω1×·· ·×Ωk,ν) is defined by

ρ(Ω1, . . . ,Ωk;ν) = max
1≤i≤k

ρ

( i−1

∏
j=1

Ω j×
k

∏
j=i+1

Ω j,Ωi;ν

)
.

We use the following lemma to bound the correlation.
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Lemma 2.1 (Lemma 2.9 of Mossel [15]). Let (Ω1×Ω2,ν) be a probability space such that the probability
of the smallest atom in Ω1×Ω2 is at least γ > 0. Define a bipartite graph G = (Ω1 ∪Ω2,E) where
(a,b) ∈Ω1×Ω2 satisfies (a,b) ∈ E if ν(a,b)> 0. Then if G is connected then

ρ(Ω1,Ω2;ν)≤ 1− γ
2/2 .

In our distribution (Ωk,µ ′), note that (0,0, . . . ,0) has probability γ := εk, and this is indeed the
smallest nonzero probability assuming ε < 1/(k+1). Let Ω1 = Ω, Ω2 = Ωk−1, and consider the bipartite
graph defined above. For any (x1, . . . ,xk) with nonzero probability, the edge corresponding to (x1, . . . ,xk)
is connected to the edge corresponding to (0,0, . . . ,0) since (x1,x2, . . . ,xk), (0,x2, . . . ,xk), (0,0, . . . ,0) is
the sequence of elements with nonzero probability where each consecutive elements differ in exactly
one of Ω1 or Ω2 (i. e., consecutive edges share an endpoint in the bipartite graph). Therefore, we can
apply the above lemma to see ρ(Ω1,Ω2; µ ′) ≤ 1− γ2/2. Since every copy of Ω is identical under µ ′,
ρ := ρ(Ω, . . . ,Ω; µ ′)≤ 1− γ2/2 < 1. The similar argument also works for Ω1 = Ω j and Ω2 = Ωk− j for
each j ∈ {1, . . . ,k−1}, proving that

ρ(Ω j,Ωk− j,µ ′)≤ 1− γ
2/2 , for each j ∈ {1, . . . ,k−1}.

Let χ0, . . . ,χk ∈ RΩ be orthonormal random variables satisfying that χ0 ≡ 1, E[χ2
i ] = 1 for all i, and

E[χiχ j] = 0 for all i 6= j. Given f : ΩR→ [0,1] as a random variable in the probability space (ΩR,µ⊗R),
its multilinear decomposition is

f (x1, . . . ,xR) = ∑
α∈ΩR

f̂ (α)
R

∏
j=1

χα( j)(x j) .

Let Supp(α) be the number of nonzero coordinates of α . The d-degree influence of the j-th coordinate
of f is defined by

Inf≤d
j ( f ) = ∑

α∈ΩR:α j 6=0,Supp(α)≤d

f̂ (α)2.

It is well known that ∑
R
j=1 Inf

≤d
j ( f )≤ d for [0,1]-valued f and does not depend on the choice of χ0, . . . ,χk.

We establish the soundness property using the Invariance principle stated below.

Theorem 2.2 (Theorem 6.3 of Mossel [15]). Let (∏k
i=1 Ωi,ν) be a probability space such that the

minimum probability of any atom is at least γ > 0. Assume furthermore that there exists ρ < 1 such that

ρ(Ω1, . . . ,Ωk,ν)≤ ρ ,

ρ

( i

∏
l=1

Ωl,
k

∏
l=i+1

Ωl,ν
)
≤ ρ, for all i ∈ {1, . . . ,k−1} .

Then for all β > 0, there exist δ > 0,τ > 0, and an integer d such that the following holds. Fix a natural
number R and consider the space (∏k

i=1 ΩR
i ,ν

⊗R). If k functions { fi : ΩR
i 7→ [0,1]}1≤i≤k satisfy

E[ fi]≥ β , i ∈ [k] ,

Inf≤d
j ( fi)≤ τ , ∀i ∈ [k], j ∈ [R] ,
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then

E
[ k

∏
i=1

f j

]
≥ δ .

The original statement of Mossel [15] is more general than the above statement and lower bounds
E[∏k

i=1 fi] by some quantity Γ := Γ(ρ,β ) minus some additive error. Given ρ < 1 and β > 0, our
statement is obtained by observing that Γ(ρ,β ) > 0 and setting the additive error to be Γ(ρ,β )/2 so
that δ := Γ(ρ,β )/2 becomes a lower bound of E[∏k

j=1 f j]. We refer the reader to [15] for the original
statement.

Let A be the subset of VG of measure at least β , and f be its indicator function. Apply Theorem 2.2
with ρ,β , and ν ← µ ′ to have δ ,τ and d. If Inf j( f ) ≤ τ for all j ∈ [R] (i. e., A does not reveal any
influential coordinate), as long as δ is greater than the sum of the weights of the defective hyperedges,
which is at most k2ε2R (which can be ensured by taking large R for fixed k and ε), A contains a non-
defective hyperedge (x1, . . . ,xk) of H and the corresponding k-cycle of G. By taking β ← ε , we can
conclude that any subset of measure at least ε that does not reveal any influential coordinate must contain
a k-cycle, establishing the desired soundness property.

3 Reduction from the Unique Games

We introduce the Unique Games Conjecture and its equivalent variant.

Definition 3.1. An instance

L
(
B(VB∪WB,EB), [R],{π(v,w)}(v,w)∈EB

)
of Unique Games consists of a biregular bipartite graph B(VB∪WB,EB) and a set [R] of labels. For each
edge (v,w) ∈ EB there is a constraint specified by a permutation π(v,w) : [R]→ [R]. The goal is to find a
labeling ` : VB∪WB→ [R] of the vertices such that as many edges as possible are satisfied, where an edge
e = (v,w) is said to be satisfied if `(v) = π(v,w)(`(w)).

Definition 3.2. Given a Unique Games instance

L
(
B(VB∪WB,EB), [R],{π(v,w)}(v,w)∈EB

)
,

let Opt(L) denote the maximum fraction of simultaneously-satisfied edges of L by any labeling, i.e.,

Opt(L) :=
1
|E|

max
`:VB∪WB→[R]

|{e ∈ E : ` satisfies e}|.

Conjecture 3.3 (The Unique Games Conjecture [13]). For any constants η > 0, there is R = R(η) such
that, for a Unique Games instance L with label set [R], it is NP-hard to distinguish between the following
cases.

• opt(L)≥ 1−η .
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• opt(L)≤ η .

To show the optimal hardness result for Vertex Cover, Khot and Regev [14] introduced the following
seemingly stronger conjecture, and proved that it is in fact equivalent to the original Unique Games
Conjecture.

Conjecture 3.4 (Khot and Regev [14]). For any constants η > 0, there is R = R(η) such that, for a
Unique Games instance L with label set [R], it is NP-hard to distinguish between the following cases.

• There is a set W ′ ⊆WB such that |W ′| ≥ (1−η)|WB| and a labeling ` : VB∪WB→ [R] that satisfies
every edge (v,w) for v ∈VB and w ∈W ′.

• opt(L)≤ η .

We describe the reduction from Unique Games. It is parametrized by an integer k and ε ∈
(0,1/(k+1)) as in the statement of Theorem 1.1 and another parameter R that will be chosen later.
Note that k and ε determine the correlated space (Ωk,µ ′) as in the previous section.

Given an instance L of Unique Games, we assign to each vertex w ∈WB the hypercube ΩR
w. Formally,

VG =VH :=WB×ΩR. The weight of each vertex (w,x) is the weight of x in ΩR divided by |WB|, so that
the sum of the weights is again 1.

For a permutation σ : [R]→ [R], let x ◦σ := (xσ(1), . . . ,xσ(R)). The weighted hyperedges of H are
again defined by the following procedure to sample k vertices (w1,x1), . . . ,(wk,xk).

• Sample v ∈VB uniformly at random.

• Sample k vertices w1, . . . ,wk ∈WB i. i. d. from neighbors of v.

• Sample x1, . . . ,xk ∈ΩR from the dictatorship distribution.

• Return the hyperedge ((w1,x1 ◦π(v,w1)), . . . ,(wk,xk ◦π(v,wk))).

For each non-defective hyperedge ((w1,x1), . . . ,(wk,xk)), we add k edges

((w1,x1),(w2,x2)), . . . ,((wk,xk),(w1,x1))

to G.

Completeness. Suppose there exists a labeling ` and a subset W ′ ⊆WB with |W ′| ≥ (1−η)|WB| such
that ` satisfies every edge incident on W ′. For 1≤ i≤ k, let

Vi :=
⋃

w∈W ′

{
(w,x) : x`(w) = i

}
and V0 :=VG \ (

⋃k
i=1Vi). Note that for i ∈ [k], µ(Vi)≥ (1−η)(1− ε)/k. Let G′ be the induced subgraph

on VG \V0. For any edge ((w1,x1),(w2,x2)) ∈ EG′ , we know w1,w2 ∈W ′ and they share a neighbor
v ∈VB. By the property of our dictatorship test, for each 1≤ j ≤ R,

a := (x1)π(v,w1)−1( j) and b := (x2)π(v,w2)−1( j)

satisfy that at least one of them is zero or b = [a+1]k. Therefore, if (w1,x1),(w2,x2) /∈V0, which implies

(x1)π(v,w1)−1(`(v)) = (x1)`(w1), (x2)π(v,w2)−1(`(v)) = (x2)`(w2)

are nonzero, we can conlude that (w1,x1) ∈Vi and (w2,x2) ∈V[i+1]k for some 1≤ i≤ k.
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Soundness. The soundness anlaysis is standard and closely follows Bansal and Khot [2]. Suppose
A ⊆ VH of measure at least β such that it is independent (i.e., does not contain any non-defective
hyperedge). We will show that the instance L of Unique Games admits a good labeling. Its contrapositive
shows that if L does not admit a good labeling, any subset of measure at least β contains a non-defect
hyperedge and the corresponding k-cycle, proving Theorem 1.1.

Let Aw = ΩR
w∩A be the vertices of A that lie in ΩR

w for w ∈WB. Let fw : ΩR→{0,1} be the indicator
function of Aw. Define fv : ΩR→ [0,1] for each v ∈VB to be

fv(x) = Ew∈N(v)[ fw(x◦π(v,w))]

where N(v) is the set of neighbors of v. Since B is biregular, Ev,x[ fv(x)]≥ β . By an averaging argument,
at least β/2 fraction of vertices in VB satisfy Ex[ fv(x)]≥ β/2. Call such vertices good.

Since A is an independent set, for any v ∈V and its k neighbors w1, . . . ,wk, we have

Ex1,...,xk

[ k

∏
i=1

fwi(xi ◦π(v,wi))
]
≤ k2

ε
2R.

Averaging over all k-tuples w1, . . . ,wk of neighbors of v, we have

Ex1,...,xk

[ k

∏
i=1

fv(xi)
]
= Ex1,...,xkEw1,...,wk∈N(v)

[ k

∏
i=1

fwi(xi ◦π(v,wi))
]
≤ k2

ε
2R .

Applying Theorem 2.2 (take R large enough to make sure that k2ε2R� δ ), there exist τ and d such that
fv has a coordinate j with Inf≤d

j ( fv)≥ τ . Set `(v) = j. Since

Inf≤d
j ( fv) = ∑

α j 6=0,|α|≤d
f̂v(α)2 = ∑

α j 6=0,|α|≤d

(
Ew[ f̂w(π(v,w)−1(α))]2

)
≤ ∑

α j 6=0,|α|≤d
Ew
[

f̂w(π(v,w)−1(α))2]= Ew
[
Inf≤d

π(v,w)−1( j)( fw)
]
,

at least τ/2 fraction of v’s neighbors satisfy Inf≤d
π(v,w)−1( j)( fw)≥ τ/2. There are at most 2d/τ coordinates

with degree-d influence at most τ/2, and `(w) is chosen uniformly among those coordinates (if there is
none, set it arbitrarily). The above probabilistic strategy satisfies at least (β/2)(τ/2)(τ/2d) fraction of
all edges. By taking large R, η can be made less than this quantity, implying that if a Unique Games
instance has value at most η , then the resulting H cannot have an independent set of measure at least β ,
which is equivalent to saying that every subset of VG of measure at least β contains a k-cycle. Taking
β ← ε proves Theorem 1.1.
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