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Abstract: We formalize a framework of algebraically natural lower bounds for algebraic
circuits. Just as with the natural proofs notion of Razborov and Rudich (1997) for Boolean
circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all
lower bound techniques known. However, unlike in the Boolean setting, there has been
no concrete evidence demonstrating that this is a barrier to obtaining super-polynomial
lower bounds for general algebraic circuits, as there is little understanding whether algebraic
circuits are expressive enough to support “cryptography” secure against algebraic circuits.
Following a similar result of Williams (2016) in the Boolean setting, we show that the
existence of an algebraic natural proofs barrier is equivalent to the existence of succinct
derandomization of the polynomial identity testing problem, that is, to the existence of a
hitting set for the class of poly(N)-degree poly(N)-size circuits which consists of coefficient
vectors of polynomials of polylog(N) degree with polylog(N)-size circuits. Further, we give
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an explicit universal construction showing that if such a succinct hitting set exists, then our
universal construction suffices.

Further, we assess the existing literature constructing hitting sets for restricted classes of
algebraic circuits and observe that none of them are succinct as given. Yet, we show how to
modify some of these constructions to obtain succinct hitting sets. This constitutes the first
evidence supporting the existence of an algebraic natural proofs barrier.

Our framework is similar to the Geometric Complexity Theory (GCT) program of
Mulmuley and Sohoni (2001), except that here we emphasize constructiveness of the proofs
while the GCT program emphasizes symmetry. Nevertheless, our succinct hitting sets have
relevance to the GCT program as they imply lower bounds for the complexity of the defining
equations of polynomials computed by small circuits.

1 Introduction

Computational complexity theory studies the limits of efficient computation, and a particular goal is
to quantify the power of different computational resources such as time, space, non-determinism, and
randomness. Such questions can be instantiated as asking to prove equalities or separations between
complexity classes, such as resolving P versus NP. Indeed, there have been various successes: the
(deterministic) time-hierarchy theorem showing that P % EXP ([52]), circuit lower bounds showing that
AC £ P (9, 41, 106, 53]), and interactive proofs showing IP = PSPACE ([67, 95]). However, for each
of these seminal works we have now established barriers for why their underlying techniques cannot
resolve questions such as P versus NP. The above results are covered by the barriers of relativization of
Baker, Gill and Solovay [14], natural proofs of Razborov and Rudich [86], and algebrization of Aaronson
and Wigderson [3], respectively. In this paper we revisit the natural proofs barrier of Razborov and
Rudich [86] and seek to understand how it extends to a barrier to algebraic circuit lower bounds. While
previous work has considered versions of an algebraic natural proofs barrier ([2, 97, 44]), we give the
first evidence of such a barrier against restricted algebraic reasoning.

Natural proofs. The setting of Razborov and Rudich [86] is that of non-uniform complexity, where
instead of considering a Turing machine solving a problem on all input sizes, one considers a model such
as Boolean circuits where the computational device can change with the size of the input. While circuits
are at least as powerful as Turing machines, and can even (trivially) compute undecidable languages,
their ability to solve computational problems of interest can seem closer to uniform computation. For
example, if polynomial-size circuits can solve NP-hard problems then there are unexpected implications
for uniform computation similar to P = NP (the polynomial-time hierarchy collapses to £5 = IT4 ([58])).
Therefore, obtaining lower bounds for Boolean circuits was seen as a viable method to indirectly tackle
Turing machine lower bounds, with the benefit of being able to appeal to more combinatorial methods
and thus bypassing the relativization barrier of Baker, Gill and Solovay [14] which seems to obstruct
most methods that can exploit uniformity.

There have been many important lower bounds obtained for restricted classes of circuits: constant-
depth circuits ([9, 41, 106, 53]), constant-depth circuits with prime modular gates ([85, 98]), as well as
lower bounds for monotone circuits ([84, 13, 11, 100]). Razborov and Rudich [86] observed that many
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of these lower bounds prove more than just a lower bound for a single explicit function. Indeed, they
observed that such lower bounds often distinguish functions computable by small circuits from random
functions, and in fact they do so efficiently. Specifically, a natural property P is a subset of Boolean
functions

PC U{f:{0,1}" = {0,1}}

n>1

with the following properties, where we denote N := 2" to be the input size to the property.!
1. Usefulness: If f : {0,1}" — {0, 1} is computable by poly(n)-size circuits then f has property P.

2. Largeness: With noticeable probability (of at least 1/poly(N) = 2~9")), random functions f :
{0,1}" — {0, 1} do not have the property P.

3. Constructivity: Given a truth-table of a function f : {0,1}" — {0,1}, of size N = 2", deciding
whether f has the property P can be checked in poly(N) = 200) time.

To obtain a circuit lower bound, a priori one only needs to obtain a (non-trivial) property P that is useful
in the above sense. However, Razborov and Rudich [86] showed that (possibly after a small modification)
most circuit lower bounds (such as those for constant-depth circuits ([9, 41, 106, 53, 85, 98])) yield large
and constructive properties, and called such lower bounds natural proofs.

Further, Razborov and Rudich [86] argued that standard cryptographic assumptions imply that
natural proofs cannot yield super-polynomial lower bounds against any restricted class of circuits
that is sufficiently rich to implement cryptography. That is, a pseudorandom function is an efficiently
computable function £ : {0, 1}" x {0,1}* — {0, 1} such that when sampling the key k € {0, 1}* at random,
the resulting distribution of functions f(-, k) is computationally indistinguishable from a truly random
function f : {0,1}" — {0, 1}. The existence of pseudorandom functions follows from the existence of one-
way functions ([54, 43]) which is essentially the weakest interesting cryptographic assumption. There are
even candidate constructions of pseudorandom functions computable by polynomial-size constant-depth
threshold circuits (TC?) as given by Naor and Reingold [73], whose security rests on the intractability
of discrete-log and factoring-type assumptions (see also Krause and Lucks [65]). It is therefore widely
believed that there are pseudorandom functions, even ones computationally indistinguishable from random
except to adversaries running in exp(A2())-time.

In contrast, Razborov and Rudich [86] showed that a natural proof useful against poly(n)-size circuits
can distinguish a pseudorandom function from a truly random function in poly(2")-time, which would
contradict the believed exp(?LQ(l))—indistinguishability when taking A to be a large enough polynomial
in n. Indeed, suppose P is a natural property. Then for a pseudorandom function f(-,-) and each
value k € {0,1}* of the key, the resulting function f(-,k) : {0,1}" — {0,1} has a poly(n)-size circuit,
and has property P (by usefulness). In contrast, random functions will not have property P with
noticeable probability (by largeness). As the property is constructive, this gives a poly(2")-time algorithm
distinguishing f(-,k) from a random function, as desired.

' The Razborov and Rudich [86] definition of a natural property actually applies to the complement of the property P we use
here. In particular, our use of the term “largeness” refers to the fact that the complement of P is a large set. This is a trivial
difference for Boolean complexity, but is important for algebraic complexity as there natural properties are one-sided, see
Section 1.2.
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While the natural proofs barrier has proved difficult to overcome, there are results that seem to
circumvent it. For example, the barrier does not seem to apply to the lower bounds obtained for monotone
circuits ([84]), as there the notion of a “random monotone function” is not well-defined. Further, there
are results (such as Williams’ [104] result of ACC® = NEXP) that circumvent the natural proofs barrier
by incorporating techniques from uniform complexity. Other work has demonstrated that relaxing the
notion of natural proof can avoid the implications to breaking cryptography. Chow [27] has shown that
almost natural proofs (which relax largeness slightly) can prove super-polynomial circuit lower bounds
(under plausible cryptographic or complexity-theoretic assumptions). Williams [105] has shown, among
other results, that some circuit lower bounds (such as for EXP or NEXP) are equivalent to constructive
(non-trivial) properties useful against small circuits, which yet have no need for any sort of largeness.
Chapman and Williams [25] have shown that obtaining circuit lower bounds for a self-checkable problem
(such as SAT) is essentially equivalent to obtaining a natural property against circuits that “check their
work.” These works suggest that the exact implications of the natural proofs barrier remains not fully
understood.

Algebraic natural proofs.  Algebraic circuits are one of the most natural models for computing poly-
nomials by using addition and multiplication. While more restricted than general (Boolean) computation,
proving lower bounds for algebraic circuits has proved challenging. Yet, we do not have formal barrier
results for understanding the difficulty of such lower bounds. While such lower bounds are not a priori
subject to the natural proofs barrier due to the formal differences in the computational model, the relevance
of the ideas of natural proofs to algebraic circuits has been repeatedly asked. Aaronson-Drucker [2]
as well as Grochow [44] noticed that many of the prominent algebraic circuit lower bounds (such as
[74, 77,79, 83]) are algebraically natural, in that they obey an algebraic form of usefulness, largeness,
and constructivity.

While this would seemingly then imply a Razborov and Rudich [86]-type barrier for existing tech-
niques, there is a key piece missing: we have very little evidence for the existence of algebraic pseudoran-
dom functions. The pseudorandom functions used by Razborov and Rudich [86] are Boolean functions,
and naive attempts to algebrize them seemingly do not yield pseudorandom polynomials. Indeed, as
algebraic circuits are a computational model weaker than general computation, it is conceivable that
they are too weak to implement cryptography, so that natural proofs barrier would not apply. In contrast,
it is also conceivable that algebraic circuits are sufficiently strong so that they can compute “enough”
cryptography to be secure against algebraic circuits, so that a natural proofs barrier would apply.

Our results. In this paper we formalize the study of pseudorandom polynomials by exhibiting the first
constructions provably secure against restricted classes of algebraic circuits. Our notion of pseudoran-
domness is related to the polynomial identity testing problem, the derandomization of which is one of
the main open problems in algebraic complexity theory (see Section 1.3 for more details). In particular,
we follow Williams [105] in treating the existence of a natural proofs barrier as the problem of succinct
derandomization: replacing randomness with pseudorandomness that further has a succinct description.
We revisit existing derandomization of restricted classes of algebraic circuits and show (via non-trivial
modification) that they can be made succinct in many cases.

A more formal statement of the results appears in Section 1.5. In order to present them, however, we
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require some technical background and definitions, which will be presented in the forthcoming sections.

Recently, and independently of our work, Grochow, Kumar, Saks, and Saraf [45] observed a similar
connection between a natural proofs barrier for algebraic circuits and succinct derandomization. They
also present connections with Geometric Complexity Theory (which we discuss below in Section 1.7)
and algebraic proof complexity. However, unlike our paper, they do not present any constructions of
succinct derandomization.

1.1 Algebraic complexity

We now discuss the algebraic setting for which we wish to present the natural proofs barrier. Algebraic
complexity theory studies the complexity of syntactic computation of polynomials using algebraic
operations. The most natural model of computation is that of an algebraic circuit, which is a directed
acyclic graph whose leaves are labeled by either variables x,...,x, or elements from the field F, and
whose internal nodes are labeled by the algebraic operations of addition (4) or multiplication (x). Each
node in the circuit computes a polynomial in the natural way, and the circuit has one or more output nodes,
which are nodes of out-degree zero. The size of the circuit is defined to be the number of wires, and the
depth is defined to be the length of a longest path from an input node to an output node. As usual, a circuit
whose underlying graph is a tree is called a formula. One can associate various complexity classes with
algebraic circuits, and the most important one for us is VP, which the classes of n-variate polynomials
with poly(n)-degree computable by poly(n)-size algebraic circuits. There is also VNP, which we will
informally define as the class of “explicit” polynomials.

A central open problem in algebraic complexity theory is to prove a super-polynomial lower bound
for the algebraic circuit size of any explicit polynomial, that is, proving VP # VNP. Substantial attention
has been given to this problem, using various techniques that leverage non-trivial algebraic tools to
study the syntactic nature of these circuits. Indeed, our knowledge of algebraic lower bounds seem to
surpass that of Boolean circuits, as we have super-linear lower bounds for general circuits ([99, 15])—a
goal as yet unachieved in the Boolean setting. Similarly, there are a wide array of super-polynomial
or even exponential lower bounds known for various weaker models of computation such as non-
commutative formulas ([74]), multilinear formulas ([80, 82]), and homogeneous depth-3 and depth-4
circuits ([77, 48, 61, 40, 60, 66]). We refer the reader to Saptharishi [88] for a continuously updating
comprehensive compendium of these lower bounds.

However, this landscape might still feel reminiscent of the Boolean setting, in that there are various
restricted models where lower bounds techniques are known, and yet lower bounds for general circuits
or formulas remain relatively poorly understood. Yet, there has been some significant recent cause
for optimism for obtaining general circuit lower bounds, as various depth-reduction results ([103, 10,
8, 64, 101, 48, 26]) have shown that n-variable degree-d polynomials computable by size-s algebraic
circuits have sO(V9) _size depth-3 or homogeneous depth-4 formulas. Further, recent methods ([59, 47,
61, 40, 60, 66]) have proven (nd )9(‘/3) lower bounds computing explicit polynomials by homogeneous

depth-4 formulas. If one could simply push these methods to obtain an (nd)"’(\/‘j) lower bound then
this would obtain super-polynomial lower bounds for general circuits! Unfortunately, all of the lower
bounds methods known seem to apply not just to candidate hard polynomials, but also to certain easy
polynomials, demonstrating that these techniques cannot yield a (nd )“’(\/‘?) lower bound as this would
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contradict the depth-reduction theorems.

Given this state of affairs, it is unclear whether to be optimistic or pessimistic regarding future
prospects for obtaining superpolynomial lower bounds for general algebraic circuits. To resolve this
uncertainty it is clearly important to formalize the barriers constraining our lower bound techniques.
Indeed, as mentioned above all known lower-bound methods apply not just to hard polynomials but also
to easy polynomials—is this intrinsic to current methods? This is essentially the question of whether
there is an algebraic natural proofs barrier, as we now describe.

1.2 Algebraic natural proofs

We now define the notion of an algebraically natural proof used in this paper. Intuitively, we want
to know whether lower bounds methods can distinguish between low-complexity and high-complexity
polynomials, so that they are useful in the sense of Razborov and Rudich [86]. In particular, we want
to know if such distinguishers? can be efficient, so that they are also constructive. Several works, such
as Aaronson and Drucker [2], Grochow [44] (see also Shpilka and Yehudayoff [97, Section 3.9], and
Aaronson [1, Section 6.5.3]) have noticed that almost all of the lower bounds methods in algebraic
complexity theory are themselves algebraic in a certain sense which we now describe.

The simplest example is to consider matrix rank, where the complexity of an n x n matrix M is
exactly captured by its determinant, which is a polynomial. That is, if M is of rank < n then detM =0,
and if rank = n then detM # 0. The key feature here is that det M is a polynomial in the coefficients of
the underlying algebraic object, which in this case is the matrix M. Most of the central lower bounds
techniques, such as partial derivatives ([77]), evaluation/coefficient dimension ([74, 79, 83, 37]), or
shifted partial derivatives ([59, 47]) are generalizations of this idea, specifically leveraging notions of
linear algebra and rank. Abstractly, these methods take an n-variate polynomial f, inspect its coefficients,
and then form an exponentially large (in n) matrix My whose entries are polynomials in the coefficients
of f. One then shows that if f is simple then rank M, < r, while for an explicit polynomial / one can
show that rank M}, > r. In particular, by basic linear algebra this shows that there is some r X r submatrix
Mj, of My, such that detM;, # 0, and yet detM = O for simple f, where M denotes the restriction of My
to the same set of rows and columns. This proves that % is a hard polynomial.

We now observe that the above outline gives a natural property P := {f : detM’, = 0} in the sense of
Razborov and Rudich [86].

1. Usefulness: For low-complexity f we have that f € P as argued above. Further, P is a non-trivial
property as h ¢ P.

2. Constructivity: For a given f, deciding whether “f € P?” is tantamount to computing det M’ } Even
though M} might be exponentially large, it is often polynomially large in the size of f (which is
exponential in the number n of variables in f). As typically M} is a simple matrix in terms of f,
computing detM} is essentially the complexity of computing the determinant, which is computable
by small algebraic circuits ([17, 68]). Thus, the property P is efficiently decidable in the size of its
input.

2Grochow [44] referred to distinguishers as test polynomials, as they test whether an input polynomial is of low- or
high-complexity.
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3. Largeness: The largeness condition (for the complement of the property P) is intrinsic here, as the
property is governed by the vanishing of a non-zero polynomial; det M } is non-zero as a polynomial
as in particular det M} # 0. As non-zero polynomials evaluate to non-zero at random points with
high probability ([94, 107, 28]), this means that such distinguishers certify that random polynomials
are of high-complexity.

Thus, we see that the above meta-method forms a very natural instance of a natural property. One
might expect the Razborov and Rudich [86] barrier to then rule out such properties, but their barrier result
only holds when the underlying circuit class can compute pseudorandom functions. While it is widely
believed that simple Boolean circuit classes can compute pseudorandom functions (as discussed above),
the ability of algebraic circuits to compute pseudorandom functions is significantly less understood. Hence,
the Razborov and Rudich [86] barrier’s applicability to the algebraic setting is not immediate. However,
as the above meta-method obeys algebraic restrictions on the natural properties being considered, this
suggests that a barrier could follow from a weaker assumption than that of algebraic circuits computing
pseudorandom functions.

We now give a formalization of the above meta-method for algebraic circuit lower bounds, which
is implicit in prior work and known to experts. To begin, we must first note that in comparing low-
complexity to high-complexity polynomials, we must detail the space in which the polynomials reside.
There are three spaces of primary interest.

1. Flxi,...,x,)% The space of n-variate polynomials of total degree at most d. There are

n—+d
Nn,d = < d >

many monomials x* :=x{" ---x% in this space.

2. Flxy,... ,xn]hom The space of homogeneous n-variate polynomials of total degree exactly d. There

are J |
n+d—

Nhom‘i
")

The space of n-variate polynomials of individual degree at most d. There are

many monomials x? in this space.

3. Flx,... Ldeg

id
Nyt = (d+1)"
many monomials x? in this space.

While this may seem pedantic, it is important to distinguish these spaces. Even though homogeneous
degree-d polynomials capture nearly all of the interesting complexity of polynomials of degree at most
d, it is trivial to distinguish the two. For example, consider the distinguisher polynomial c¢ that simply
returns the constant coefficient (the coefficient of 1) of a polynomial f =}, c,x®. This polynomial
vanishes on F[xi,...,x,]¢  for d > 0, but does not vanish on the constant polynomial 1 € Flxy,...,x,]%.
However, it would be absurd to say that “1 is a hard polynomial for Fx,... ,xn]hom ” Thus, in discussing
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how properties can distinguish polynomials we must specify the domain of interest. Indeed, to discuss
lower bounds for homogeneous computation one must restrict attention to the space F[x]¢ , and likewise
to discuss lower bounds for multilinear computation one must restrict attention to the space F|[x]| ildeg.

We now present our definition, with enough generality to handle the above spaces of polynomials
simultaneously. For a fixed set of monomials M (such as all monomials of degree at most d) we consider
the space span(JM), which is defined as all linear combinations over monomials in M. We then identify a
polynomial f € span(M) defined by f = Y yacy caX® with its list of such coefficients, which is a vector
coeffy((f) € FM defined coeffy(f) := (ca)xaent. We then ask for distinguisher D which take as input
these | M| many coefficients, which can separate low-complexity polynomials from high-complexity
polynomials.

Definition 1.1 (Algebraically Natural Proof). Let M C F[xy,...,x,] be a set of monomials M = {x?},,

and let the set span(M) := {Y yacnrcaX® : ca € F} be all linear combinations of these monomials. Let

€ C span(M) and D C F[{ca }xac] be classes of polynomials, where the latter is in | M| many variables.
A polynomial D € D is an algebraic D-natural proof against C, also called a distinguisher, if

1. D is a non-zero polynomial and
2. forall f € €, D vanishes on the coefficient vector of f, that is, D(coeffy((f)) = 0.

We will be primarily interested in taking the set of monomials M to correspond to one of the above

three sets of polynomials, F[x]¢, F[x]¢ and F[x] iddeg, to which we define the relevant coefficient vectors

as coeff, 4, coeff," and coeff' 2. We will use “coeff” if the space of polynomials is clear from the
context. 7

Thus, to revisit the comparison with Razborov and Rudich [86], condition (2) says that the dis-
tinguisher D is useful against the class C. Condition (1) indicates that the property is non-trivial, and
in particular is large, as a non-zero polynomial will evaluate to non-zero at a random point with high
probability ([94, 107, 28]). Finally, the fact that distinguisher D comes from the restricted class D is the
constructivity requirement, and the main question is how simple the distinguisher D can be.

Further, note how the above distinguishers naturally have a one-sided nature to them as in algebraic
complexity one typically seeks lower bounds against computations using any field extension of the base
field of coefficients. In using the above to define the Razborov and Rudich [86] style property P := {f :
D(coeffy(f)) = 0}, we note that the complement property =P = span(M) \ P = { f : D(coeffy(f)) # 0}
cannot be expressed in the above framework: for non-zero polynomials p and ¢, it cannot be that the
product pq vanishes everywhere (over large enough fields), so that in particular it cannot be that p(a) =0
iff g(a) # 0.

We argued above that most of the main lower bound techniques fall into the above algebraic natural
proof paradigm where the distinguisher has polynomial-size algebraic circuits, so that the proof is
VP-natural. This motivates the following question about algebraic VP-natural proofs against VP.

Question 1.2. For the space of total degree d polynomials Flxy, ... ,x,]?, is there an algebraic poly (N, 4)-
size natural proof for lower bounds against poly(n,d)-size circuits?

While one could make a detailed study of existing lower bounds to prove the intuitive fact that
VP-natural properties suffice for them, our attention will be to studying the limits of this framework. That
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said, it is worth mentioning that there are known techniques for algebraic circuit lower bounds that fall
outside this framework.

First, the shifted partial derivative technique of Gupta, Kamath, Kayal and Saptharishi [59, 47] is
not currently known to be VP-natural. While it does fall into the above rank-based meta-method (and
thus the algebraic natural proof paradigm), the matrices involved are actually quasi-polynomially large
in their input, so the method is only quasiVP-natural. However, as the shifted partial technique proves
exponential lower bounds the required quasiVP-naturalness still seems rather modest.

In contrast, there are actually methods which completely avoid the algebraic framework (constructive
or not). As discussed below in Section 1.7, this algebraic distinguisher framework is limited to proving
border complexity lower bounds, where border complexity is always upper bounded by usual complexity
notions. For the fensor rank model, distinguishers actually prove border rank lower bounds. In contrast,
the substitution method ([23, Chapter 6], [18]) can prove tensor rank lower bounds which are higher
than known border rank upper bounds (for explicit tensors), giving a separation between these two
complexities and thus showing the substitution method is not captured by the algebraic natural proof
framework. However, all such known separations are by at most a multiplicative constant factor, so the
inability of the substitution method to be algebraically natural does not currently seem to be a serious
deficiency in the framework developed here.

1.3 Pseudorandom polynomials

Having given our formal definition of algebraic natural proofs, we now explain our notion of the algebraic
natural proof barrier. In particular, as algebraically natural proofs concern the zeros of (non-zero)
polynomials computable by small circuits, this naturally leads us to the polynomial identity testing (PIT)
problem.

Polynomial identity testing. Polynomial identity testing is the following algorithmic problem: given
an algebraic circuit D computing an N-variate polynomial, decide whether D computes the identically
zero polynomial. The problem admits a simple efficient randomized algorithm by the Schwartz-Zippel-
DeMillo-Lipton Lemma [94, 107, 28]. This lemma implies that evaluations of a low-degree non-zero
polynomial at random points taken from a large enough field will be non-zero with high probability.
Thus, to check non-zeroness it is enough to evaluate D on a random input ¢ and observe whether
D(a) =0, which is clearly efficient. However, the best known deterministic algorithms run in exponential
time. Designing an efficient deterministic algorithm for PIT is another major open problem in algebraic
complexity, with intricate and bidirectional connections to proving algebraic and Boolean circuit lower
bounds [55, 4, 56, 30].

The two flavors in which the problem appears are the whife-box model, in which the algorithm is
allowed to inspect the structure of the circuit, and the black-box model, in which the algorithm is only
allowed to access evaluations of the circuit on inputs of its choice, such as the randomized algorithm
described above. It can be easily seen that efficient deterministic black-box algorithms are equivalent
to constructing small hitting sets: a hitting set for a class D C Flcy,...,cy] of circuits is a set 3 C FV
such that for any non-zero circuit D € D, there exists o € 3 such that D(«) # 0. While small hitting
sets exist for VP, little progress has been made for explicitly constructing any non-trivial hitting sets
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for general algebraic circuits (or even solving PIT in the white-box model). In contrast, there has
been substantial work developing efficient deterministic white- and black-box PIT algorithms for non-
trivial restricted classes of algebraic computation. For more, see the surveys of Saxena [89, 90] and
Shpilka-Yehudayoff [97].

Succinct derandomization. We now define our notion of pseudorandom polynomials by connecting
the algebraic natural proof framework with hitting sets. Consider a class € of polynomials, say within the
space of polynomials of bounded total degree F[xy,...,x,]?. If D is an algebraic natural proof against C
then we have:

1. D is a non-zero polynomial.
2. D vanishes on the set H := {coeff, ;(f) : f € C} of coefficient vectors of polynomials in C.

Put together, these conditions are equivalent to saying that that I is not a hitting set for D. Thus, we
see that there are algebraically natural proofs if and only if coefficient-vectors of simple polynomials are
not hitting sets. In other words, the existence of an algebraic natural proofs barrier can be rephrased as
whether PIT can be derandomized using succinct pseudorandomness. A completely analogous statement
was proven by Williams [105] in the Boolean setting, where the existence of the Razborov and Rudich [86]
natural proofs barrier was shown equivalent to succinct derandomization of ZPE, those problems solvable
in zero-error 2°(")-time. However, that equivalence there is slightly more involved, while it is immediate
here.

We now give the formal definition mirroring the above discussion, in the same generality of Defini-
tion 1.1.

Definition 1.3 (Succinct Hitting Set). Let M C F[xy,...,x,]| be a set of monomials M = {x?},, and let
the set
span(M) := { Y caxticace F}
x*eM

be all linear combinations of these monomials. Let € C span(M) and D C F[{c, }xaci] be classes of
polynomials, where the latter is in |[M| many variables.

C is a C-succinct hitting set for D if H := {coeffy¢(f) : f € C} is a hitting set for D. L.e., D € D is
non-zero iff D|g is non-zero, that is, there is some f € € such that D(coeffy;(f)) # 0.

To make our statements more concise, we often abbreviate the name of the class € in a way which is
understood from the context. For example, the modifier “s-succinct,” with s being an integer, will refer to
a C-hitting set with C being the class of circuits of size at most s. Similarly, s-XITX-succinct will refer to
C being the class of depth-3 circuits of size at most s, and so on.

The above argument showing the tension between algebraic natural proofs and pseudorandom
polynomials can be summarized in the following theorem, which follows immediately from the definitions.

Theorem 1.4. Let M C F|xy,...,x,] be a set of monomials M = {x*},, and let the set
span(M) := { Y caxticace IF}
x2eM
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be all linear combinations of these monomials. Let C C span(M) and D C F[{ca}xacn] be classes of
polynomials, where the latter is in |M| many variables.
Then there is an algebraic D-natural proof against C iff C is not a C-succinct hitting set for D.

Instantiating this claim with M being the space of degree-d monomials, we get the following
quantitative version of the above.

Corollary 1.5. Let C C Flxy,...,x,|¢ be the class of poly(n,d)-size circuits of total degree at most d.
Then there is an algebraic poly (N, 4)-natural proof against C iff C is not a poly(n,d)-succinct hitting set
for poly (N, q4)-size circuits in N, 4 variables.

In the common regime when d = poly(n), we have that poly(n) = polylog(N, 4) so that the existence
of an algebraic natural proofs barrier is equivalent to saying that coefficient-vectors of polylogarithmic-size
circuits (in polylogarithmic many variables) form a hitting set of polynomial-size.

With this equivalence in hand, we can now phrase the question of an algebraic natural proofs barrier.

Question 1.6 (Algebraic Natural Proofs Barrier). Is there a polylog(N)-succinct hitting set for circuits
of poly(N)-size?

Again, we note that Question 1.6 was also raised by Grochow, Kumar, Saks, and Saraf [45], who
presented a definition similar to Definition 1.3 and also observed the implication in Theorem 1.4.

Succinct generators. While the above equivalence already suffices for studying the barrier, the notion
of a hitting set is sometimes fragile. A more robust way to obtain hitting sets for a class D C F[cy,...,cn]
is to obtain a generator, which is a polynomial map G : F* — FV such that D € D is a non-zero iff
DoG # 0, that is, the composition D(G(y)) # 0 is non-zero as a polynomial in y. Here one measures the
quality of the generator by asking to minimize the seed-length . By polynomial interpolation, it follows
that constructing small hitting sets is equivalent to constructing generators with ¢ small, see for example
Shpilka-Yehudayoff [97].

However, in our setting we want succinct generators so that the polynomial-map G is a coefficient
vector of a polynomial G(x,y) computable by a small algebraic circuit. In particular, converting a succinct
hitting set J{ to a generator using the standard interpolation methods would give a generator which has
circuit size poly(|H|). However, as we are trying to hit polynomials on N variables, this would yield a
poly(N)-size generator whereas we would want a generator of complexity polylog(N). We now define
succinct generators and give a tighter relationship with succinct hitting sets.

Definition 1.7. Let M C Flxy,...,x,] be a set of monomials M = {x?},, and let the set
span(M) := Z caX?icp €F
x2eM

be all linear combinations of these monomials. Let € C span(M) and D C F[{c, }xaci] be classes of
polynomials, where the latter is in | M| many variables. Further, let ¢’ C F[xy,...,X,,y1,...,y¢] be another
class of polynomials.

We say that a polynomial map G : F* — FM is a C-succinct generator for D computable in ¢ if:
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1. The polynomial G(xX,y) := Y yacn Gxa(y) - X* is a polynomial in €', where Gxa(y) is the polynomial
computed by the x?-coordinate of G.

2. For every value o € F, the polynomial G(x, &) € C.

3. G is a generator for D. That is, D € D is a non-zero polynomial in F[c] iff Do G # 0 in Fy],
meaning that D(coeffy(G(x,y))) # 0 as a polynomial in F[y|, where we think of G(x,y) as a
polynomial in the ring (IF[y]) [x] and take these coefficients with respect to the x variables, so that

coeffy (G(x,y)) € F[y]™.

Conditions (2) and (3) are equivalent, over large enough fields, to the property that the output of the
generator G(x,F’) = {G(x, &) : o« € F'} is a C-succinct hitting set for D. However, the generator result
is a priori stronger as it says that the hitting set can be succinctly indexed by a polynomial in €.

Also, note that the € computability of the generator implies €’-succinctness, i.e., that its image
{G(x, ) : € F'} are all circuits which are €'~circuits, at least assuming that €’ is a class of polynomials
which is closed under substitution. However, sometimes the actual succinctness € can be more stringent
than €’ for restricted classes of computation. Since the implication regarding barriers to lower bounds
only concerns the class C, we often omit mentioning € and only talk about C-succinct generators for D.

This definition bears a slight resemblance to Mulmuley’s [70] definition of an “explicit variety.”
A discussion about the connections between our work and Geometric Complexity Theory appears in
Section 1.7.

We now give our first result, which uses the construction of a universal circuit to show that there is
an explicit universal construction of a succinct generator, that is, this circuit is a succinct generator if
there are any succinct hitting sets. Further, this shows that any succinct hitting set (even infinite) implies
a quasipolynomial deterministic black-box PIT algorithm. To make this theorem clear, let VP, denote
the class of small low-degree circuits in m variables.

Theorem 1.8 (Informal summary of Section 3). There is an explicit polylog(N)-size circuit which is a
VP olytog(v) -succinct generator for VP iff there is a VP 1100 () -succinct hitting set for VPy. Further,
the existence of any VP yo1y100(v)-succinct hitting set for VPy implies an explicit poly(N ypolylog(N) _gjze
hitting set for VPy.

Note that Aaronson and Drucker [2] proposed a candidate algebraic pseudorandom function based on
generic projections of determinants. Their construction does not seem sufficient for the above result, as
discussed in Section 3.

1.4 Evidence for pseudorandom polynomials and our results

Having now given our formalization of algebraic natural proofs and the corresponding barrier, we now
investigate evidence for such barriers. To understand these barriers, it is helpful to remind ourselves of
the evidence in the Boolean setting.
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Boolean complexity. When speaking of a natural proofs barrier, it is helpful to remember that such
barriers are inherently conditional (as opposed to relativization ([14]) and algebraization ([3]), which
are unconditional). Our belief in such barriers therefore rests on the plausibility of these conditional
assumptions. We now review two sources of evidence, cryptographic and complexity-theoretic.

The Razborov and Rudich [86] paper showed that there is a natural proofs barrier under the assumption
of the existence of pseudorandom functions with exponential security. As discussed in the Introduction,
there are two good reasons to believe the plausibility of this assumption. First, is that there are many
well-studied candidate constructions which are believed to have this security. Second, is that there is a
web of security-preserving reductions between cryptographic notions, in particular showing that such
pseudorandom functions follow from pseudorandom generators with exponential security ([43]) or even
one-way functions with exponential security ([54]). One-way functions are the most basic cryptographic
object, so that essentially the natural proofs barrier holds unless cryptography fails.>

The above cryptographic evidence already seems strong enough, but it is worth mentioning another
evidence based on complexity-theoretic derandomization. For many classes of restricted computation
there have been pseudorandom generators G : {0,1}* — {0,1}" that fool these restricted classes even
when ¢ = polylog(n). For example, AC is fooled by the Nisan-Wigderson [76] generator instantiated
with parity ([75]) as well as by polylog(n)-wise independence ([20]), RL is fooled by Nisan’s [69]
generator, and &£-bias spaces fool linear polynomials over F> ([72, 12]). In each of these cases it turns
out that the generators are in fact pseudorandom functions that fool these restricted classes, in that for
every seed £, G(¢) can be thought of as a truth table of a function G, : {0,1}!°¢" — {0,1}, such that
Gy can actually be computed in poly(¢,logn) = polylog(n)-time (as ¢ = polylog(n)). That is, these
derandomization results actually provide succinct derandomization in the sense of Williams [105]. In
fact, Razborov and Rudich [86] explicitly noted how Nisan’s [75] pseudorandom generator for AC® is a
pseudorandom function (with an application to how the lower bounds for AC® [2] are thus provably more
complicated than those for AC®). It can be seen that fooling a restricted class of computation € using the
Nisan-Wigderson [76] generator, when the hard function f against C is actually efficiently computable in
P, gives rise to a pseudorandom function unconditionally secure against C. In this case, each output of the
Nisan-Wigderson generator can be thought of as a truth table of a simple function; this follows from the
assumption on f and the fact that designs are efficiently computable, and see [24] for further discussion.

Algebraic complexity. Having reviewed the evidence for a natural proofs barrier in the Boolean
setting, we can then ask: what evidence is there for an algebraic natural proofs barrier? Unfortunately,
such evidence has been much more difficult to obtain.

Indeed, the cryptographic evidence in the Boolean setting seems less relevant to the algebraic world.
Direct attempts to algebrize the underlying cryptographic objects will only yield functions that seem
pseudorandom, where as we need polynomials. While our universal construction (Section 3) gives
a universal candidate pseudorandom polynomial, we lack the corresponding web of reductions that
reduces the analysis of such candidates to more traditional and well-studied conjectures. In particular,
the construction of Goldreich, Goldwasser and Micali [43] that converts a pseudorandom generator
to a pseudorandom function seems to have no algebraic analogue ([2]) as this construction applied to

3Furthermore, there exist problems, such as the discrete logarithm problem, for which the natural proof barrier holds
unconditionally.
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polynomials produces polynomials of exponential degree and thus do not live in the desired space of
low-degree polynomials Fxy, ..., x,]%.

Given the complete lack of algebraic-cryptographic evidence for an algebraic natural proofs barrier, it
is then natural to turn to complexity-theoretic evidence in the form of succinct derandomization, which
constitutes our results.

1.5 Our results

In this paper we present the first unconditional succinct derandomization of various restricted classes
of algebraic computation, giving the first evidence at all for an algebraic natural proofs barrier. It is
worth noting that in the Boolean setting, as discussed above, many derandomization results are already
succinct. It turns out that, to the best of our knowledge, all existing derandomization for restricted
algebraic complexity classes are not succinct.

A primary reason for this is that to obtain the best derandomization for polynomials, one typically
wants to use univariate generators as this produces more randomness-efficient results (much in the same
way that univariate Reed-Solomon codes have better distance than multi-variate Reed-Muller codes).
However, univariate polynomials are not VP-succinct essentially by definition as VP looks for multivariate
polynomials where the degree is commensurate with the number of variables. Another reason is that while
hardness-vs.-randomness can produce succinct derandomization in the Boolean setting as mentioned
above, the known algebraic hardness-vs.-randomness paradigm ([56]) is much harder to instantiate for
restricted classes of algebraic computation.

However, it seems highly plausible that by redoing existing constructions one can obtain succinct
derandomization, and we posit the following meta-conjecture.

Meta-Conjecture 1.9. For any restricted class D C F[cy,...,cy| for which explicit constructions of
subexponential-size hitting sets are currently known, there are subexponential-size hitting-sets which are
polylog(N)-succinct, where succinctness is measured with respect to one of the spaces of polynomials

Flx,. .., x4 Flxq,. .. ,xn]ﬁom, or Flxi,... ,xn]ﬁieg.

In this paper we establish this meta-conjecture for many, but not all, known derandomization results
for restricted classes of algebraic circuits. We obtain succinctness with respect to computations in the
space of multilinear polynomials F[x, ..., x,]L.,. In some cases similar results could be obtained with

ideg*
respect to the space of total degree F[xy,...,x,]?, but we omit discussion of these techniques as the
Flxq,. .., Xn]k., results are cleanest. All of our succinct derandomization results will be via succinct

ide
generators, butgas the hitting sets have succinctness even beyond the succinctness of the generator we will
focus on presenting the succinctness of the hitting sets instead.

We now list our results, but defer the exact definitions of these models to the relevant sections. We
begin with succinct derandomization covering many of the hitting-set constructions for constant-depth
circuits with various restrictions. These formulas will be fooled by hitting sets which are themselves
depth-3 formulas, but of polylogarithmic complexity.

Theorem 1.10. In the space of multilinear polynomials F|x,... ,xn]ildeg, the set of poly(logs,n)-size

multilinear XI1X formulas is a succinct hitting set for N = 2"-variate size-s computations of the following
forms:
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° ZO(I)HZformulas (Section 4.1),

e YIIY formulas of transcendence degree < O(1) (Section 4.2),

e sparse polynomials (Section 5.1),

o Zm/\ZHO(l)—formulas (Section 5.2),

o commutative roABPs (Section 5.3),

o depth-O(1) Occur-O(1) formulas (Section 5.4),

e arbitrary circuits composed with sparse polynomials of transcendence degree O(1) (Section 6).

We now conclude with a weaker result, which is not truly succinct in that the hitting set is of
complexity commensurate with the class being fooled. However, this result is for fooling classes of
algebraic computation which while restricted, go beyond constant-depth formulas, so our result is still
non-trivial. This class of computation is known as read-once oblivious algebraic branching programs
(roABPs), which can be seen as an algebraic version of RL.

Theorem 1.11 (Section 7). In the space of multilinear polynomials ]F[xl,...,xn]ildeg, the set of width-
w? length-n roABPs is a succinct hitting set for width-w and length-N = 2" roABPs with a monomial
compatible ordering of the variables.

As commented above, while the length of the roABPs whose coefficient vectors define the hitting
set is merely n = log(N), the width is as large as w?, while a truly succinct hitting set would require the
width to be polylog(w).

1.6 Techniques

We now discuss the techniques we use to obtain our succinct hitting sets. The first technique is to carefully
choose which existing hitting sets constructions to make succinct. In particular, one would naturally want
to start with the simplest restricted classes of circuits to fool, which would be sparse polynomials. A
well-known hitting-set construction is due to Klivans and Spielman [63], which is often used in hitting-set
constructions for more sophisticated algebraic computation. However, as we explain in Section 8, it
actually seems difficult to obtain a succinct version of this hitting set (or variants of it).

Instead, we observe that, due to the results of Section 3 mentioned above, we need not focus on the
size of the hitting sets but rather only on their succinctness. So, in order to obtain succinct hitting sets for
s-sparse polynomials we need not look at the poly(s)-size hitting sets of Klivans and Spielman [63] but
can also consider poly(s)POlyl"g(S)—size hitting sets which may be more amenable to being made succinct.
In particular, there is a generator of Shpilka and Volkovich [96] which can be seen as an algebraic
analogue of k-wise independence. It has been shown that this generator fools sparse polynomials with a
hitting set of poly (s)po}ylog(s)—size, and we show how to modify this result so the generator is also succinct.
Similarly, there is a family of hitting sets which use the rank condensers of Gabizon and Raz [42] to
produce a pseudorandom linear map that reduces from n variables down to r < n variables. We also
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suitably modify this construction to be succinct. Between these two core constructions, as well as their
combination, we are able to make succinct much of the existing hitting set literature.

We now briefly illustrate the simplest example of how we take existing constructions and make
them succinct. Suppose one wanted to hit a non-zero linear polynomial D(¢) = ojc; + -+ + yen. A
standard approach would be to replace c; < z where z is a new variable, as one now obtains a univariate
polynomial D(z) = a1z! + - + anz" which is clearly still non-zero. Now, however, there is simply one
variable of degree N so that interpolation over this variable yields a hitting set of size N + 1, which is
essentially optimal in terms of hitting set size. To see how to make this succinct, note that the resulting
vectors in the hitting set have the form (8, 2,...,B") for B € F. For N = 2" so that we can identify FV
as the coefficient vectors of multilinear polynomials F[xo, ..., x,—1] we can see that such vectors can
be succinctly represented as the coefficients of

1
ideg’®

B(1+x0B)(1+x182)- (1 +x,187 ),

using the fact that we can express each number in {1,..., N} uniquely in its binary representation. Further,
we can even make this construction low-degree in all of the variables by considering

B(1+x0B0)(1+x1B1)- (1 +x—1Bn—1)

for new variables By, ..., B,_1. This clearly embeds the previous construction so is still a hitting set, but
is now the desired VP-succinct generator.

1.7 Algebraic natural proofs and geometric complexity theory

We now comment on the connection between algebraic natural proofs and the Geometric Complexity
Theory (GCT) program of Mulmuley and Sohoni [71]. This program posits a very well-motivated
method for obtaining algebraic circuit lower bounds, drawing inspiration from algebraic geometry and
representation theory.

To begin, we briefly discuss some algebraic geometry, so that we now work over an algebraically
closed field FF. Suppose we have a class of polynomials € C F[x,...,x,]¢, which we can thus think of
as vectors in the space FV¢. As we did before, we can look at classes of distinguisher polynomials
D C Flcy,...,cn,,] which take as inputs the vector of coefficients of a polynomial in F[xi,...,x,]¢. In
particular, we wish to look at the class of distinguishers D that vanish on all of C, thatis D = {D:
D(coeff(f)) =0, Vf € C}. Thus, D vanishes on C, but it also may vanish on other points. The (Zariski)
closure of @, denoted €, is simply all polynomials f € F[xi,...,x,]¢ which the distinguishers D vanish
on, thatis C = {f € F[xy,...,x,]¢ : D(coeff(f)) =0, VD € D}. Clearly € C €, but this is generally not
an equality. For example, consider the map (x,y) — (x,xy). It is easy to see that the image of this map is
F2\ ({0} x (F\ {0})), but the closure is all of F? (for further examples related to algebraic complexity
classes, see [21]).

From the perspective of algebraic geometry, it is much more natural to study the closure C rather
than the class € itself. And indeed, the algebraic natural proofs we define here necessarily give lower
bounds for the closure € because the lower bound is proven using a distinguisher in D. In fact, algebraic
geometry shows that lower bounds for C necessarily must use such distinguishers (though they may not
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have small circuit size).* Thus, we see that this distinguisher approach fits well into algebraic geometry
and hence the GCT program.

Thus, the GCT approach fits into the algebraic natural proofs structure if one discards the (key)
property of constructiveness. However, the GCT approach also uses more than just algebraic geometry
and in particular relies on representation theory. The GCT program notes that polynomials naturally have
symmetries through linear changes of variables x — Ax for an invertible matrix A and these symmetries
act not only on the circuits € being computed but also their distinguishers D. One can thus then ask that
the lower bounds methods respect these symmetries, and Grochow [44] showed that most lower bounds
in the literature do obey the natural symmetries one would expect. Although this is not exactly precise, a
useful picture is that the goal of the GCT program is to use the symmetries of the distinguishers D to
narrow down the search for them.

It is unclear to what extent constructivity plays a role in such arguments and as such the GCT program
is not a-priori algebraically natural in the sense given here. Indeed, if there is an algebraically natural
proofs barrier then the distinguishers that vanish on VP must have super-polynomial complexity, so
that then clearly GCT is not constructive. This viewpoint demonstrates that our succinct hitting set
constructions have relevance to GCT as they prove super-polynomial lower bounds for distinguishers that
vanish on VP (also known as the defining equations), at least in the restricted models we consider:

Corollary 1.12. Let T be the set of defining equations for VP. For each of the models mentioned in
Theorem 1.10, there exists a polynomial P € T which requires super-polynomial size when computed in
this model.

1.8 Follow-up work

We end this section by briefly mentioning two related works that have appeared since the initial version
of this paper was posted.

Efremenko, Garg, Oliveira and Wigderson [31] studied algebraic circuit lower bounds proved using
subadditive complexity measures based on matrix rank. Such rank-based methods are often used in
practice to prove lower bounds on restricted models of algebraic computation. These lower bounds are
algebraic, and also often fall in our framework of algebraic natural proofs (as often the corresponding
matrices are polynomially large in the relevant parameters, but this is not always true as seen in [47]).
The main results of [31] are unconditional barriers on proving tensor-rank lower bounds or Waring-rank
lower bounds using rank-based methods.

Bliser, Ikenmeyer, Jindal and Lysikov [19] studied our notion of algebraic natural proofs in the
context of a complexity measure they call border completion rank of a affine linear matrix polynomial.
They establish (among other results) that there is an infinite family of linear matrices for which no
algebraically natural proof can prove the matrices have high border completion rank, assuming that the
polynomial hierarchy does not collapse. This underlying assumption is more widely believed than the

41t is unclear how much a difference this closure makes. For example, the exact relation between VP and VP is unclear, see
for example the work of Grochow, Mulmuley and Qiao [46]. It is conceivable that the algebraic distinguisher approach tries to
prove too much, that is, perhaps VP = VNP. We refer again to [21] for further discussion and examples which separate natural
algebraic complexity classes from their closures.
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conjecture that succinct hitting sets exist, but their conclusion does not rule out an algebraic natural proof
for high border completion rank some some other set of matrices.

2 Preliminaries

We use boldface letters to denote vectors, where the length of a vector is usually understood from the
context. Vectors such as x,y and so on denote vectors of variables, where as &, 8 are used to denote
vectors of scalars. Similar boldface letters are used to denote tuples of polynomials. As done in the
Introduction, we will express polynomials f € Flxj,...,x,] in their monomial basis f(x) = Y, cax® and
then the corresponding vector of coefficients coeff(f) = (ca)a can then be the input space to another
polynomial D € F[{ca}a]. The exact size of this coefficient vector will be clear from context, that is,

whether f is multilinear (so there are N,if_‘leg = 2" coefficients) or whether f is of total degree at most d (so

there are N, 4 = (”Zd) coefficients). Occasionally, we have a polynomial f € F[x,y], and in that case we

denote coeffy (f) the coefficient-vector of f where we think of f € (F[y]) [x], that is, the entries of the
vector are now polynomials in y.

3 Universal constructions of pseudorandom polynomials

In this section we detail universal circuits and their applications to pseudorandom polynomials. A
universal circuit for small computation is a polynomial U(x,y) such that for any polynomial f(x)
computed by a small computation, there is some value o such that f(x) = U(x, ¢). Intuitively, there
should be such universal circuits due to various completeness results, such as the fact that the determinant
is complete for algebraic branching programs ([102]) (and hence complete for VP under quasipolynomial-
size reductions ([103])). One would then expect that if there are pseudorandom polynomials then such
universal circuits would also be pseudorandom.

Indeed, based on this intuition Aaronson and Drucker [2] gave a candidate construction of pseudo-
random polynomials based on generic projections of the determinant, with the intention of exploiting
the completeness of the determinant. However, we note here that while it is plausible that this con-
struction is in fact pseudorandom, it is insufficient for our requirement for universality, as we want the
computed f and the universal U to live in the same space of polynomials: if f is of low total-degree
so that f € Flxy,...,x,]¢, then we want U (x, &) € Flxy,...,x,]¢ for every a. This is because we want a
collection of polynomials € that is indistinguishable from generic polynomials in Flx,...,x,]. If we
start with such a collection and attempt to embed them into U where deg, U (x,y) = d’ > d, the resulting
collection of polynomials necessarily lives in the larger space F[x] ' and the indistinguishability property
no longer clearly holds. As a concrete example, suppose f(x) is a “generic” polynomial in F[x]¢. Then
the modified polynomial f(x) + z still embeds £, yet it lives in F[x, z]¢, where it is no longer generic as it
is linear in z.

Thus, we need a universal circuit construction that does not increase the degree of x. For algebraic
branching programs, the candidate of Aaronson and Drucker [2] is easy to fix by switching from the
determinant to iterated matrix multiplication, which is also complete but due to efficient homogenization
of branching programs ([74]) can be universal without increasing degree. However, for full generality we
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want to be universal for circuits, i. e., to obtain a polynomial U complete for VP under polynomial-size
reductions which also ensures the x-degree of U matches that of f. The first techniques for constructing
universal circuits were given by Biirgisser [22, Section 5.6]. Later, Raz [81] developed slightly different
techniques, which among other things were also able to respect circuit depth. We state a version below
which is implicit in both works.

Theorem 3.1 (Biirgisser [22, Section 5.6], Raz [81]). Let F be a field, and let n,s > 1 and d > 0. Then
there is a poly(n,d,s)-size algebraic circuit U € F[xy,..., X, y1,...,y;] with r < poly(n,d,s) such that
U can be constructed in time poly(n,d,s), and

o deg, U(x,y) <d,
e deg, U(x,y) < poly(d), and

o if f € F[X] has deg, f < d and f is computed by a size s circuit, then there is some o € F" such
that f(x) = U(x, o).

We briefly note that this construction also yields a universal circuit for homogeneous degree-d

computations (the space Flx, ... ,xn]ﬁom). No such universal circuits are known for efficient multilinear
computation (the space Flxj,...,x,] ildeg), as circuits do not likely admit efficient multilinearization. In

contrast, there is a universal circuit for the depth-3 set-multilinear formulas, which is the model that we
use to construct our succinct hitting sets fooling restricted classes of computation. However, we restrict
attention to total degree d polynomials as this is the cleanest setting.

We now use this universal circuit to convert from succinct hitting sets to succinct generators, as the
standard conversion from hitting set to generator would ruin succinctness.

Lemma 3.2. Let F be a field, and let n,s > 1 and d > 0. Let D C Flcy, ... ,CNW] be a class of polynomials
in the coefficient vectors of Flx1,...,x,)%. If there is an s-succinct hitting set for D then there is a
poly(n,d,s)-succinct generator for D computable by poly(n,d,s)-size circuits.

Proof. Let the s-succinct hitting set arise from the set of size-s polynomials C C F[xy,...,x,]?. Let
U € F[x,yi,...,y,] be the universal circuit of Theorem 3.1. Then for any f € € there is some & € F" such
that f(x) = U(x,a). Thus,

CCUXxF)={U(x,ax):€F}.

Thus, we see that U is indeed a generator for D as it contains the hitting set € in its image. Further,
U(x,a) € Flxq,...,x,]? for all @ € F” by construction. Finally U (x, &) is computable in size poly(n,d, s)
for all @ € " as U(x,y) has such a circuit and the substitution y <— ¢ does not increase circuit size. It
follows that U is the desired succinct generator. O

As mentioned in the Introduction, generators are more robust versions of hitting sets. We now give
another reason for this, by proving that succinct generators imply succinct hitting sets of small size, by
using the standard interpolation argument.

Lemma 3.3. Let F be a field with |F| > SA, where A,0 > 0. Let n,s>1and d > 0. Let D C
Flci, ... cn,,] be a class of degree-A polynomials in the coefficient vectors of Flxi, ... ,Xn]%. Suppose that
G € F[x,y1,. ..,y is a succinct generator computable in size-s for D where deg, G < 0. Then there is a

s-succinct hitting set of size (SA+1)".
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Proof. For any D € D, we see that D is non-zero iff D(coeffyG(x,y)) is non-zero as a polynomial in y.
In particular, deg, D(coeffyG(x,y)) < degD-deg, G < SA. Thus, as the field is large enough we can find
aset S C IF with |S| > §A+ 1, so that by interpolation D(coeffyG(x,y)) is non-zero iff D(coeffyG(x, o))
is non-zero for every a € S¢. Thus, we see that G(x,S*) is the desired succinct hitting set as each G(x, &)
has a size-s circuit (as substitution does not increase circuit size) and S¢ has the correct size. O

In the usual range of parameters we would have A = poly(N) and & = poly(n, s). Plugging this into
the above connections, we see that any (even infinite) succinct hitting set implies quasipolynomial-size
hitting sets.

Corollary 3.4. Let IF be a field, and let n > 1. Consider polynomials in Flcy,...,cy| where N = (zn") S0
that Flcy,...,cn] can be identified with the coefficients of polynomial sin Flxy,...,x,|¢ with d = n. If
poly(N)-size poly(N)-degree circuits in F[cy,...,cy]| have poly(n)-succinct hitting sets from F[x]", then
such circuits have an explicit poly(N)PY1°N _size hitting set.

4 Succinct hitting sets via rank condensers

In this section, we construct succinct generators for restricted depth-3 formulas (XIIY formulas), in
particular, ¥TTZ formulas (top-fan-in k) and depth-3 circuits with bounded transcendence degree. The
constructions are based on a common tool which we dub succinct rank condenser.

Gabizon and Raz [42], in the context of studying deterministic extractors, studied how to pseudo-
randomly map F” to F" preserving vector spaces of dimension r with high probability. In particular,
they gave a poly(n)-collection of linear maps & = {E : F” — "} such that for any vector space V C F”
of dimension r there was at least one map E € € such that the dimension of V was preserved, that is,
dimE (V) = dimV = r. Their construction was improved by Forbes-Shpilka [36], and was called a rank
condenser in later work ([35, 34]) which further explored this concept.

Rank condensers have proven very useful in designing hitting sets as they can reduce n-variate
polynomials to r-variate polynomials, and for us the Gabizon and Raz [42] construction suffices. In
particular, one defines the map E € F[¢]"*" with E; ; = t'/, with ¢ is a formal variable. One can then obtain
the desired collection € by evaluating E(t) at sufficiently many points in t € F. However, it suffices for
us to obtain generators, so we leave ¢ as a formal variable.

Construction 4.1 (Succinct Rank Condenser). Let n > r > 1. Define the polynomial P,Erc where P,Ef €
FlX1,. s Xny Y1y - e vy Vrsf0y - - -, 1n) tO bE

r . n .
PRE(x,y,t) = Y vt [T(1 +xrf) -
ey R

Let 955 (y,t) be the polynomial map given by coeffy (P,ff) when taking P,Erc as a multilinear polynomial
in x.

We now analyze properties of Construction 4.1, in particular showing that it embeds the desired rank
condenser of Gabizon and Raz [42].
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Proposition 4.2. Assume the setup of Construction 4.1. Taking N = 2", identify [N] with 201, Then for
every i € [N],

RC 20 ol 2
<9n,r(x7Y7tvt A ) Zytu

Proof. We can index the output coordinates of GRS with subsets S C [ ], so that an index i € [N] gets
mapped to S C [n] via its binary representation so that i — 1 = ¥, .2~ and for a given S C [n] denote
the corresponding index is. Then,

0 5l -1 " L 1.
P;EE(vaatvtz 7t2 "',l2 ):Zyjt]H(1+xk(l2 )])
j k=1

r

= Lo [ o

j=1 SCln]keS
,
=Y vyt Z 7 Tkes 2! [T
=1 SCh keS
- 1)
= Lt Z O -
=1 SCh keS
Thus, taking coefficients in x exactly indexes Y;_; ;' as required. O

We now observe that this generator is efficiently computable, and produces succinct hitting sets.

Proposition 4.3. Assume the setup of Construction 4.1. The polynomial P,E,C (x,y,t) is computable by
poly(n, r)-size LIILI circuits of poly(n,r)-degree. Further, for every fixingy = o € F', t = B € "1,
PXE(x,, B) is computed by a LTI circuit of size poly(r,n).

4.1 Depth-3 formulas with bounded top-fan-in

A XFIIE formula is a depth-3 formula of the form Z 1H ¢; j, where (; ; are linear functions in
X1,...,xy. We denote the degree of the circuit by d = max; d,

The study of *TIX formulas was initiated by Dvir and Shpilka [29], who proved that in a simple and
minimal® Y*TIX circuit computing the zero polynomial, the rank of the linear functions {E,-, j} is bounded
by a number R(k,d) that is independent of the number of variables N. The number R(k,d) is called the
rank bound for this class of circuits. Karnin and Shpilka [57] showed how to use the rank condenser
construction of Gabizon and Raz in order to obtain a black-box identity testing algorithm, and improved
rank bounds were later obtained ([62, 91, 92, 93]).

In this section, we construct a poly(n, k)-LIIE succinct hitting set for ¥TTX formulas, and we use the
fact that the rank condenser generator, with a judicious choice of r, is a generator for Z¥TIX formulas.
The version we cite here is from the survey [97].

SWe omit the exact definitions here and refer the reader to [97] for a thorough discussion.
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Fact 4.4 (Hitting set for Z*TIZ Formulas). Let F(X) € F[X] be a polynomial computed by a Y*TIX
degree d formula. Let V : F" — FV the linear transformation given by the N x r Vandermonde matrix
(V)ij =t for 1 <i <N, 1 < j <r. Then, for r = R(k,d) + 1 where R(k,d) = O(k*logd) (over finite
fields) or R(k,d) = k* (over infinite fields), it holds that F # 0 if and only if the r-variate polynomial
Fo (V, 1y ,y,)T) is non-zero.

Using Fact 4.4 and the properties of Construction 4.1, we obtain the following two lemmas.

Lemma 4.5. The polynomial map 95%(1( 2 (y,t) is poly(R(k,d),n)-EIIX succinct. In particular, the

generator is poly(k,logd,n)-XIIX succinct.

Proof. The first statement is immediate from Proposition 4.3. The second statement follows using the
rank bounds for Z*TIX formulas stated in Fact 4.4. O

Lemma 4.6. Let F be computed by a XFITIE formula. Then F o 95%(]( a) Z0.

Proof. Immediate from Proposition 4.2 (making the appropriate substitution for t) and Fact 4.4. O

Corollary 4.7. 95%( kd) (y,t) is a poly(k,logd, n)-LI1X succinct generator for the class of XTI formulas.

4.2 Depth-3 circuits of bounded transcendence degree

We now generalize the results of Section 4.1 to obtain a succinct hitting set for the larger class of circuits
with bounded transcendence degree.

A set of polynomials {Fi,...,F,} C F[X] is called algebraically independent if for any non-zero poly-
nomial H € Fwy,...,w,|, H(F},...,F,) # 0. Given a set of polynomials {F},...,F;}, the transcendence
degree of this set, denoted trdeg {F1, ..., F;}, is the size of a maximal algebraically independent subset of
{F,...,Fi}.

Let C(Y1,...,Yy) be a circuit of polynomial degree, and for i € [m], let T; = H‘}:] Lij, where L; ; €
F[Xj,...,Xy] are linear functions. In [6], Agrawal et al. present a hitting set for polynomials of the form
F =C(Ty,...,Ty), where trdeg {T1,...,T,} is bounded by k (the size of the hitting set is exponential in
k). In this section we present a succinct version of their generator.

Lemma 4.8 (Generator for circuits of transcendence degree k, [6], and see also the presentation in
Chapter 4 of [87]). Suppose F is a field such that char(F) = 0 or char(F) > d*. Then the map ¥ : F[X] —

]F[ylu"'7yk7tuzlu"'7zk7s]’ giV@l’l by

M1k
Xi— Y zps 4+ )yt
j=1 =1

forevery i € [N], is a generator for the class of polynomials F € F[X] expressible as C(T,...,Ty), where
the T;’s are products of linear functions and trdeg{Ti,...,T,} <k.

It remains to be noted that we can construct the map W succinctly.
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Theorem 4.9. Suppose F is a field such that char(F) = 0 or char(F) > d*. Then there exists a poly(k,n)-
LIIX succinct generator for the class of polynomials that can be represented as C(Th,...,Ty) with C
being a poly(N) degree circuit, each T; is a product of d linear functions and trdeg{Ty,..., Ty} < k.

Proof. Observe that ¥ from Lemma 4.8 can be represented as coeffy (P(y,z,s,t)), where
P(x,y,z,s,t) = PRJ(CH (x,2,8) —i—P,EkC(X,y, t).

The succinctness follows from Proposition 4.3, and from observing that poly(k,n)-XIIX circuits are
closed under addition. O

5 Succinct hitting sets via the Shpilka-Volkovich generator

The Shpilka-Volkovich Generator (SV Generator, henceforth, and see [96]) is a polynomial map
SOV1,- Vi 215+ -5 2k) - F2X — FN that satisfies the property that for every T C [N] such that |T| <k,
we can set z1,.. .,z to values o, ..., o; such that the y variables are mapped to the locations indexed
by T, and the other coordinates of the polynomial map are zeroed out. This property turns out to be
immensely useful in constructing hitting sets for various classes. Hence, we begin by constructing a
succinct analog of this generator, and then use it to obtain succinct hitting sets in cases where the SV
generator is applicable.

Construction 5.1 (Succinct SV Generator). Let n € N and N = 2". Define

n

Py nsts i) = [ [ioxit (1= 21))
i=1

and

SSV
ka (yl,...,yk,zm,...,zl./n,...,zkvl,...,zk?n,xl,...,xn) = Zyi‘P(Zi;X) N
i€lk]

where z; = (z1,...,2i,). Finally, let

siv(yl,...,yk,zl, ey Zp) = coeffX(QﬁiV(y,z,x)) .

We begin by stating some immediate facts regarding Construction 5.1.

Fact 5.2 (Succinctness). For every settingy = o,z = 3, the polynomial Qgiv is computed by a multilinear
YIIX circuit of size poly(n,k). '

Fact 5.3 (Additivity). The succinct SV-generator is additive in 'y, z, in the sense that as polynomials, we
have the equality

Qisk\l/ (YthaX) + Qiskzl(y%ZZ)X) - Qisk\ll-HQ (yl7zl7x) 1)

wherey' = (y1,y2) and z' = (21,2,). In particular, since the mapping from a polynomial to the coefficients
vector is linear, as polynomial maps we get the equality

SSSY (y1,21) + G53Y (v2,22) = G55, (v, 7)) -
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The usefulness of the generator comes from the following property, which is, in some sense, the
algebraic analog of k-wise independence.

Lemma 5.4. For every T C [N] such that |T| < k, there is a fixing of the z variables, and possibly of some
of the y variables, such that in the mapping 9251’(\’, T| distinct y variables are planted in the coordinates
corresponding to T, while the rest of the entries are zeroed out.

Proof. As before, it is convenient to think of a subset of the N coordinates as family of subsets of [n].
Since stkv is given by the coefficients map of the polynomial inv(y, Z,X), an equivalent form of
interpreting the statement of the lemma is that we want to fix the z variables such that distinct y variables
become the coefficients of the monomials xg, for S € T, and the coefficients of all monomials not in T
are zero.
Suppose first [T | = k and denote T = {S,...,Si}. For every j € [k] set z; = 15, the characteristic
vector of the set S; C [n]. Thatis, z;; = 1 if i € S, and 0 otherwise.

Observe that, in the notation of Construction 5.1, we have that

n

P(lgj,xl,...,xn) = H((lsj)i-xi+(l — (15}.),’)) = H X; = H)Cl' = Xg; -

i=1 ii(lsj)i:l ieSj

Therefore, we get that
Qrsl,skv(yla' . 7yk7151 PR 715k7X) = Z YiXs; ,
ic[k]

as we wanted.
If |T| = k' < k, we can arbitrarily extend 7 so a set T’ of size exactly k, and then set some y variables
to zero, in order to zero out the relevant k — k’ entries in the polynomial map. U

Suppose we aim to hit a polynomial F € F[X] of degree d, and we are given the information that F
contains a non-zero monomial with at most k variables. Assuming k is small, a natural algorithm in that
case is to “guess” the m < k variables in the small support monomial, zero out all the remaining variables,
and then do use the trivial derandomization, using the Schwartz-Zippel-DeMillo-Lipton Lemma, with
respect to the remaining k-variate polynomial, for a cost of (d + 1)¥ many evaluations. This is exactly
what the SV generator enables us to do, since we can set the z variables in a way that the k y variables
will contain those that appear in the small support monomial, and thus, since after fixing the z variables
the polynomial remains non-zero, it follows that it is non-zero even without fixing the z variables. In this
subsection we use this simple idea to construct succinct hitting sets for several classes of circuits. A small
caveat is that usually we are not guaranteed our target polynomial has a small support monomial, but we
can prove that this is the case after a proper shift of the N variables (one of course also has to represent
the shift succinctly in n).

A similar notion was used by Agrawal, Saha and Saxena [7] to show that certain classes of polynomials
simplify under shifts in a way which is helpful for designing PIT algorithms. In their case, the shift is by
a vector of polynomials in a set of formal variables t, whereas in our case the shifts are much simpler: for
our applications we only need to shift by the constant vector 1.
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Construction 5.5 (Succinct Hitting Set for classes with small support monomials after shifts by 1). Let
k,n € N and N = 2". Define the shifted succinct SV polynomial to be

QSSSV(yla 7yk7Zl,l7"-7Z1Jl7"'7Zk,1a"-7Zk,na-x17~--7-xn) stv(yazx>+n(~xi+1)a
i=1
and the shifted succinct SV generator as
9SSSV( y, ) _ coeff (QSSSV) )

We record the following simple fact, which follows immediately from Fact 5.2, and from the fact that
coeff(TT,(x;+ 1)) =1.

Fact 5.6. The generator SSSSV is poly(k,n)-XIIX succinct, and as polynomial maps, we have the equality
9SSSV( ,Z) — SSiV +1

The following lemma shows how the shifted SV generator is useful for hitting classes of polynomials
that have small support monomials after shifting by 1.

Lemma 5.7. Let C be a class such that for all f € C, F(X+ 1) contains a monomial of support at most k.
Then if F £ 0, FOSSSSV( ,z) Z 0.

Proof. Let F(X) be a non-zero polynomial from C, and let G(X) = f(X+1). By the assumption Gisa

non-zero polynomial that contains a monomial M of support at most k. Let § = {le yoees Xiy } (where
possibly kK’ < k) denote the subset containing exactly the variables in M, and consider G o SSSV( y,z). B
Lemma 5.4, we can set the z variables to & and possibly some of the y variables to  such that Vige-os yk/

are mapped to X;,,...,X;

Lt

and all the other variables are mapped to 0. Under this setting

8o G 1y, B) £0,

since the monomial M is mapped to a monomial in yy,...,yr which cannot be canceled out. Hence,
GoGS3Y (y,2) 0.
Finally, observe that F 0 G35V (y,2) = G0 G35 (y,2). O

5.1 Sparse polynomials

In this section we give a poly(n)-XIIX succinct hitting set for the class of poly(N)-sparse polynomials,
i.e., polynomial size XII circuits. We note that an s-sparse polynomial f can also be computed by
a commutative roABP of width s, so in a sense, the results in this section are subsumed by those in
Section 5.3. However, the argument made here is simpler and slightly more general since it applies to any
class that has (possibly after shifting) small support monomials (see Section 5.2).

We begin by recording the following fact.

Lemma 5.8 ([33, 50]). Let F € F[X;,...,Xy] by a polynomial with at most s monomials, and o € FVN be
a full support vector, that is, for all i € [N], a; # 0. Then the polynomial F (X + o) has a monomial of
support at most logs.
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This lemma appears in [33] and [50] with two very different proofs. For completeness, we provide
yet a third proof, which we find to be more elementary. The proof relies upon the following easy lemma,
due to Oliveira, which can be proved by induction on N (see, e. g., [38]).

Lemma 5.9 (see Proposition 6.14 in [38]). Let F € F[X|,...,Xy] be a multilinear polynomial with at most
s monomials, and G € F[Xy,...,Xy] be any non-zero polynomial. Then F - G has at most s monomials.

We now give our proof for Lemma 5.8.

Proof of Lemma 5.8. Suppose, towards contradiction, that the minimal monomial in G(X) := F(X+ )
has ¢ > logs+ 1 variables. Further suppose, without loss of generality, these are Xi,...,X,. Consider
now G(X1,Xp,...,X.,0,...,0). By assumption, this is a non-zero polynomial which is divisible by the
monomial X;X5 ---X,. It follows that

4
F(Xt,.. ., X0, i1y, 0) = G(Xy —0q,..., X0 — @,0,...,0) = (H(Xi—oci)> CH(X1,...,Xp) ,

i=1

for some non-zero H.

Since [T (X; — o) is multilinear of sparsity 2¢ > s, it follows from Lemma 5.9 that the sparsity of
F(Xy,...,Xp,0p41,...,0) is also greater than s, which contradicts the assumption on F, as the sparsity
can only decrease when fixing variables. O

Lemma 5.8, along with Lemma 5.7 and Fact 5.6 immediately imply that the shifted succinct SV
generator hits sparse polynomials.

Corollary 5.10. The generator 92513;/‘ from Construction 5.5 is a poly(logs,n)-LIIE succinct generator

for the class of s-sparse polynomials F € F[X1,...,Xy].

5.2 Sums of powers of low degree polynomials

We now mention another class that, after a suitable shifting, has small support monomials.

Definition 5.11 (EmAXIT’ formulas). A polynomial F(X) € F[X] is computed by a EmAXIT formula if
N
F(X) =Y X*F(X)%
i=1

where deg F; <t for all i € [s], and X* = ’}’Zl Xl.a"'j is a monomial.
The following was proved in [33].

Lemma 5.12. Suppose F[X] is computed by a EmAZITOM formula of top fan-in s, and let o0 be a
full-support vector. Then it holds that F (X + o) has a monomial of support at most O(logs).

It follows that a similar construction to the one which we used to succinctly hit sparse polynomials
also works in this case.
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Theorem 5.13. There exists a poly(log s, n)-XITX succinct generator for the class of EmAZIT?W formulas
of top fan-in s.

Proof. Let C-logs the sparsity bound in Lemma 5.12 and consider the generator G355V from Construc-

n,Clogs
tion 5.5. By Fact 5.6, this generator is poly(logs,n)-XITE succinct. By Lemma 5.12 and Lemma 5.7, it
follows that 925(;51\0; , hits this class. O

5.3 Commutative read-once oblivious algebraic branching programs

In this section, we construct a poly(logw,n)-XIIE succinct hitting sets for the class of N-variate polyno-
mials computed by a width w commutative read-once oblivious algebraic branching programs.

A read-once oblivious algebraic branching program (roABP) is a directed, acyclic graph with the
following properties:

e The vertices are partitioned into N + 1 layers Vj,...,Vy, such that Vo = {s} and Vy = {r}. s is
called the source node, and t the sink node.

e Each edge goes from V;_; to V; for some i € [N].

e There exists a permutation o : [N] — [N] such that all edges in layer i are labeled by a univariate
polynomial in X, ;) of degree at most d.

We say that each s — ¢ path in the ABP computes the product of its edge labels, and the roABP
computes the sum over the polynomials computed by all s — ¢ paths. The width of the roABP is defined
to be max; |V;|.

Equivalently, F is computed by a roABP in variable order o if there are N matrices My,...,My of
size r X r such that each entry in M; is a univariate, degree d polynomial in X(;), and

N
F= (IIMi(XG(i))>

1,1

In general, it is possible for a polynomial to be computed by a small width roABP in a certain variable
order, but to require a much larger width if the roABP is in a different variable order. A polynomial
f € F[X] is computed by a width w commutative roABP, if it is computable by a width w ABP in every
variable order.

Forbes, Saptharishi and Shpilka ([35], Corollary 4.3) showed that in order to hit width-w commutative
roABPs, it is enough to take the SV generator with k = O(logw).%

We follow the proof strategy of [35] in order to show that the succinct SV generator hits commutative
roABPs as well. The following definitions and the theorem following them are borrowed from [35].

6 An improved construction for this model, with respect to the size of the hitting set, was given by Gurjar, Korwar and
Saxena [49]. Their construction, however, uses ingredients which we do not know how to make succinct; see Section 8 for
further discussion.
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Definition 5.14. Let g : F”" x I — FY be a polynomial map. g is said to be an individual degree d,
(-wise independent monomial map if for every S C [N] of size at most £, there is ot € F™ such that the
polynomials {g(t,)? : supp(a) C S,max;a; < d} are non-zero and distinct monomials in t, where we
define

N
g(t,a)* =T](s(t.a)f") .
i=1
Definition 5.15 (see also [7]). Let F[X] € F[X]" be a vector of polynomials. We say that F has support-k
rank concentration at v, if the derivatives of F with respect to all monomials of support at most k at v
span all the derivatives of F at v. That is, if

Span {axa (F) (V) }{a:\supp(a)\ﬁk} = span {axa (F) (V) }a :

Lemma 5.16 ([35], Theorem 4.1). Let F[X] € F[X]"*" be of individual degree d and computed by a
commutative roABP of width w. Let g(t,s) be an individual degree d, (log(w?) + 1)-wise independent
monomial map. Then F(X) has support-log(w?) rank concentration at g(t,s) over F(t,s).

The succinct SV generator, like the SV generator, is a k-wise independent monomial map for and
degree d.

Lemma 5.17. The polynomial map Sgiv(y,z) of Construction 5.1 is an individual degree d, k-wise

independent monomial map for every d.

Proof. By Lemma 5.4, for any set S of coordinates of size at most k we can set the z variables such that
each coordinate in S contains a distinct y variable. Then, it is also clear that all individual degree up to d
monomials of this map are distinct, for any choice of d O

The final ingredient (also from [35]) is the following lemma, which shows how to obtain hitting sets
from rank concentration.

Lemma 5.18 ([35], Corollary 3.5). Let F € F[X]|"™" be a matrix of polynomials that is support-k rank
concentrated at o, € FN, and let G(X) = F 1. Then G(X) # 0 if and only if

Go (G +a)#0.

We remark that although [35] phrase this lemma for their construction of the SV generator, the proof
goes through verbatim using the properties of 9§Skv as explained in the proof of Lemma 5.17, and does
not depend on the specific implementation.

We now prove that G, 410gw+1 hits N-variate polynomials that are computed by width w commutative
roABPs.

Theorem 5.19. Let |F| > nd, and let F(X) € F[X] be an N-variate polynomial of individual degree at
most d, and computed by a width w commutative roABP. Then, F # 0 if and only if

SSv
Fo 9n,1+410gw ;’é 0.
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Proof. By definition, F is the (1, 1) entry of a matrix polynomial F(X) € F[X]"**", with F being computed
by a width-w commutative roABP. By Lemma 5.17 and Lemma 5.16, we get that the polynomial

Fo 92,52\1/0;; »+1 is support-log(w?) rank concentrated. By Lemma 5.18, we deduce that F # 0 if and only if

Fo (SS,SZ\IIng-H ()’1,21) + QS,SZ\I/ogw(YZaZZ)) ;’é 0,

where y|,y2,21,2; are disjoint sets of variables. By the additivity property (Fact 5.3), it holds that F' £ 0
if and only if
Fo 9S,Sl\jr4logw(yaz) ?_é 0

fory = (y1,y2) and z = (2;,25). O
Corollary 5.20. There exists a poly(n,log(w))-LIIX succinct generator for the class of polynomials
computed by width-w commutative roABPs.

5.4 Depth-D occur-k formulas

The following model was considered in [6].

Definition 5.21. An occur-k formula is a directed tree, with internal nodes labeled either by + or xA

(a power-product gate). The edges entering a X A gate are labeled by integers ey, ..., e, and on inputs
g1,---,8m. the gate computes g{' - -- g». The leaves of tree are depth-2 formulas which compute sparse

polynomials, such that every variable X; occur in at most k of them.
The size of an occur-k formula is the sum over the sizes of its gates, where

1. the size of a “+4” gate is 1,
2. the size of a “XA” gate is the sum ej + - - - 4 e, of the labels of its incoming edges, and
3. the size of a leaf node is the size of the depth-2 formula it is computing.

The depth of an occur-k formula is the number of layers of 4 and X A gates, plus 2, to account for the
sparse formulas at the leaves.

Agrawal et al. ([6]) constructed a hitting set for this class, which combines both the rank condenser
construction (Construction 4.1) and a generator for sparse polynomials. While the original construction
uses the Klivans-Spielman generator ([63]), it is possible to make the hitting set succinct while using our
version of the shifted succinct Shpilka-Volkovich generator.

We now present the succinct generator of depth-D occur-k formulas.

Construction 5.22. Let D, k,n,s € N. Denote R = (2k)2?2”. Forevery £ € [D—2], lety; = (yo.1,. .-, Ye.8)
denote a tuple of R variables. We define the polynomial

D—2
ASSS RC SSSV
P (X7y17 o 7yD—27t17 cee ,t[,u,V) - Z SnyR(xl P 7xn7y€7tf) + Qn,/RlongrRlogR(X’u?V) )
(=1

and the generator

9ASSS( PASSS) )

Yis--s¥D-2,t1,...,t;,0,v) = coeffy(
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In our setting, we think of k£, D = O(1), which immediately implies:
Fact 5.23. For k,D = O(1), the generator of Construction 5.22 is poly(logs,n)-XIIX succinct.

We now quote (a variant of) a theorem proved by Agrawal et al., which shows that Construction 5.22
is a generator for depth-D occur-k formulas.

Theorem 5.24 ([6], and see also the presentation in Chapter 4 of [87]). Suppose ®(w) : F" — FNisa
map such that for any polynomial F (X) € F[X] of sparsity at most R! - s®, F o® # 0. Then there exist
integers ry,...,rp_a € [R), for R = (2k)2*2” such that the map

D-2
VX Yy (sz€> (w) (5.1

(=

is a generator for polynomials computed by depth-D occur-k formulas of size s assuming char(F) =0 or
char(F) > s®.

As a corollary, we obtain that Construction 5.22 is a succinct generator for this class.

Corollary 5.25. For D,k = O(1), Construction 5.22 is a poly(logs,n)-XI1X succinct generator for the
class of polynomials computed by size-s depth-D occur-k formulas.

Proof. The succinctness claim follows from Fact 5.23.

For the hitting property, observe that by Corollary 5.10, the polynomial map QSSSV( v) satisfies
the properties required from & in Theorem 5.24 for m = Rlogs + RlogR, and by Proposition 4.2, the
generator

Z nR Yf)t/

D-2 [/ R N
> (zyj.,nzf)
=1 \j=1

after using the substitutions in t, to a new variable #, as given in Proposition 4.2. Since ry < R, the
polynomial in (5.1) is a projection of Construction 5.22, by possibly restricting excess y, variables to 0.
The claim now follows from Theorem 5.24. ]

maps every X; to the polynomial

6 Succinct hitting sets for circuits of sparsely small transcendence degree

Another model, which was considered in [16], is that of circuits of the form C(Fy,...,F,) where the f;’s
are polynomials of maximal sparsity s, trdeg {F},...,F,} = r and C is an arbitrary circuit. It is possible
to simplify the construction using ideas from [6], and thus we cite some of the definitions and the lemmas
in the latter paper. Since we do not provide full proofs and do not discuss the full background, our
terminology is slightly different at certain points.

We begin with the definition of the Jacobian matrix.
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Definition 6.1. Let F = {F;(X),...,F,(X)} C F[X] be a set of N-variate polynomials. The Jacobian
matrix of F, denoted Jx (F), is an m x N matrix such that Jx (F); ; = dF;/9X;.

The rank of the Jacobian matrix captures the transcendence degree of F, assuming the characteristic
is 0 or large enough.

Fact 6.2 ([16]). Let F = {F\(X),...,F,(X)} CF[X] be a set of N-variate polynomials over F of degree
at most d, such that trdeg{Fi,...,F,} = r. If char(F) = 0 or char(F) > d’, then rankpx) Jx (F) = r.

This fact shows that a map that preserves the rank of the Jacobian also preserves the transcendence
degree of the f;’s, a fact which is useful for constructing generators (this is slightly non-trivial, and see
[6] for details and discussion). For this purpose, we use the following “recipe” from [6] that gives a
construction of such a map.

Lemma 6.3 ([6]). Let F = {F1(X),...,F,(X)} C F[X] be a set of N-variate polynomials over F of
degree at most d, such that trdeg{Fy,...,F,} < r, and suppose char(F) =0 or char(F) > d". Let
C(yi,.--,ym) € Fly| be any polynomial, and let ® : F[X] — F[z] be a homomorphism such that

rankp(x) (dx (F)) = rankp ;) (Jx (F)) .

Consider the mapping ¥ given by

X — <Zyjlij> +q)(X,) .
i=1

Then, it holds that C(F},...,F,) # 0 if and only if C(¥(Fy),...,¥(F,,)) Z0.

We now show how to construct a succinct generator for circuits of the form C(Fy, ..., F,) where F;’s
are polynomials of maximal sparsity s, and trdeg {F,...,F,} = k.

Lemma 6.4. Let s,r,N € N and m = rlogs + rlogr. Consider the polynomial map
9?}}48()}17' .- ayrat())tl?" . 7tl’l7w17" s Wm, 21y - ~7Zm) = 95(,«:()’30 _‘_9275"?\7(“,’1) .
Let ¥ = {F(X),...,Fu(X)} CF[X] be a set of N-variate polynomials over T of sparsity at most s, such
that trdeg{Fy,...,Fy,} < r. Then for any polynomial of the form G(x) = C(Fy,...,F,), we have that
G £ 0 if and only if
GoGiMS #£0.

BMS

Furthermore, the generator G rs

is poly(r,logs,n)-LIIX succinct.

Proof. By Lemma 6.3 and Proposition 4.2, it is enough to show that the map 9275,3\’ (w,z) preserves the
rank of the Jacobian matrix. This follows from the fact that each r X r minor of this matrix is a polynomial
of sparsity at most r!-s” (since taking derivatives can only decrease the sparsity), and from Corollary 5.10.

The succinctness claim follows from Proposition 4.2 and Fact 5.6. O

Corollary 6.5. There exists a poly(logs,r,n)-XIIX succinct generator for the class of polynomials of the
form C(Fy,...,Fy) such that each F; has sparsity at most s and trdeg {Fi,...,F,} <r.
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7 Succinct hitting sets for read-once oblivious algebraic branching pro-
grams

In this section we construct a succinct hitting set for the class of read-once oblivious algebraic programs.
Recall that in Section 5.3 we have constructed a poly(logw,logn)-XITX succinct generator for width-w
commutative roABPs. For general ABPs, we are only able at this point to construct hitting sets that are
width-w? roABP succinct: i. e., in the hitting set for width w N-variate roABPs, each element is computed
by a width w? n-variate roABP. Ideally, one would want to replace w? with polylog(w).

The definition of roABPs were given in Section 5.3. Throughout this section we assume that the
ABP reads the variables in the order X, X5,...,Xy. In Section 7.1 we give some short remarks regarding
different variable orderings.

Our construction is based on the following generator by Forbes and Shpilka [37].

Lemma 7.1 (Forbes-Shpilka Generator for roABPs, Construction 3.13 in [37]). Letn € N and N =2".
The following polynomial map G : F"*' — FV is a generator for width w, individual degree d, N-variate
roABPs, in variable order X,X3,...,XN.

Let ® € T be of multiplicative order at least (Ndw?)?, and B, ..., B, be distinct elements of F. Let
{pe : £ €[w*)} be the Lagrange interpolation polynomials with respect to the B;’s, i. e., pi(B;) = 1 if
i = j and 0 otherwise.

Let G : F"™1 TN be the following polynomial map, whose output coordinates are indexed by vectors
b e {0,1}".

= X TT((1=b)po (@) +bipe (@5 ) - py,(uer), D)

01t lw?] i)
where we abuse notation by defining py,(t) =t.

In [37] (Lemma 3.18), it is shown that this map, for every fixed output coordinate b, is computed by a
width w? roABP in the variables y. We, however, want to show that for every fixing y = «, there is a
small roABP computing the polynomial whose coefficient vector is given by (9p(@))pefo,1}»- In other
words, for every choice of o, and associating b with a subset of [n], we want a polynomial in xp,...,x,
such that the coefficient of x;, is Gp (o).

Definition 7.2 (Succinct Forbes-Shpilka Generator). Let n,w € N, and @, p;’s as in Lemma 7.1. Define

PFS(xlv'"7xnay17"'7yn+l): Z H (P(Z,v,l(w&)’i)
Oy, by €[W2] i€n]

. i—1 2
e, (@) ) ) - iy () -

We first claim the the Forbes-Shpilka generator (7.1) is given by the coefficient vector of this
polynomial.

Claim 7.3. Assume the setup and notations of Definition 7.2. Then coeffy(PF) = GFS,
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Proof. As explained earlier, we wish to show that the coefficient of x;, in the polynomial P* equals the
b-th coordinate of (7.1).
Fix a choice of /1,...,/, € [w?], and b € {0,1}". Consider the product

i . i—1 4,2
H (pgi’l (w&yi) +Xi P, ((wﬂ,yi)Z a )> .

i€n]

Since the product is over distinct variables, there is exactly one way to obtain the monomial X, = [];.,—1 Xi
in this product, and its coefficient will be

T e, (@5)* ') - T pe, (@'y) (7.2)

iibizl iibiIO

Finally, observe that (7.2) exactly equals

[1 ((1 =) pe (@) +bi-py ((wéi%’)yildwz)) .

i€n|

This is true for every fixed choice of ¢i,...,¢,, and the claim now follows from the linearity of the
coefficients map. O

We now show that for every fixing y = «, the polynomial P*S(x, &) is computed by a small roABP.

Claim 7.4. For every setting y = , the polynomial P'S(x, &) in Definition 7.2 can be computed by a
width w* roABP in variable order x; I % R

Proof. The construction is straightforward from Definition 7.2. Layer V; contains the source vertex s
and layer V,,,| the sink vertex . Layers Vi, ...,V each contain w? vertices labeled by the set [w?]. For
every i € [n] and every £ € V;, there is an edge from each vertex in the previous layer, labeled by the linear
function (in x;)

_ ) i1 2
P, (COZ’ OC,') +Xi- Py, ((a)& al')z dw ) .

Finally, all vertices in V, are connected to t with an edge labeled py, (04,+1). L]

Corollary 7.5. The Forbes-Shpilka generator given in Lemma 7.1 is a width w*-roABP succinct generator
for degree d roABPs that read the variables in order X1,X3,...,XN.

Proof. Immediate from Lemma 7.1, Claim 7.3 and Claim 7.4. U

7.1 Different variable orderings

The generator given by Forbes and Shpilka in Lemma 7.1 hits roABPs that read the variables in the order
X1,Xo,...,Xy and not necessarily in any variable order. Obviously, we can apply a permutation o to the
variables xi, ..., X, in Definition 7.2 to obtain a roABP in the variables x in the order o: the coefficient
vector of this roABP hits roABPs in the variables X that read their variables in the order on {Xj,..., Xy}
which is given by considering the lexicographic ordering induced on the set of multilinear monomials in
{x1,...,x,} by the order o, and using the canonical identification of a multilinear monomial with an index
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in [N], say, using the binary representation. We call such an order relation on [N] a monomial-compatible
ordering. Note that there are merely n! such orderings among the N! total orderings on [N].

Since in our case we do not care about the size of the hitting set, we can take the union of all n! those
succinct hitting sets to obtain the following corollary.

Corollary 7.6. There exists a width-w* roABP succinct hitting set for the class of width w, N variate,
and degree d roABPs that read the variables in a monomial compatible ordering.

8 Discussion and open problems

In this paper, we have shown that many of the hitting sets we know for restricted algebraic models of
computation can be represented in a succinct form as coefficient vectors of small circuits. This gives
some positive answers to Meta-Conjecture 1.9, and points to the possibility of an algebraic natural proofs
barrier. The main problem left open by this work is to construct succinct hitting sets for stronger models
for which we know how to construct hitting sets efficiently.

For example, while we were able to construct a succinct generator for commutative roABPs, our
construction for general roABPs is not fully succinct, and also works only in certain variable orderings.
Despite several works that obtain quasi-polynomial size hitting sets for roABPs in any order ([35, 5]),
none of them seems to fit easily into the succinct setting, each for its own reasons.

For bounded-depth multilinear formulas, subexponential size hitting sets were obtained by Oliveira,
Shpilka and Volk [78]. The construction there can be roughly described as hashing the N variables
into N'~¢ buckets, and then hitting each bucket independently using a generator for roABPs (in fact,
commutative roABPs will suffice). The main challenge here seems to be the hashing part, which (in
the succinct setting) would involve hashing monomials, and ensuring that the coefficient vector that is
obtained through this process has a small circuit for any possible hash function.

The main technical tool which we do not know how to emulate in the succinct setting is the Klivans-
Spielman [63] generator. In this generator, the variable X; is mapped to ¥ ™47 where ¢ is a new
indeterminate, p is chosen from an appropriately large set of primes and k from an appropriately large set
of natural numbers. The main feature of this generator is that given a “small” enough set of monomials
M, the parameters k, p can be chosen from a “not too large” set, such that all the monomials in M are
given distinct weights, and this can be done in a black-box manner, that is, without knowing M, but only
an upper bound on its size. Indeed, the noticeable difference from the constructions we have given in this
paper is the exponential dependence on i in the exponent of ¢, a feature which is not clear how to emulate
in the succinct setting.

The main application of the Klivans and Spielman construction is to construct hitting sets for sparse
polynomials. While we are unable to make the resulting hitting set succinct, we developed an alternate
hitting set which we succeeded in making succinct. However, the Klivans and Spielman construction (or
otherwise similar ideas) has also found applications beyond the class of sparse polynomials, such as in
the construction hitting sets for roABPs in unknown order by Agrawal, Gurjar, Korwar and Saxena [5].
Unfortunately, such works seem to rely heavily on properties of the Klivans and Spielman construction
beyond that of just hitting sparse polynomials, and we are therefore currently unable to make these hitting
sets succinct.
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A particular interesting application of the Klivans and Spielman construction is in the recent work
of Fenner, Gurjar and Thierauf [32] and its generalization by Gurjar and Thierauf [51]. These papers
construct hitting sets for the class of determinants of “read-once matrices,” which are polynomials of
the form detM, where M is a matrix in which each entry contains a variable x; ; or a field constant, and
each variable appears at most once in the matrix. While this class of polynomials is very restricted,
the partial derivative matrix used by Nisan [74], Raz [80], and Raz-Yehudayoff [83], is a read-once
matrix, so the lower bounds proved in these papers are algebraically natural and the distinguisher used
is a read-once determinant. The work of Raz and Yehudayoff [83] in particular shows that a read-once
determinant can vanish on the coefficient vectors of constant-depth multilinear formulas, and as most
of the constructions in this paper have this form this shows that these constructions cannot be succinct
hitting sets for read-once determinants, and hence new ideas are needed. Indeed, if one could establish a
circuit class € where there are C-succinct hitting sets for read-once determinants then this would show
that no proof technique following the ideas of the above works can prove lower bounds for the class C.
Such a result would be very interesting as those lower bounds methods are still very much state-of-the-art.

As mentioned earlier, stronger evidence towards an algebraic natural proofs barrier can also be ob-
tained by designing pseudorandom polynomials whose security is based on widely believed cryptographic
assumptions. In particular, one possible approach is obtaining evidence in favor of the determinant-based
construction of Aaronson and Drucker [2].
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