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Abstract. Recently, Ran Raz and Avishay Tal proved that in some relativized

world, BQP is not contained in the polynomial-time hierarchy (STOC’19). It has been

suggested that some aspects of the proof may be simplified by stochastic calculus.

In this note, we describe such a simplification.

1 Introduction

A recent landmark result by Ran Raz and Avishay Tal [8] shows that there exists an oracle �

such that BQP� * PH�
. It has been suggested by several people, including Ryan O’Donnell,

James Lee, and Avishay Tal, that some aspects of the proof may be simplified by stochastic

calculus. We describe such a simplification.

As Aaronson [1] points out, there is a classical correspondence between the relativized

complexity of PH and the size of bounded-depth, unbounded fan-in Boolean circuits (Furst,

Saxe, Sipser [6]). Using this correspondence, the oracle separation reduces to upper bounds on

the statistical difference between two distributions. Concretely, it suffices to show that there

exists a distributionD over {−1, 1}2# such that
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1. For any 5 : {−1, 1}2# → {0, 1} computable by a quasipolynomial-size bounded-depth

circuit,

|E[ 5 (D)] − E[ 5 (U2# )]| ≤
polylog (#)
√
#

, (1)

where U2# is the uniform distribution over {−1, 1}2# . The notation E[ 5 (D)] means

Ex∼D[ 5 (x)]. In fact, a weaker upper bound of 1/(log#)$(1) would suffice for the oracle

separation.

2. There exists a quantum algorithm & that queries the input once and runs in $(log#)
time, such that

|E[&(D)] − E[&(U2# )]| ≥ Ω
(

1

log#

)
. (2)

For an explanation of why these two items suffice for the separation result, we refer to Raz

and Tal’s paper [8]. In their paper, Raz and Tal use a truncated Gaussian for D. Moreover,

they take & to be the Forrelation query algorithm (first introduced as “Fourier checking” by

Aaronson [1], and further analyzed in [2]). In this note, we will describe a construction of a

related but different distributionD based on Brownian motion, which simplifies certain details

of the analysis. The resulting analysis gives the same bounds as Raz and Tal, up to constant

factors.

2 Overview

2.1 Strategy to construct the distributionD
For convenience, we shall refer to the distribution calledD in the Introduction asD′. We shall

useD to denote an auxiliary distribution we shall use to constructD′ (see step 2 below).

We will first give an overview of the strategy to construct the distributionD′. In this section

we will not formalize stochastic calculus concepts, deferring this to Section 3.

The construction has two main steps:

1. Use a stopped Brownian motion to define a distributionD on [−1/2, 1/2]2# .
2. RoundD to a distributionD′ on {−1, 1}2# which has the same expectation on Boolean

functions. (This step is identical with [8].)

We will define the distributionD by describing how to sample from it.

Let xC be a standard#-dimensional Brownianmotion, where “standard”means its covariance

matrix is �# , the # × # identity matrix. Let yC = �#xC , where �# is the # × # normalized

Walsh-Hadamard matrix (the W-H matrix divided by

√
#). Finally, let BC be the 2# × 1 column

matrix formed by xC on top of yC ; for typographical convenience we write this as BC = (xC , yC).

Proposition 2.1. BC is a 2#-dimensional Brownian motion with covariance matrix

Φ B

(
�# �#

�# �#

)
.
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We defer the proof to Proposition 3.3.

Let � > 0 and consider the random variable � defined by

� B min{�, first exit time of BC from [−1/2, 1/2]2# } . (3)

Let B� denote the random variable obtained by stopping the Brownian motion BC at the

random time C = � (for appropriately chosen �, see the line before Equation (12)). LetD be the

distribution of the random variable B�.

Finally, use the method of Raz and Tal to roundD to obtain a distributionD′ on {−1, 1}2#
such that the following holds for every Boolean function 5 : {−1, 1}2# → {0, 1} :

E
z∼D
[ 5̃ (z)] = E

z′∼D′
[ 5 (z′)] , (4)

where 5̃ denotes the (unique) multilinear polynomial 5̃ : ℝ2# ↦→ ℝ that extends 5 . We shall

describe the method and prove Equation (4) in Proposition 4.2.

Therefore, if D satisfies Equations (1) and (2), then so does D′. Hence, it will suffice to

analyzeD instead ofD′.

2.2 Sketch of the quantum algorithm

The quantum algorithm & used in Equation (2) is very simple: since �# can be implemented

by a quantum circuit of depth $(log#), computing 〈x, �#y〉 will only take a single query.

This value will have a large positive expectation when (x, y) is drawn from D but will have

expectation 0 when (x, y) is drawn fromU2# . This will be proven in Section 6.

2.3 Comparison with the proof of Raz and Tal

The proof here essentially follows the structure of RT, and uses many of the same technical ideas.

The main differences are in the proof of the lower bound against bounded-depth circuits, while

the quantum algorithm stays the same and has only a minor difference in its analysis.

Our main contribution lies in simplifying some aspects of Sections 5 and 7 from [8]. Because

our D is defined to be bounded within [−1, 1]2# , there is no need to analyze a truncation

function applied toD, as in [8, Claims 5.2 and 5.3]. Theorem 4.4 reproves [8, Theorem 7.4], using

some ideas from [8, Claim 7.2]. [8, Claim 7.3] is replaced with Lemma 4.3, while the analysis of

the random walk in [8, Theorem 7.4] is replaced with an application of Dynkin’s lemma. Also

using Dynkin’s lemma, we directly prove Theorem 4.4 using bounds on the second derivatives

of the function 5 , instead of relying on Isserlis’s theorem for moments of multivariate Gaussians.

3 Technical preliminaries

Webriefly review some probability and stochastic calculus concepts. See for instance [7, Chapters

2.1 and 7] for more details. We shall use the common notation (Ω, ℱ , P) to denote a probability
space, whereΩ is the sample space, ℱ is the �-algebra of measurable sets, and P is the probability
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measure. A random variable is an ℱ -measurable function X : Ω→ ℝ#
. A random variable X

induces a distributionwhich is a probability measure on ℝ#
, defined by �X(�) = P(X−1(�)).

Definition 3.1. A stochastic process is a parametrized collection of random variables {XC}C∈)
defined on a probability space (Ω, ℱ , P) and assuming values in ℝ#

.

Typically, the parameter space is ) = [0,∞). For each C, we have a random variable

$ ↦→ XC($). On the other hand, for a fixed $ we can consider the function C ↦→ XC($), a trajectory
of the process.

Definition 3.2. Let  be a positive semidefinite symmetric # ×# real matrix. An #-dimensional
Brownian motion {BC}C∈[0,∞) with mean 0 and covariance  is a stochastic process characterized

by the following:

(i) B0 = 0 almost surely.

(ii) for D, C ≥ 0 the increment BC+D − BC is independent of the past, {BB}B<C .
(iii) for D, C ≥ 0 the increment BC+D − BC is distributed as an #-dimensional Gaussian with

mean 0 and covariance matrix D .

(iv) almost all trajectories are continuous.

We say that B is a standard Brownian motion if  is the identity matrix.

We refer to [7, Section 2.2] for a proof that such a stochastic process exists on some underlying

probability space (Ω, ℱ , P).
We now make an observation.

Proposition 3.3 (Restatement of Proposition 2.1). Let xC be a standard #-dimensional Brownian
motion, and yC = �#xC . Let BC = (xC , yC). Then BC is a 2#-dimensional Brownian motion with
covariance matrix

Φ B

(
�# �#

�# �#

)
.

Proof. We will check items (i)–(iv) in the definition of Brownian motion. First, we note that

BC = (xC , yC) = (�# , �# ))xC , and so (i), (ii), and (iv) hold for B since they hold for x.
Now we show (iii), that is, for fixed C , D, we want to show that the random variable

BC+D − BC = (xC+D , yC+D) − (xC , yC) is distributed as a Gaussian with mean 0 and covariance

DΦ. Using property (iii) of x, we see that xC+D − xC is a Gaussian with mean 0 and covariance

D�# , so (xC+D , yC+D) − (xC , yC) = (�# , �# ))(xC+D − xC) =
√
D(�# , �# ))�# , where �# is a standard

#-dimensional Gaussian. Using the fact that for an = × 3 matrix �, the random variable ��3
is an =-dimensional Gaussian with mean 0 and covariance ��) , we obtain that BC+D − BC is a

Gaussian with mean 0 and covariance D(�# , �# ))(�# , �# ) = DΦ. �

We now define stopping times.

Definition 3.4. Let X = {XC}C∈[0,∞) be a stochastic process on (Ω, ℱ , P). A random variable

� : Ω→ [0,∞) is a stopping time for X if for any C ∈ [0,∞), the event {� ≤ C} is independent of
{XB}B>C . The stopped stochastic process X� is a random variable defined via X�($) B X�($)($).
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In particular, stopping times may be applied to a Brownian motion to produce a stopped

Brownian motion. For example, any constant �0 B C0 is a stopping time; the stopped Brownian

motion has distribution BC0 . The first time that BC exits the cube [−1, 1]# , �1 B inf {C ≥ 0 | BC ∉
[−1, 1]# } is also a stopping time. The minimum or maximum of any two stopping times is a

stopping time. In particular, � in Equation (3) is a stopping time.

We will need to use the following fact about Brownian motion.

Proposition 3.5. Let BC be an #-dimensional standard Brownian motion, and � be a bounded stopping
time. Then, E[‖B�‖2] = E[�].

Proof. This follows from a few well-known facts about Brownian motion. First, ‖BC ‖2 − C
is a martingale [9, Proposition II.1.2(ii)]. Given a bounded stopping time �, E[‖B�‖2 − �] =
E[‖B0‖2] = 0 [9, Proposition II.1.4], and so E[‖B�‖2] = E[�]. �

The main stochastic calculus tool we will use is Dynkin’s formula, which, for a function

5 : ℝ# → ℝ#
, relates E[ 5 (BC)] to the second partial derivatives of 5 .

Theorem 3.6 (Dynkin’s formula, [7, Theorem 7.4.1]). Let B be an #-dimensional Brownian motion
with mean 0 and covariance matrix  , let � be a bounded stopping time, and let 5 : ℝ# → ℝ be a twice
continuously differentiable function. The following holds:

E[ 5 (B�)] = 5 (0) + E

∫ �

0

∑
8 , 9∈[#]

 8 9(%8 9 5 )(BB) 3B
 (5)

where %8 9 = %2

%G8%G 9
.

We will also require the following tail bound on Brownian motion.

Proposition 3.7 ([9, Proposition II.1.8]). Let B be a standard 1-dimensional Brownian motion. For
0, C > 0,

Pr
[

sup

0≤B≤C
|BB | ≥ 0C

]
≤ e
−02C/2.

4 Reduction to a Fourier bound

The main technical part of Raz and Tal’s proof [8] shows that, for a Boolean function 5 :

{−1, 1}2# → {−1, 1} computable by a bounded-depth, quasipolynomial-size circuit, and a

multivariate Gaussian distributionZ over ℝ2#
,

| E[ 5 (trnc(Z))] − E[ 5 (U2# )]| ≤ $(� · polylog(#)), (6)

where � is a bound on the (pairwise) covariances of the coordinates of Z, trnc truncates Z
so that the resulting random variable is within [−1, 1]# , andU# is the uniform distribution

over {−1, 1}# . This is based on the : = 2 case of Tal’s fundamental result [10] that gives a
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polylog(<) upper bound on the the level-: Fourier coefficients of Boolean functions computable

by a Boolean circuit of bounded depth and size <. We state Tal’s exact bound as Theorem 5.1

below.

Another natural way of viewing a multivariate Gaussian distribution is as the result of an

#-dimensional Brownian motion stopped at a fixed time. We can also build the truncation into

the stopping time. This allows us to use tools from stochastic calculus to analyze the distribution.

We first recall the definition of restrictions of Boolean functions.

Definition 4.1 (restriction). Let 5 : {−1, 1}# → ℝ and let � ∈ {−1, 1, ∗}# . Let free(�) be the set
of coordinates with ∗’s. We define the restriction of 5 by � as 5� : {−1, 1}# → ℝ, where 5�(G) is
5 evaluated at � with the coordinates of G replacing1 the ∗’s in �.

Henceforth, we also identify functions on a Boolean domain, 5 : {−1, 1}# → ℝ, with their

multilinear polynomial representations (or Fourier expansions)

5 (G) =
∑
(⊆[#]

5̂ (()
∏
8∈(

G8 . (7)

The following result has been extracted from the proof of Equation (2) in [8, Sec. 5].

Proposition 4.2. LetD be a distribution on [−1, 1]# . Let z′ ∼ D′ be sampled by first drawing z ∼ D.
Then, independently for each 8 ∈ [#], we will set z′

8
= 1 with probability (1 + z8)/2 and z′

8
= −1 with

probability (1 − z8)/2. For any function 5 : {−1, 1}# → ℝ, after identifying 5 with its multilinear
polynomial representation, we have

E
z∼D
[ 5 (z)] = E

z′∼D′
[ 5 (z′)].

Proof. The proof follows from the Fourier expansion. First, fix I ∈ [−1, 1]# , and then draw

z′ ∈ {−1, 1}# using the procedure above.

E
z′∼z
[ 5 (z′) | I] = E


∑
(⊆[#]

5̂ (()
∏
8∈(

z′8

����� I =
∑
(⊆[#]

5̂ (()
∏
8∈(

E[z′8 | I] = 5 (I).

Taking the expectation of I overD, we infer Ez∼D[ 5 (z)] = Ez′∼D′[ 5 (z′)]. �

We make some observations about Fourier coefficients. First, the Fourier coefficients of 5�

satisfy 5̂�(() = 0 for all ( * free(�). We also have that

5̂ (() = (%( 5 )(0), (8)

where %( =
∏

8∈( %8 and %8 = %
%G8

is the partial derivative.

1Although the domain of 5� is {−1, 1}# , it only depends on the coordinates in free(�).
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Further, because 5 is multilinear, for any ℎ ∈ ℝ \ {0} and any standard basis vector 48 we

have

(%8 5 )(G) =
5 (G + ℎ48) − 5 (G)

ℎ
. (9)

The following lemma is similar to [5, Claim A.5], which first appeared in [3] and [4, Claim

3.3].

Lemma 4.3. Let 5 : ℝ# → ℝ be a multilinear polynomial. For any G ∈ [−1/2, 1/2]# , there exists a
distribution ℛG over restrictions � ∈ {−1, 1, ∗}# , such that for any 8 , 9 ∈ [#],

(%8 9 5 )(G) = 4 E
�∼ℛG

[
(%8 9 5�)(0)

]
. (10)

Proof. We define ℛG as follows: for each coordinate 8 ∈ [#]we independently set �8 to be 1 with

probability
1

4
+ G8

2
, to be −1 with probability

1

4
− G8

2
, and to be ∗with probability

1

2
.

Using that 5 is a multilinear polynomial, and that the coordinates are independent, we

deduce that for any H ∈ ℝ#
, 5 (G + H) = E�∼ℛG

[
5�(2H)

]
. Then, using Equation (9),

(%8 9 5 )(G) = 5 (G + 48 + 4 9) − 5 (G + 48) − 5 (G + 4 9) + 5 (G)
= E

�∼ℛG

[
5�(248 + 24 9) − 5�(24 9) − 5�(248) + 5�(0)

]
= 4 E

�∼ℛG

[
(%8 9 5�)(0)

]
. �

We now show our main result, which is analogous to [5, Theorem A.7] and [8, Theorem 2.4].

Theorem 4.4. Let 5 : {−1, 1}# → {−1, 1} be a Boolean function, and let ! > 0 such that for any
restriction �, ∑

(⊆[#]
|( |=2

| 5̂�(()| ≤ !.

Let � > 0 and let B be an #-dimensional Brownian motion with mean 0 and covariance matrix  .
Further assume that | 8 9 | ≤ � for 8 ≠ 9.

Let � > 0 and define the stopping time

� B min {�, first time that BC exits [−1/2, 1/2]# }.

Then, identifying 5 with its multilinear representation, we have

|E[ 5 (B�)] − E[ 5 (U=)]| ≤ 2��!.

Proof. First, we note that E[ 5 (U# )] = 5 (0). Note that B� is always within [−1/2, 1/2]# . We can

apply Theorem 3.6

E[ 5 (B�)] − 5 (0) = E

∫ �

0

1

2

∑
8 , 9∈[#]

 8 9(%8 9 5 )(BB) 3B
 . (11)
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Then, we use the upper bound � ≤ �, and that (%88 5 ) = 0 for all 8 ∈ [#] because 5 is multilinear,

to get

| E[ 5 (B�)] − 5 (0)| ≤ �E
 sup

B∈[0,�]

������12 ∑
8 , 9∈[#]

 8 9(%8 9 5 )(BB)

������


≤ ��

2

sup

G∈[−1/2,1/2]#

∑
8≠9

��(%8 9 5 )(G)��
= 2�� sup

G∈[−1/2,1/2]#

∑
8≠9

���� E
�∼ℛG

[
(%8 9 5�)(0)

] ���� (Lemma 4.3)

≤ 2�� sup

G∈[−1/2,1/2]#
E

�∼ℛG


∑
8≠9

��(%8 9 5�)(0)��
≤ 2�� sup

G∈[−1/2,1/2]#
E

�∼ℛG


∑

(⊆free(�)
|( |=2

��� 5̂�(()��� (Equation (8))

≤ 2��!. �

5 Bound for classical circuits

We now construct the distributionD as described in Section 2.1. Due to Proposition 2.1, we can

take D to be the distribution defined by B�, where B is a 2#-dimensional Brownian motion

with covariance matrix Φ, � is defined as in Theorem 4.4, and and �will be chosen appropriately

before Equation (12) below.

Following Raz–Tal, we first use the following result of Tal [10] on the Fourier weight of

Boolean circuits.

Theorem 5.1 (Theorem 37(3) of [10]). There exists a constant � > 0 such that the following holds.
Let 5 : {−1, 1}2# → {−1, 1} be a Boolean function computed by a Boolean circuit of depth 3 and size
< > 1. Then for all :, ∑

(:|( |=:
| 5̂ (()| ≤ 2(�(log<)3−1): .

In particular, if 5 is computed by a bounded-depth circuit of quasipoly(#) size, then∑
(:|( |=2

| 5̂ (()| ≤ polylog(#).

Since restriction does not increase circuit size or depth, we can apply Theorem 4.4 with

THEORY OF COMPUTING, Volume 18 (17), 2022, pp. 1–11 8

http://dx.doi.org/10.4086/toc


A STOCHASTIC CALCULUS APPROACH TO THE ORACLE SEPARATION OF BQP AND PH

� = 1/(8 ln 2#) and � = 1√
#
, to deduce that

| E[ 5 (B�)] − 5 (0)| ≤
polylog (#)
√
#

, (12)

where B� is defined as in Theorem 4.4, justifying Equation (1). �

6 Quantum algorithm

Finally, we show that a 1-query $(log#)-time quantum algorithm can distinguishD from the

uniform distribution. This is virtually identical to the argument in [8, Section 6], but we can

again use some stochastic calculus tools on the stopping time built into our, slightly different,

distribution.

The Forrelation query algorithm [1, 2] is an $(log#)-time quantum algorithm with inputs

G, H ∈ {−1, 1}# which accepts with probability (1 + )(G, H))/2, where

)(G, H) B 1

#
〈G, �# H〉. (13)

When the pair (G, H) is drawn from the uniform distribution, E[)(G, H)] = 0. The quantum

algorithm is to prepare the uniform superposition over the basis states |1〉 . . . |#〉, query G, apply
the Walsh–Hadamard transform, query H, apply the Walsh–Hadamard transform again, then

measure in the computational basis and accept if the outcome is |1〉. The quantum algorithm is

described in more detail in [1, Section 3.2].

We show the following inequality [8, Claim 6.3], which shows that the quantum algorithm

distinguishes D from the uniform distribution with sufficiently high probability, justifying

Equation (2).

Proposition 6.1. E(x� ,y�)∼D[)(x� , y�)] ≥ �
4
.

Proof. We have

E
(x� ,y�)∼D

[)(x� , y�)] =
1

#
E[〈x� , �#y�〉]

=
1

#
E[〈x� , �2

#x�〉] = E[‖x�‖2] .

By Proposition 3.5, we have

E[‖x�‖2] = E[�] . (14)

By Markov’s inequality,

E[�] ≥ �
2

Pr[� > �
2
].

If � ≤ �
2
, it must be the case that the path exits [−1/2, 1/2]2# no later than

�
2
. Hence, by the

union bound, we have

Pr
[
� ≤ �

2

]
≤ 2# · Pr

[
1st coordinate of (x� , y�) exits

[
− 1

2
, 1

2

]
not later than

�
2

]
. (15)
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Each coordinate of (x� , y�) is a standard 1D Brownian motion since  88 = 1 for all 8. Let B(1)C
denote the first coordinate of xC . Applying Proposition 3.7,

Pr

[
sup

0≤C≤�/2
|B(1)C | ≥

1

2

]
≤ 2e

−1/4� = 2e
−2 ln 2# ≤ 1

4#
for # ≥ 4. (16)

Therefore, Pr[� ≤ �
2
] ≤ 1

2
, so E[�] ≥ �

4
. �

7 Acknowledgments

I would like to thank Ryan O’Donnell and Avishay Tal for helpful discussions and their

suggestions concerning an early draft. Thanks also to Gregory Rosenthal and anonymous

reviewers for helpful comments.

References

[1] Scott Aaronson: BQP and the Polynomial Hierarchy. In Proc. 42nd STOC, pp. 141–150.
ACM Press, 2010. [doi:10.1145/1806689.1806711] 1, 2, 9

[2] Scott Aaronson and Andris Ambainis: Forrelation: a problem that optimally separates

quantum from classical computing. SIAM J. Comput., 47(3):982–1038, 2018. Preliminary

version in STOC’15. [doi:10.1137/15M1050902] 2, 9

[3] Boaz Barak and Jarosław Błasiok: On the Raz-Tal oracle separation of BQP and PH, 2018.

windowsontheory.org. 7

[4] Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett: Pseudoran-

dom generators from polarizing random walks. Theory of Computing, 15(10):1–26, 2019.
Preliminary version in CCC’18. [doi:10.4086/toc.2019.v015a010] 7

[5] Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal: Pseudorandom

generators from the second Fourier level and applications to AC0 with parity gates. In

Proc. 10th Innovations in Theoret. Comp. Sci. Conf. (ITCS’19), pp. 22:1–22:15. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2019. [doi:10.4230/LIPIcs.ITCS.2019.22, ECCC:TR18-155]

7

[6] Merrick Lee Furst, James B. Saxe, and Michael Sipser: Parity, circuits, and the polynomial-

time hierarchy. Math. Systems Theory, 17(1):13–27, 1984. Preliminary version in FOCS’81.

[doi:10.1007/BF01744431] 1

[7] Bernt Øksendal: Stochastic Differential Equations. Universitext. Springer, 6th edition, 2003.

[doi:10.1007/978-3-642-14394-6] 3, 4, 5

THEORY OF COMPUTING, Volume 18 (17), 2022, pp. 1–11 10

http://dx.doi.org/10.1145/1806689.1806711
https://dx.doi.org/10.1145/2746539.2746547
http://dx.doi.org/10.1137/15M1050902
https://windowsontheory.org/2018/06/17/on-the-raz-tal-oracle-separation-of-bqp-and-ph/
https:doi.org/10.4230/LIPIcs.CCC.2018.1
http://dx.doi.org/10.4086/toc.2019.v015a010
http://dx.doi.org/10.4230/LIPIcs.ITCS.2019.22
https://eccc.weizmann.ac.il/report/2018/155
https://doi.org/10.1109/SFCS.1981.35
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1007/978-3-642-14394-6
http://dx.doi.org/10.4086/toc


A STOCHASTIC CALCULUS APPROACH TO THE ORACLE SEPARATION OF BQP AND PH

[8] Ran Raz and Avishay Tal: Oracle separation of BQP and PH. In Proc. 51st STOC, pp. 13–23.
ACM Press, 2019. [doi:10.1145/3313276.3316315, ECCC:TR18-107] 1, 2, 3, 5, 6, 7, 9

[9] Daniel Revuz and Marc Yor: Continuous Martingales and Brownian Motion. Volume 293 of

Grundlehren der Math. Wiss. Springer, 3rd edition, 1999. [doi:10.1007/978-3-662-06400-9] 5

[10] Avishay Tal: Tight bounds on the Fourier spectrum of AC
0
. In Proc. 32nd Comput. Complexity

Conf. (CCC’17), pp. 15:1–15:31. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[doi:10.4230/LIPIcs.CCC.2017.15, ECCC:TR14-174] 5, 8

AUTHOR

Xinyu Wu

Graduate student

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA, USA

xinyuwu cmu edu

https://www.andrew.cmu.edu/user/xinyuw1/

ABOUT THE AUTHOR

Xinyu Wu is a Ph.D. student at Carnegie Mellon University, advised by Ryan

O’Donnell and Pravesh Kothari. Her research interests are in spectral graph

theory, free probability, and their applications in understanding average-case

problems and quantum computing. She grew up in Singapore, and did her

undergraduate degree in math and computer science also at Carnegie Mellon.

She also enjoys cooking, cycling, and cat videos.

THEORY OF COMPUTING, Volume 18 (17), 2022, pp. 1–11 11

http://dx.doi.org/10.1145/3313276.3316315
https://eccc.weizmann.ac.il/report/2018/107
http://dx.doi.org/10.1007/978-3-662-06400-9
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.15
https://eccc.weizmann.ac.il/report/2014/174
https://www.andrew.cmu.edu/user/xinyuw1/
http://theory.cs.cmu.edu/
https://www.cs.cmu.edu/~odonnell/
https://www.cs.cmu.edu/~odonnell/
https://www.cs.cmu.edu/~praveshk/
http://dx.doi.org/10.4086/toc

	Introduction
	Overview
	Strategy to construct the distribution D
	Sketch of the quantum algorithm
	Comparison with the proof of Raz and Tal

	Technical preliminaries
	Reduction to a Fourier bound
	Bound for classical circuits
	Quantum algorithm
	Acknowledgments
	References

