
THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32
www.theoryofcomputing.org

Universal Streaming of Subset Norms

Vladimir Braverman
∗

Robert Krauthgamer
†

Lin F. Yang

Received March 9, 2020; Revised November 5, 2021; Published August 6, 2022

Abstract.
Most known algorithms in the streaming model of computation aim to approxi-

mate a single function such as an ℓ? norm.

In 2009, Nelson [https://sublinear.info, Open Problem 30] asked if it is

possible to design universal algorithms, that simultaneously approximate multiple

functions of the stream. In this paper we answer the question of Nelson for the

class of subset-ℓ0 norms in the insertion-only frequency-vector model. Given a family

of subsets, S ⊂ 2
[=]
, we provide a single streaming algorithm that can (1 ± �)-

approximate the subset-ℓ? norm for every (∈ S. Here, the subset-ℓ? norm of E ∈ ℝ=

with respect to the set (⊆ [=] is the ℓ? norm of E |((the vector E restricted to (by

zeroing all other coordinates).

Our main result is a nearly tight characterization of the space complexity of the

subset-ℓ0 norm for every family S ⊂ 2
[=]

in insertion-only streams, expressed in

terms of the “heavy-hitter dimension” of S, a new combinatorial quantity related to

the VC-dimension of S. We also show that the more general turnstile and sliding-

window models require a much larger space usage. All these results easily extend to

the ℓ1 norm.

∗
This material is based upon work supported in part by the National Science Foundation under Grants No.

1447639, 1650041 and 1652257, Cisco faculty award, and by the ONR Award N00014-18-1-2364.

†
Work partially supported by ONR Award N00014-18-1-2364, the Israel Science Foundation grant #1086/18, and

a Minerva foundation grant from the Federal German Ministry for Education and Research.

ACM Classification: F.2.1

AMS Classification: 68Q25

Key words and phrases: universal streaming, subset norms

© 2022 Vladimir Braverman, Robert Krauthgamer, and Lin F. Yang
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2022.v018.a020

http://dx.doi.org/10.4086/toc
https://sublinear.info
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2022.v018.a020

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

In addition, we design algorithms for two other subset-ℓ? variants. These can

be compared to the famous Priority Sampling algorithm of Duffield, Lund and

Thorup [JACM 2007], which achieves additive approximation � ‖E‖
1
for all possible

subsets (S = 2
[=]
) in the entrywise update model. One of our algorithms extends

their algorithm to handle turnstile updates, and another one achieves multiplicative

approximation, given a family S.

1 Introduction

The streaming model of computation, where a space-bounded algorithm makes only a single

pass over an input stream, has gained popularity for its theoretical significance and usefulness

in practice. Efficient streaming algorithms have been designed for many fundamental problems,

including, for example, moments or norms of a frequency vector E ∈ ℝ=
formed by a stream

of additive updates [2, 31, 33]; clustering a stream of points in ℝ3
[30]; and graph statistics for

streams of edge updates [27].

Most algorithms designed for this model solve only a single problem. For instance, in the

extensively studied area of streaming ℓ? norms of a frequency vector, an algorithm usually

makes a pass over the stream, and then it can use the summary it stores to compute only one

particular norm—the one it was designed for. Designing a new algorithm for each statistic can

be impractical in some applications. For example, in network monitoring, it is often desirable to

maintain a single summary of the observed traffic and use this summary for multiple tasks such

as approximating the entropy, finding elephant flows and heavy hitters, and detecting DDoS

attacks [39, 45].

The importance of multi-functional summaries has been observed in the theory community

as well. Nelson [42, Open Problem 30] asked in 2009 if it is possible to design universal algorithms

for families of functions. More formally, given a family ℱ of functions of the form 5 : ℝ= → ℝ,

the goal is to compute, in one pass over a stream representing E ∈ ℝ=
, a single summary that

can be used to evaluate 5 (E) for every function 5 ∈ ℱ . Several algorithms [18, 19, 13, 11, 15]

provide universal sketches for some families of functions, for example all symmetric norms in

a certain class [11]. However, universal algorithms are an exception rather than the rule, and

Nelson’s question is still open in any reasonable generality.

A simple systematic method to generate a family ℱ from a single function 5 : ℝ= → ℝ is to

apply this 5 to different subsets of coordinates. More precisely, for every subset (⊂ [=] define
the function 5(: E ↦→ 5 (E |(), where E |(denotes zeroing out the coordinates of E not in (. In this

way, every set system S ⊂ 2
[=]

describes a family of functions { 5(: (∈ S}. We focus on the

basic case where 5 is an ℓ? norm, and call such function families subset-ℓ? norms. As usual, we

wish to approximate each function multiplicatively, say within factor 1 ± � for a given � ∈ (0, 1);
this is clearly stronger than approximating additively by � ‖E‖? .

Subset-ℓ? norms arise naturally in applications; for instance, S could represent supported

queries to a database. Indeed, the well-known Subset Sum problem [1, 26, 48] and its variant,

the Disaggregated Subset Sum problem [24, 49], are equivalent to our subset-ℓ1-norm problem

in the entrywise and insertion-only models, respectively. Network-monitoring tasks, such as

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 2

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

worm detection, rely on subset-ℓ? norms to approximate flow statistics [26]. Recall that a network

flow is a subset of network traffic defined by a source address, a customer, an organization,

an application or an arbitrary predicate. It is folklore that calculating flow volume is simply

a subset-ℓ1 query, and the number of distinct packets in a flow is a subset-ℓ0 query. Recent

work [29, 41] reiterated that approximating these subset-ℓ? queries and more general filters is

still an important open problem in network telemetry. In another recent example, Ting [49]

argued that Disaggregated Subset Sum is widely applicable in ad prediction, where future user

behavior is inferred from historical aggregate queries that have the form of subset-ℓ1 queries. In

both examples, data collection is challenging since future queries can be arbitrary, and thus it

is critical to answer large classes of subset-ℓ1 queries. We refer the reader to [26, Section 1.4.1]

and [49, Section 2.2] for detailed discussions of these and additional applications in machine

learning [47], database query estimation [50] and denial of service attacks [44].

Ourmain contribution to universal streaming is a near-tight characterization, for everyS ⊂ 2
[=]

,

of the space complexity of subset-ℓ0’s in insertion-only streams. We stress that this problem

asks to count the distinct items (non-zero coordinates of E) inside every subset (∈ S. Our

characterization connects the space complexity for a set system S to a combinatorial notion

that we call the heavy-hitter dimension of S, which counts the maximum possible number of

coordinates in a single E ∈ ℝ=
that may be a “heavy hitter” for some (∈ S (see Definition 2.1 for

full details). This notion is related to VC-dimension by VCdim(S) ≤ HHdim(S), however the

gap between the two is not bounded by any fixed factor. We in fact prove the above inequality

and make use of it in Section 2.5. Throughout, $̃(·) suppresses a polylog(=) factor, and $�(·)
suppresses a factor depending only on �; taken together, $̃�(5) stands for $(,(�)(log

$(1) =)) · 5
for some function ,.

Theorem 1.1 (Informal Statement of Theorems 2.10 and 2.11). For every S ⊂ 2
[=] and � ∈ (0, 1),

there is a randomized universal algorithm for insertion-only streams, that makes one pass using
$̃�(HHdim(S)) words of storage, and can then (1 + �)-approximate each subset ℓ0-norm from S with
high probability. Moreover, every such algorithm requires Ω(HHdim(S)) bits of storage.

To illustrate the scope of this result, we present in Table 1 a few examples and properties of

the heavy-hitter dimension (their proofs appear in Section 2.1). One interesting example is the

family of all large intervals in [=], namely, of size Ω(=), which has dimension $(1). A second

one is a family of poly(=)-many uniformly-random sets (every set contains every index with

probability 1/2), which has dimension $(log =)with high probability. For both examples, our

algorithm uses small space (polylogarithmic in =) to achievemultiplicative (1+�)-approximation,

which was not known before. (For intervals, additive approximation � ‖E‖
1
can be achieved by

several known algorithms, including quantile estimates, range counting, and heavy-hitters over

dyadic intervals.)

Another interesting example is a two-dimensional family derived from the last property

in the table, as follows. Suppose each index 8 ∈ [=] is actually a pair (81 , 82) ∈ [=1] × [=2], for
instance the source and destination address of a packet. Let S1 be the family of all large intervals

with respect to 81, i. e., all [0 . . 1] × [=2] with 1 − 0 = Ω(=1), and similarly S2 with respect to

82, where throughout [0 . . 1] = {0, 0 + 1, . . . , 1} denotes an interval of integers. Each of S1 ,S2

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 3

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

has heavy-hitter dimension $(1), and by the bound in the table, also their union-product

{(1 ∪ (2 : (1 ∈ S1 , (2 ∈ S2}. Our algorithm can then use small space (polylogarithmic in =) to

estimate distinct elements in subsets of form {(81 , 82) : 81 ∈ [0 . . 1] ∨ 82 ∈ [2 . . 3]}, capturing for

instance the logical-or between a range of source addresses and a range of destination addresses.

Set System HHdim Description

{(1 , . . . , (:} ≤ : any sets (tight for disjoint sets)

{(⊂ [=] : |(| ≥ = − :} : + 1 sets missing few coordinates

{[8 . . 8′] : 8′ − 8 + 1 ≥ :} Θ(=/:) intervals of size ≥ :{
B1 , . . . , B: : all B8 , 9 ∼ ℬ(?)

}
whp $(log(=:)/?) : random subsets of density ?

{(′ ∪ (′′ : (′, (′′ ∈ S} HHdim(S) self union of S
S1 ∪ S2 ≤ HHdim(S1) +HHdim(S2) subadditivity

{(1 ∪ (2 : (1 ∈ S1 , (2 ∈ S2} ≤ HHdim(S1) +HHdim(S2) union-product of S1 ,S2

Table 1: Simple examples and basic properties of heavy-hitter dimension over domain [=].

Let us consider some natural extensions of the above theorem. First, our algorithm extends

to subset-ℓ1 as well, as shown in Theorem 2.22. Second, it is stated for insertion-only streams,

however for the more general turnstile and sliding-window models (i. e., streams with both

insertions and deletions or streams where old items expire), we show that the subset-ℓ? problem,

for any ? ≥ 0, requires space Ω(=) even if HHdim(S) = $(1). This is striking because such a

large separation between insertion-only and turnstile stream or sliding-window algorithms is

rare.

Indeed, it may be instructive to see why the smooth-histograms technique of [17] fails in this

case.

Theorem 1.2 (Informal Statement of Theorems 2.15 and 2.17). There exists S ⊂ 2
[=] with

HHdim(S) = $(1), such that every universal streaming algorithm achieving multiplicative approxima-
tion for subset-ℓ? for S requires Ω(=) bits of space in both the turnstile and sliding-window models.

Variants of the problem. Duffield, Lund and Thorup [26] consider a similar problem in the

entrywise update model, in which each entry of the vector appears in the stream at most once.

Their “subset-sum” problem is equivalent to our subset-ℓ1 problem if all entries of the vector are

non-negative.1 They devise a Priority Sampling algorithm that approximates the subset-ℓ1 norm

of every subset (⊂ [=], achieving in fact an optimal space usage for this model [48]. However,

their result actually guarantees an additive approximation, i. e., the error for every subset-ℓ1 query

is proportional to the ℓ1 norm of the entire vector.2 We additionally provide two extensions to

their results in new directions.

1Non-negativity is a mild assumption in this entrywise update model, because one can easily separate the positive

and negative entries and execute in parallel two algorithms.

2Indeed, Theorem 1 of [48] bounds the variance of the estimator by ‖E‖2
1
/(: − 1), where : is number of samples

being stored. This implies that with high probability, the estimator’s additive error is at most $(‖E‖
1
/
√
: − 1).

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 4

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

The first extension is a full characterization of space complexity ofmultiplicative approximation
of subset-ℓ?’s in the entrywise update model. In contrast to the results of [26, 48], once a

multiplicative approximation is required, the space complexity depends on the query set system

S. Indeed, by modifying the priority sampling algorithm of [26, 48] and employing our lower

bound, we show (in Theorem 2.23) that the space complexity is now precisely Θ̃(HHdim(S)).
Our second extension achieves the same additive approximation, but in the more general

turnstile model (i. e., additive updates to entries). Similarly to the algorithm of [26, 48], our

algorithm for the subset-ℓ? problem achieves additive error �‖E‖? with space complexity that

does not depend on the query set system S. This result is summarized in the following theorem;

we note that a matching lower bound follows immediately from known results (e. g., [7]), as the

case (= [=] is the usual approximation of ℓ? norm.

Theorem 1.3 (Informal Statement of Theorem 3.1). There exists a one-pass streaming algorithm that,
given a stream of additive updates to a vector E ∈ ℝ= , uses only $̃(1) words of space for 0 ≤ ? ≤ 2 (and
$̃�(=1−2/?) words for ? > 2), and can then approximate ‖E |(‖? within additive error �‖E‖? for each
(⊂ [=] with high probability.

Summary. Our results are summarized in Table 2, where the first row lists the main results.

Problem Update Model Approximation Space Theorems

subset-ℓ0 or ℓ1 insertion-only multiplicative Θ̃(HHdim(S)) 2.10, 2.11, 2.22

subset-ℓ?

turnstile

multiplicative

Ω(=) 2.15

sliding-window Ω(=) 2.17

entrywise Θ̃(HHdim(S)) 2.23

subset-ℓ? turnstile additive

Θ̃(1) for 0 ≤ ? ≤ 2

Θ̃(=1−2/?) for ? > 2

3.1

Table 2: Summary of our results

1.1 Related work

There is a large body of literature that deals with approximating functions of a vector, i. e.,

norms and heavy hitters, in the streaming model of computation. This line of work was started

by Alon, Mathias, and Szegedy [2]; they gave a surprising logspace algorithm to approximate

the ℓ2 norm, and proved that space =Ω(1) is required for integer values ? ≥ 6. [31] gives the first

near-optimal algorithm (in terms of =) for ℓ? for all 0 ≤ ? ≤ 2; and [33] gives the first near-optimal

algorithm for ℓ? for all ? > 2; [32, 51, 21, 7] give tight lower bounds on this problem with respect

to the approximation parameter � and dimension =. There is a sequence of papers gradually

improving the space complexity with respect to other parameters and studying variants of

the problem. Due to the lack of space we mention only a small subset of the relevant papers:

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 5

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

[23, 21, 9, 37, 36, 35, 5, 3, 16, 14, 15]; and references therein. Most of these papers design methods

that approximate a single function such as an ℓ? norm for a fixed ?.

Our setting is also related to the “subset sum” problem [1, 26, 48, 49] where one is interested

in approximating a sum of the entries of a vector indexed by a subset. It is not difficult to see

that our problem is the same as the objective in [26] when the input is restricted to non-negative

vectors; indeed the subset-sum problem is equivalent to the subset-ℓ1 problem. However, the

model in [26] is slightly different. In [26] the algorithm sees each coordinate of the frequency

vector at most once. In this paper we consider the additive updates streaming model that allows

incremental updates to the coordinates of the frequency vector. Thus, our model generalizes the

model in [26]. In addition, the algorithms in [26] solve the subset-sum problem but with an

additive error.

1.2 Preliminaries

We identify a binary vector B ∈ {0, 1}= as a subset in [=]. For two vectors D, E ∈ ℝ=
, we denote

D ◦ E ∈ ℝ=
as the Hadamard product, i. e., each (D ◦ E)8 = D8E8 . We denote the support of E,

supp(E) ⊂ [=], as the set of non-zero coordinates in E, i. e., supp(E) = {8 ∈ [=] : E8 ≠ 0}. For
each ? > 0, we denote the ℓ? norm of a vector E ∈ ℝ=

as ‖E‖? = (
∑
8∈[=] |E8 |?)1/? . For ? = 0,

‖E‖0 := | supp(E)| is the size of the support of E. For ? = ∞, ‖E‖∞ := max8∈[=] |E8 |. Note that for

? < 1, ℓ? is not a “norm” but was called a norm by convention.

In this paper we are focusing on the updates of a vector E ∈ ℝ=
. In the insertion-only

model, the input is a stream 〈01 , . . . , 0<〉, where each item 0 9 ∈ [=] represents an increment to

coordinate 0 9 of a vector E ∈ ℝ=
, which is initialized to all zeros. Thus the accumulated vector is

E =
∑<
9=1

40 9 , where {48 : 8 ∈ [=]} is the standard basis. Here < is usually assumed to be upper

bounded by poly(=). In the turnstile model, the input is a stream 〈(01 ,Δ1), . . . , (0< ,Δ<)〉, where

each item (0 9 ,Δ9) ∈ [=] × {−1, 1} represents an increment to coordinate 0 9 of a vector E ∈ ℝ=
by

Δ9 .3 Thus the accumulated vector is E =
∑<
9=1
Δ9 · 40 9 .

We are interested in the following problem.

Problem 1.4 (Subset-ℓ?). Let
 ≥ 1 be a parameter. Given a set of binary vectors S ⊂ {0, 1}= ,
design an algorithm that makes a single pass over a stream of updates to a vector E ∈ ℝ=

, and at

the end of the stream the algorithm outputs a function � : S → ℝ that satisfies

∀B ∈ S , Pr[‖E ◦ B‖? ≤ �(B) ≤
‖E ◦ B‖?] ≥ 0.9.

We call this problem the
-approximation subset-ℓ? problem w.r.t. S.

Note that the above definition requires the algorithm to approximate, for each given B ∈ S,
the quantity ‖E ◦ B‖? multiplicatively. A standard parallel repeating argument can lead to

the “for-all” guarantee, i. e., the algorithm succeeds on approximating ‖E ◦ B‖? for all B ∈ S.
However, we pay an additional log |S| factor in the space—this can be linear in = if |S| is large.
It would be interesting if one can design a for-all algorithm with space not depending on log |S|.

3A more general model allows Δ8 ∈ {−", . . . , "} for some " = poly(=). The space and time requirement of the

case " = 1 is the same up to an $(log =) factor. We use " = 1 for sake of presentation.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 6

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

Note that the set system S is given to the algorithm via a read-only tape, hence the space of

storing S is not counted. A variant of this problem is the additive approximation problem.

Problem 1.5 (Additive Subset-ℓ?). For a set of binary vectors S ⊂ {0, 1}= , design a one-pass

algorithm over a stream of updates to some underlying vector E ∈ ℝ=
such that after one pass

over the stream, the algorithm outputs a function � : S → ℝ satisfies,

∀B ∈ S , Pr[‖E ◦ B‖? − �(B)
�� ≤ �‖E‖?] ≥ 0.9.

We call this problem the �-additive-approximation subset-ℓ? problem (w.r.t. S).

1.3 Technical overview

Multiplicative Subset-ℓ? algorithm for ? ∈ {0, 1}. Estimating ℓ0 of a stream is a well-studied

problem, for instance the first streaming algorithm was given in [28], and the problem’s space

complexity was settled in [2, 51, 37, 10, 34]. Let us first recall a classical sample-and-estimate

technique for this problem (see, e. g., [8]). Here, the algorithm samples each coordinate of E with

some probability @, and then uses the sampled non-zero coordinates to estimate ‖E‖0 (simply

count their number and divide by @). Suppose we could guess the correct rate @, such that

number of non-zero samples is about Θ(�−2); then we would obtain a good estimate to the ℓ0
of the stream, i. e., a (1 ± �)-approximation with constant probability. The number of guesses

is at most Θ(log =), since ‖E‖0 ≤ =, and we can try all of them in parallel. Observe that this

algorithm actually stores all distinct samples up to a point—when the samples for a guess @

exceeds the $(�−2) space bound, the algorithm starts rejecting any extra samples.

Consider now approximating ‖E ◦ B‖0 for any B in a known set system S ⊂ 2
[=]
. To use

the above sample-and-estimate technique, the guess @ should be chosen according to ‖E ◦ B‖0.
However, an algorithm that is not tailored to B will store (distinct) samples from all supp(E),
and thus it might reach its $(�−2) space bound and start rejecting samples, without storing

enough samples from supp(E ◦ B) ⊆ supp(E). The challenge is thus to store enough samples

from supp(E ◦ B) for every B ∈ S. Our idea is to rely on the structure of the set system S,
and store every sample that might be necessary for any B ∈ S, which clearly maintains the

correctness (accuracy guarantee). However, this might require large space, perhaps even linear

in |S|, and our solution is to actively delete samples that are not necessary.

To formalize this idea, we let the algorithm store a setℋ ⊂ [=] of (distinct) samples from the

stream. Nowwhenever the number of samples from some B ◦E is smaller than our$(�−2) bound,
all these samples are stored, and then ℋ can always be used to estimate ‖B ◦ E‖0. However,

when some 8 ∈ ℋ is no longer necessary for any B ∈ S (which might happen as new samples are

stored), the algorithm deletes this 8 fromℋ . The question is then: what is the maximum possible

size of ℋ? Luckily, we can show that |ℋ | = $[�−2 · HHdim(S)] via an inductive argument,

whose base case is precisely the heavy-hitter dimension. Maintainingℋ in a streaming fashion

is straightforward and requires only $[�−2 ·HHdim(S)] words of space. Recalling there are

$(log =) guesses for @, the algorithm actually stores $(log =) sets of samples, which altogether

can simulate the sample-and-estimate algorithm for any B ∈ S given at the query phase, to

achieve a multiplicative approximation of E ◦ B. This result is presented in Theorem 2.10.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 7

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

In insertion-only streams, the ℓ1 norm is just the sum of all (relevant) stream updates. We

can thus reduce the ℓ1 estimation problem to ℓ0 estimation of a new vector of dimension =<,

where < is the length of the stream. We show that the converted set system has exactly the same

heavy-hitter dimension, yielding again an algorithm with space usage $[�−2 ·HHdim(S)]. This
result is presented in Theorem 2.22.

The upper bound for subset-ℓ? norm in the entrywise update model follows similar ideas to

store a small subset that is important to the set system. The only difference is that we use the

priority sampling technique [26, 48] as the bottom-level algorithm. This result is presented in

Theorem 2.23.

Lower bound for subset-ℓ? . Our lower bound is via reduction from the well-known INDEX

problem.4 Suppose we have a set system with heavy-hitter dimension HHdim(S) (formally

defined in Definition 2.1), we can then find a vector E with HHdim(S) non-zero coordinates

and for each coordinate E8 , there exists an B
8 ∈ (such that {8} = supp(B 8 ◦ E). Therefore, we can

encode an INDEX instance into the non-zero coordinates of E and by approximating ‖E ◦ B 8 ‖?
multiplicatively for any ?, we can have a protocol for the INDEX problem. This implies an

Ω(HHdim(S)) lower bound. This result is presented in Theorem 2.11.

Strong lower bound in the turnstilemodel and sliding-windowmodel. It is striking that in the

turnstile model or sliding-window model, there does not exist sublinear one-pass multiplicative

approximation subset-ℓ? algorithms even for a very simple set system. We show that for a simple

set system, e. g., a set system containing all the intervals with size =/2, which has heavy-hitter

dimension $(1), any multiplicative approximation of subset-ℓ? for any ? ≥ 0 requires Ω(=)
space. We show this via a reduction from a communication problem called Augmented INDEX.

In this problem, Alice has a binary vector G ∈ {0, 1}= , and Bob has an index 9 ∈ [=] together with

G 9+1 , G 9+2 , . . . , G= . Alice sends one message to Bob (only one round), who needs to determine

G 9 . It has been shown in [6] that, any constant-probability success protocol for this problem

requires Ω(=) bits of communication. We construct a protocol using the subset-ℓ? algorithm.

Alice simply maps each of its coordinates of G to some stream updates. Bob removes all G 9′

for 9′ > 9. Bob then picks the interval that contains at most one non-zero coordinate, G 9 , and

asks the algorithm to compute the ℓ? norm. Hence any multiplicative approximation can be

used to decide whether G 9 is 0. Thus, any algorithm in the turnstile model requires Ω(=) space
for this simple set system. Similar lower bounds can be shown for the sliding-window model

with a lower bound of Ω(min(,, =)), where, is the window size. These results are formally

presented in Theorem 2.15 and Theorem 2.17.

Additive approximation. Our additive approximation to the subset-ℓ? norm follows a similar

flavor of the priority sampling algorithm [26, 48]. We use the algorithmic ideas that appeared

in [20] (similar ideas also appear earlier in [5] and [3], but of different form). To approximate

4INDEX is a two-party communication problem, in which Alice’s input is a binary vector G ∈ {0, 1}= and Bob’s

input is an index 9 ∈ [=]. Alice sends one message to Bob (only one round), who needs to determine the coordinate

G 9 . This problem requires Ω(=) bits of communication, see, e. g., [6] for details.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 8

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

the ℓ? norm of a vector, we first generate = pseudorandom numbers to scale each entry of the

input vector E, which can be implemented using Θ(log =) space in the streaming setting. If the

distribution of the random numbers has a nice tail, e.g, Pr[- > G] = 1/G? , the ℓ2-heavy hitter of

the scaled vector can be shown to be a good estimation of the ℓ? norm. The scaling is “oblivious”

to the subset, i. e., for each B ∈ 2
[=]
, the ℓ2-heavy hitter of B ◦ E′ is a good estimator to ‖B ◦ E‖? ,

where E′ is the scaled version E′. This result is presented in Theorem 3.1.

2 The streaming complexity of subset-ℓ? norms

In this section we study algorithms for the subset-ℓ? problem (namely, achieve multiplicative

approximation) for ? = 0 and ? = 1. Our main finding is that the space complexity in

insertion-only streams is characterized by the following combinatorial quantity.

Definition 2.1 (Heavy-Hitter Dimension). For a set system S ⊂ 2
[=]

and a vector E ∈ ℝ=
, denote

by �(S , E) the set of heavy hitters induced by S, i. e.,

�(S , E) :=
{
8 ∈ [=] : ∃B ∈ S s.t. supp(B ◦ E) = {8}

}
,

and define the heavy-hitter dimension of S ⊂ {0, 1}= as

HHdim(S) := sup

E∈ℝ=

|�(S , E)|.

Let us provide some intuition for this definition. If supp(B ◦ E) = {8} for some vector E and

set B ∈ S, then we call the index 8 a heavy-hitter, to reflect that it dominates the other (zero)

coordinates in B ◦ E. The heavy-hitter dimension then measures the number of heavy-hitters that

a set system S could possibly induce (for an unknown E). It is known from previous sketching

algorithms, cf. [32], that estimating a vector norm can essentially be reduced to estimating the

heavy-hitters, which may provide an intuition why HHdim characterizes the space complexity

of sketching subset norms. The above definition can be easily compared to that of VC-dimension

(for the same set system), see Section 2.5 for details.

Our main result is a streaming algorithm with space complexity that is linear in the heavy-

hitter dimension, i. e., $̃�(HHdim(S)), see Theorem 2.10 in Section 2.2. We then provide several

complementary results. From the direction of space lower bounds, we prove a linear lower

bound Ω(HHdim(S)), which matches our algorithm above (in Section 2.3), and also a much

bigger bound for turnstile and sliding-window streams, which separates these richer models

from insertion-only streams (in Section 2.4). From the direction of applications of our algorithmic

techniques, we extend our algorithm to the “for-all” guarantee (in Section 2.5), and to the case

? = 1 (in Section 2.6), and we also design a variant for the more restricted model of entrywise

updates (in Section 2.7).

2.1 Examples and properties of heavy-hitter dimension

We present a few simple examples and basic properties of the heavy-hitter dimension that may

be useful in applications, essentially proving the bounds shown in Table 1.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 9

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

We begin with an alternative description of HHdim(S) where we view the set system

S ⊂ 2
[=]

as an incidence matrix, i. e., a 0 − 1 matrix describing the incidence between sets (∈ S
and coordinates 8 ∈ [=]. Recall that a matrix " ∈ {0, 1}:×: is called a permutation matrix if every

row and every column contain a single non-zero, i. e., exactly one 1. Clearly, up to reordering

the rows and/or columns, such a matrix can be viewed as an identity matrix.

Lemma 2.2 (Permutation Submatrix). Let S ⊂ 2
[=], and let " ∈ {0, 1} |S|×= be its incidence matrix.

Then HHdim(S) is exactly the maximum size (number of rows/columns) in a submatrix of " that is a
permutation matrix.

Proof. Denote S = {B1 , B2 , . . .}, and let : be the largest size of permutation submatrix of ".

Suppose that this submatrix is formed of rows 81 , . . . , 8: and columns 91 , . . . , 9: . Consider a

vector E ∈ {0, 1}= in which coordinates 91 , . . . , 9: have value 1 and all other coordinates have

value 0. Then it is straightforward to see that

∀; ∈ [:], supp(B8; ◦ E) = { 9;}.

Thus : ≤ HHdim(S).
For the other direction, let D ∈ ℝ=

be a vector that realizes HHdim(S). Then there are sets

B81 , . . . , B8HHdim(S) ∈ S and coordinates 91 , . . . , 9HHdim(S) ∈ [=] such that

∀; ∈ [HHdim(S)], supp(B8; ◦ D) = { 9;}.

It is easily verified that rows 81 , . . . , 8HHdim(S) and columns 91 , . . . , 9HHdim(S) form a permutation

submatrix of ". Thus, HHdim(S) ≤ :, which completes the proof. �

Using the above lemma one can analyze the heavy-hitter dimension of several explicit set

systems, as listed in the first four lines in Table 1. This lemma also implies bounds for several

operations on set systems, as listed in the last three lines in Table 1. The proofs are rather

straightforward and we give examples in Proposition 2.3 and Proposition 2.4 below.

Proposition 2.3 (Random Sets). Let S ⊂ 2
[=] be a set system of size |S| = :, whose incidence matrix

" is formed of entries that are independent Bernoulli random variables with parameter ? ∈ (0, 1/2]. In
other words, every set (8 ∈ S contains every coordinate 9 ∈ [=] independently with probability ?. Then

Pr

[
HHdim(S) ≤ $(log(=:)/?)

]
≥ 1 − 1/poly(=:).

Proof. Fix C rows and C = 2 log(=:)/? columns of " for some absolute constant 2 > 0 and

consider the corresponding submatrix "′. The probability that "′ is an identity matrix is

?C(1 − ?)C2−C ≤ 4−?C2/2. For the event HHdim(S) ≥ C to occur there must be ordered sequences

of C rows and C columns that yield an identity "′. Since the number of such choices is at most

=C · :C , we obtain

Pr

[
HHdim(S) ≥ C

]
≤ (=:)C · 4−?C2/2 ≤ 4−?C2/4 ≤ 1/poly(=:),

where we use the fact that (=:)C = 4?C2/2 and choose 2 appropriately. �

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 10

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

Proposition 2.4 (Subadditivity). For every S1 ,S2 ⊂ 2
[=],

HHdim(S1 ∪ S2) ≤ HHdim(S1) +HHdim(S2).

Proof. Let "1 and "2 be the incidence matrices of S1 and S2, respectively. Then the incidence

matrix of S1 ∪ S2 is, using block-matrix notation, simply " =
[
"1

"2

]
. Every permutation

submatrix of " can be partitioned into "1 and "2. As each part must contain a permutation

submatrix that uses all its rows, the proposition follows. �

2.2 Streaming algorithm for the subset-ℓ0 norm

We now design a one-pass streaming algorithm for the subset-ℓ0 problem in an insertion-only

stream. Recall that in this model the input is a stream 〈01 , . . . , 0<〉, where each item 0 9 ∈ [=]
represents an increment to coordinate 0 9 of a vector E ∈ ℝ=

. The streaming algorithm has two

phases, an update phase that scans the stream, and a query phase that evaluates a query B ∈ S.
(In the case below, the query phase formally does not answer a specific query B ∈ S, but rather
reports a list that implicitly represents all queries B ∈ S.) We assume that the set system S is

given to the algorithm via a read-only tape, and thus requires no storage. See Section 1.2 for

detailed definitions.

The algorithm uses a well-known technique of subsampling the coordinates of E (i. e., the

set [=]) at a predetermined rate ? ∈ (0, 1], and producing an estimate only if the resulting vector

has Ω(�−2) non-zeros. Usually, counting the number of sampled non-zeros requires little space,

but this is more challenging in our case of all norms B ∈ S.
The key to bounding the total space usage is the following proposition, which bounds the

global number of samples stored, when each of these samples is “needed” locally by some

subset B ∈ S. This condition has a parameter :, and the reader may initially think of : = 1.

Proposition 2.5. Let S ⊂ {0, 1}= be a set system. Suppose / ⊂ [=] and : ≥ 1 are such that for every
8 ∈ /

∃B ∈ S , 8 ∈ B and |/ ∩ B | ≤ : (2.1)

(in words, index 8 is “:-needed” by some B ∈ S). Then |/ | ≤ : ·HHdim(S).

Proof. We proceed by induction on :. For the base case : = 1, consider a vector E ∈ {0, 1}=
whose support is exactly the given /. Then for every 8 ∈ /, there is B ∈ S such that / ∩ B = {8},
and thus �(B, E) := supp(B ◦ E) = {8}. It follows that |/ | ≤ |�(S , E)| ≤ HHdim(S).

For the inductive step, consider : ≥ 2. Given /, construct � ⊂ / as follows. Start with

� = /, and then repeatedly, if � contains an index 8 for which there is no B ∈ S with �∩ B = {8}
(i. e., 8 is not 1-needed), then remove 8 from �. The repetitions stop when � contains no such

index 8. We claim that the final set � satisfies

∀B ∈ S , / ∩ B ≠ ∅ ⇔ � ∩ B ≠ ∅.

For the forward direction, observe that initially |� ∩ B | = |/ ∩ B | ≥ 1, and that no iteration ever

decreases any |� ∩ B | from 1 to 0. The reverse direction is obvious because � ⊂ /.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 11

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

We can verify that / \ � satisfies the induction hypothesis, i. e., that every 8 ∈ / \ � is

(: − 1)-needed. Indeed, since 8 ∈ /, it is :-needed by some B ∈ S, as expressed by (2.1), and by

the claim, this same B also satisfies |� ∩ B | ≥ 1. Hence, |(/ \ �) ∩ B | ≤ : − 1, which shows 8 is

(: − 1)-needed. Applying the induction hypothesis, we have |/ \ �| ≤ (: − 1) ·HHdim(S).
In addition, � satisfies the induction’s base case : = 1, because the iterations stop when

every 8 ∈ � is 1-needed. Hence |�| ≤ HHdim(S), and we conclude that |/ | = |/ \ �| + |�| ≤
: ·HHdim(S). �

Our algorithm is based on simulating the simple estimator defined in the following lemma.

(The difficulty will be to apply it to B ◦ E for B ∈ S that is not known in advance.)

Lemma 2.6. Fix E ∈ ℝ= , and sample its coordinates to form E′ ∈ ℝ= as follows. Suppose each coordinate
is E′

8
= E8-8 , where -1 , . . . , -= are pairwise-independent identically distributed Bernoulli random

variables with parameter ? ∈ (0, 1]. Then

E
[

1

? ‖E
′‖0

]
= ‖E‖0 , Var

(
1

? ‖E
′‖0

)
=

1−?
? ‖E‖0 , and

Pr

[�� 1

? ‖E
′‖0 − ‖E‖0

�� ≥ 3(1−?? ‖E‖0)
1/2

]
≤ 1

9
.

Proof. The expectation and variance follow from direct calculation (note that it suffices to assume

pairwise independence). The tail bound is straightforward from Chebyshev’s inequality. �

Our basic algorithm for storing a subsample of the coordinates is described in Algorithm 1.

The idea is to sample the universe [=] at rate ? ∈ (0, 1] using pairwise independent random

variables �1 , . . . , �= ∈ {0, 1} (this can be viewed as a hash function � : [=] → {0, 1}). We store

the sampled items (coordinates) from the stream so long as they are “needed” by some B ∈ S,
or more precisely, *-needed in the sense of Proposition 2.5. Here, the budget parameter *

represents a “local” bound that holds separately for each B ∈ S. We show that at the end, for

every B ∈ S, if B contains at most* sampled coordinates, then all these samples are completely

stored; otherwise, the number of samples stored is at least* . We will later use this algorithm to

simulate a pairwise-independent sampling from a desired B ∈ S.

Lemma 2.7. Consider Algorithm 1 for S ⊂ {0, 1}= with parameters ? ∈ (0, 1] and* ∈ [1, =]. When
run on an insertion-only stream accumulating to E ∈ ℝ= , it makes one pass, uses $(*) ·HHdim(S)
words of space, and outputsℋ ⊂ [=] of size |ℋ | ≤ * ·HHdim(S). Moreover, suppose that � ∈ {0, 1}=
is the sampling vector from the algorithm. Then for every B ∈ S, if ‖� ◦ B ◦ E‖

0
≤ * then

supp(� ◦ B ◦ E) ⊂ ℋ ;

and otherwise |ℋ ∩ B | ≥ * .

Proof. Observe that after each update operation, every 8 ∈ ℋ is*-needed, i. e.,

∃B ∈ S , 8 ∈ B and |B ∩ℋ| ≤ *.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 12

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

Algorithm 1 Bounded-Sampler for S ⊂ {0, 1}=
1: Input: ? ∈ (0, 1], * ∈ [1, =], an insertion-only stream 〈01 , . . . , 0<〉, where each item 0 9 ∈ [=]
2: Initialize:
3: ℋ ← ∅
4: pick random �1 , . . . , �= ∈ {0, 1}= , with each Pr[�8 = 1] = ? and pairwise independent

5: Update(0 9):
6: if �0 9 = 1 and 0 9 ∉ ℋ then
7: ℋ ←ℋ ∪ {0 9}
8: while there is 8 ∈ ℋ such that all B ∈ S with 8 ∈ B satisfy |B ∩ℋ| > * do
9: remove this 8 fromℋ ⊲ remove 8 that is not*-needed

10: Query():
11: returnℋ ⊲ implicit answer supp(� ◦ B ◦ E) for each B ∈ S

By applying Proposition 2.5 to thisℋ we have that |ℋ | ≤ * ·HHdim(S). This bound applies in

particular to the outputℋ , and also implies that the algorithm uses $(*) ·HHdim(S)words of

space.

Now consider ℋ at the end of the stream, and some B ∈ S. Let / = supp(� ◦ B ◦ E). If

|/ | ≤ * , then every 8 ∈ / must have been stored in the finalℋ (because it must be added at

some update and can never be removed), which proves that / ⊂ ℋ .

Next, suppose that |/ | > * . Observe that every index 8 ∈ / is added at some point toℋ ,

hence |B ∩ℋ| is increased more than* times. Moreover, whenever any 8 ∈ B ∩ℋ is removed

fromℋ , it may only decrease |B ∩ℋ| from* + 1 to* , but never below* . It follows that at the

end of the execution, |B ∩ℋ| ≥ * . �

We shall use Algorithm 1 as a subroutine twice, first to compute an $(1)-approximation

to a query B ∈ S, and then (a refined version of it) to compute a (1 ± �)-approximation. En

route to an $(1)-approximation, we introduce Algorithm 2, which simply runs Algorithm 1

in parallel Θ(log log =) times, and then when given a query B ∈ S, it outputs one bit. The next
lemma shows that this algorithm solves a promise (gap) version of the subset-ℓ0 problem: if

‖E ◦ B‖
0
≤ 1/(2?) then with high probability it outputs 0, and if ‖E ◦ B‖

0
≥ 2/? then with high

probability it outputs 1.

Lemma 2.8. Consider Algorithm 2 for S ⊂ {0, 1}= with parameter A ∈ [1
4
, =]. When run on an

insertion-only stream accumulating to E ∈ ℝ= , it makes one pass and uses $(log log = ·HHdim(S))
words of space, and then when queried for B ∈ S, with probability at least 1 − $(1/log

2 =) its output
satisfies: if ‖E ◦ B‖0 ≤ A/2 the output is 0, and if ‖E ◦ B‖0 ≥ 2A the output is 1.

Proof. The algorithm’s space usage is dominated by the C instances of the Bounded-Sampler,

and thus follows from Lemma 2.7.

If A ≤ * , then ? = 1 and the algorithm is deterministic, with the following guarantee by

Lemma 2.7. If ‖B ◦ E‖
0
≤ A/2 ≤ * , then I = ‖B ◦ E‖

0
is an exact estimator, and the output is 0. If

‖B ◦ E‖
0
≥ 2A, then I ≥ min(‖B ◦ E‖

0
, *) ≥ A and the output is 1.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 13

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

Algorithm 2 Constant-Detector for S ⊂ {0, 1}=

1: Input: A ∈ [1
4
, =], an insertion-only stream 〈01 , . . . , 0<〉, where each item 0 9 ∈ [=]

2: Initialize:
3: * ← 100, ? ← min(1, */A), C ← Θ(log log =)
4: letA1 , . . . ,AC be instances of Bounded-Sampler with parameters ? and*

5: Update(0 9):
6: update eachA8 with 0 9
7: Query(B ∈ S):
8: query eachA8 for B and letℋ8 be its output

9: Ī ← 1

? ·median

(
|ℋ1 ∩ B |, . . . , |ℋC ∩ B |

)
10: return 1{Ī≥A}

We thus assume henceforth that A > * and thus ? = */A. Consider an instanceA8 of the

Bounded-Sampler, letℋ8 be its output, and let �8 ∈ {0, 1}= be its sampling vector. We would

like to analyze the quantity
1

? |ℋ8 ∩ B | used in the algorithm.

Now suppose ‖B ◦ E‖0 ≥ 2A = 2*
? . Then by Lemma 2.6, the expectation is E[1?

�8 ◦ B ◦ E

0

] =
‖B ◦ E‖

0
, and with probability at least 8/9,

1

?

�8 ◦ B ◦ E

0

≥ ‖B ◦ E‖
0
− 3

(
1−?
? ‖B ◦ E‖0

)
1/2 ≥ ‖B ◦ E‖

0
− 3

(2*)1/2 ‖B ◦ E‖0 ≥
3

4
‖B ◦ E‖

0
≥ 3*

2? .

In this event,

�8 ◦ B ◦ E

0

≥ 3*
2
> * , which by Lemma 2.7 implies that |ℋ8∩B | ≥ * , and therefore

the estimate obtained from the instance A8 is
1

? |ℋ8 ∩ B | ≥ 1

?* ≥ A. By a standard probability

amplification argument, i. e., Chernoff bound, with probability at least 1 − $(1/log
2 =), the

median of C independent repetitions is Ī ≥ A, and the output is 1.

Suppose next that ‖B ◦ E‖0 ≤ A
2
= *

2? . Then by Lemma 2.6, with probability at least 8/9,

1

?

�8 ◦ B ◦ E

0

≤ ‖B ◦ E‖
0
+ 3

(
1−?
? ‖B ◦ E‖0

)
1/2 ≤ *

2? + 3

? (*2)
1/2 ≤ 3*

4? .

In this event,

�8 ◦ B ◦ E

0

≤ 3*
4

which by Lemma 2.7 implies thatℋ8 ∩ B = supp(�8 ◦ B ◦ E), and
therefore the estimate obtained from the instanceA8 is

1

? |ℋ8 ∩ B | = 1

?

�8 ◦ B ◦ E

0

≤ 3*
4? < A. By

a standard probability amplification argument, i. e., Chernoff bound, with probability at least

1 − $(1/log
2 =), the median of C independent repetitions is Ī < A, and the output is 0. �

Using Algorithm 2 we can now easily design an algorithm achieving $(1)-approximation.

This algorithm uses standard ideas from the literature, like subsampling a stream at different

rates, which goes back to [28]). We adapt it here to our setting of a set system.

Lemma 2.9 (8-approximation algorithm). There is an algorithm that when run for S ⊂ {0, 1}= with
parameter A ∈ [1

4
, =] on an insertion-only stream accumulating to E ∈ ℝ= , makes one pass and uses

$(log = · log log = ·HHdim(S)) words of space, and then when queried for B ∈ S, it output a number
I that with probability at least 0.99 satisfies ‖B ◦ E‖0 < I < 8‖B ◦ E‖0.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 14

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

Proof. The algorithm consists of ; = $(log =) parallel independent instances of Algorithm 2,

denoted ℬ0 ,ℬ1 , . . . ,ℬ; . For each instance ℬ9 , the parameter is A 9 = 2
9−2

. To process a query

B ∈ S, the algorithm queries every instance for this B. Let G 9 denote the output from instance ℬ9 .
By Lemma 2.8, G0 = 0 if and only if ‖B ◦ E‖0 = 0. Hence, G0 can be used to distinguish whether

‖B ◦ E‖0 = 0, and we may assume henceforth that ‖B ◦ E‖0 > 0.

The algorithm computes 9∗ which is the smallest 9 ≥ 1 such that G 9 = 0, and outputs

I = 2
9∗
. By Lemma 2.8 and a union bound, with probability at least 0.99, for all 9 = 1, . . . , ;, if

‖B ◦ E‖0 ≥ 2A 9 = 2
9
then G 9 = 1, and if ‖B ◦ E‖0 ≤ A 9/2 = 2

9−2
then G 9 = 0. Assuming this event

happens, and by applying the first condition to 9∗ and the second one to 9∗ − 1 (both in the

contrapositive form), we obtain 2
(9∗−1)−2 < ‖B ◦ E‖0 < 2

9∗ = I.

It is easy to verify the algorithm’s space requirement, and this completes the proof. �

We now design an (1± �)-approximation algorithm, by using the above $(1)-approximation

algorithm and a variant of Algorithm 1.

Algorithm 3Multiplicative Approximation for S ⊂ {0, 1}=
1: Input: � ∈ (0, 1), an insertion-only stream 〈01 , . . . , 0<〉, where each item 0 9 ∈ [=]
2: Initialize:
3: C ← Θ(log =)
4: let {A8}8=1,...,C be instances of Bounded-Sampler with parameters ?8 = 2

1−8
and * =

d400�−2e
5: let ℬ be an 8-approximation algorithm (from Lemma 2.9)

6: Update(0 9):
7: Update ℬ and eachA8 with 0 9
8: Query(B ∈ S):
9: query ℬ for B and let I be its output

10: ; ← max(1, dlog(I�2/100)e);
11: queryA; for B and letℋ; be its output

12: return 1

?;
|ℋ; ∩ B |;

Theorem 2.10. Consider Algorithm 3 for S ⊂ {0, 1}= with parameter � ∈ (0, 1). When run on an
insertion-only stream accumulating to E ∈ ℝ= , it makes one pass and uses $((�−2 + log log =) log = ·
HHdim(S)) words of space, and then when queried for B ∈ S, its output Î(B) satisfies5

∀B ∈ S , Pr

[̂
I(B) ∈ (1 ± �)‖B ◦ E‖0

]
≥ 0.8.

Proof. We assume ‖B ◦ E‖0 > 0, since otherwise the algorithm specified in Lemma 2.9 already

gives the correct answer. Next, by Lemma 2.9, with probability at least 0.99, the value I reported

by ℬ is an 8-approximation to ‖B ◦ E‖0, and for the rest of the proof we assume this event

5Our sketching algorithm uses pairwise-independent random bits, and its success probability can be amplified by

independent parallel repetitions of the algorithm. A possibly better approach is to use :-wise independent random

bits for larger : to amplify the success probability directly.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 15

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

happens. Consider ; as in the algorithm, and its corresponding ?; = 2
1−; = min(1, 200�−2/I),

then

min(1, 25�−2/‖B ◦ E‖0) ≤ ?; ≤ min(1, 200�−2/‖B ◦ E‖0).
Let /; ⊂ supp(B ◦ E) be the set of indices sampled in algorithm A; by the hash function �,
and recall it samples each index in supp(B ◦ E) with probability ?; pairwise independently. By

Lemma 2.6, with probability at least 0.8,��� 1

?;
|/; | − ‖B ◦ E‖0

��� ≤ 3(1−?;?;
‖B ◦ E‖0)1/2 ≤ �‖B ◦ E‖0 ,

which implies that |/; | ≤ (1 + �)?; ‖B ◦ E‖0 ≤ 400�−2 = * . When this happens, by Lemma 2.7

instance A; of Algorithm 1 outputs ℋ; that satisfies ℋ; ∩ B = /; , and we conclude that our

algorithm’s output is
1

?;
|ℋ; ∩ B | = 1

?;
|/; | ∈ (1 ± �)‖B ◦ E‖0.

The proof of Theorem 2.10 is completed by easily verifying the space usage of the algorithm.

�

2.3 Matching lower bound

We prove that for every set system S ⊂ {0, 1}= , the space complexity of every universal

streaming algorithm must beΩ(HHdim(S)), which matches Theorem 2.10 in terms of the linear

dependence on the heavy-hitter dimension.

Theorem 2.11. Let S ⊂ {0, 1}= be a non-empty set system. Suppose A is a (randomized) one-pass
streaming algorithm that solves the subset-ℓ? problem for S within approximation factor
 ≥ 1 for some
? ≥ 0. ThenA requires Ω(HHdim(S)) bits of space for some insertion-only stream input. Moreover,
if
 = 1 + � for some � ≥ 1/

√
maxB∈S ‖B‖0 and ? ≠ 1, then A requires Ω(HHdim(S) + �−2) bits of

space.

Proof. We begin with the lower bound for Ω(HHdim(S)). Let : = HHdim(S) ≥ 1, then

there exists a vector E ∈ ℝ=
such that |�((, E)| ≥ :. Without loss of generality, we can

assume E ∈ {0, 1}= since replacing each non-zero coordinate of E with 1 does not change

�(B, E) := supp(B) ∩ supp(E) for any B ∈ {0, 1}= .
Since S is given to the algorithm before the stream begins, we can use the vector E and the

algorithm S to design a one-way communication protocol that solves INDEX(:), in which Alice

is holding a binary vector G ∈ {0, 1}: of dimension : and Bob is holding index 8 ∈ [:]. Alice

needs to send one round of messages to Bob. Bob needs to figure out the 8-th coordinate in

Alice’s string. It is well-known that any protocol with at least constant probability of success

requires Ω(:) bits (see, e. g., [38]).
We now describe the protocol for the INDEX problem using the algorithm for the subset-ℓ?

problem. Firstly, since |�(S , E)| ≥ :, there exists B1 , B2 , . . . , B: ∈ S such that each ‖B 9 ◦ E‖0 = 1

and �(B 9 , E)s are disjoint. Therefore, each B 9 uniquely picks up a coordinate in E. We denote

the non-zero coordinate of B 9 ◦ E as I 9 . Alice and Bob (without communication) then map the

9-th element in [:] to the I 9-th coordinate in E. Alice then modifies E such that EI 9 = G 9 for

each 9. As such, Alice obtains a vector E′. She then converts the vector E′ to a insertion-only

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 16

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

stream and runs the algorithm A on vector E and sends the memory content to Bob. Bob

recovers the instance of the algorithm A and runs a query on approximating the ℓ? norm of

vector E′ ◦ B8 . Since ‖E′ ◦ B8 ‖? = G8 , Bob can recover an answer for the INDEX problem from any

-multiplicative approximation of ‖E′ ◦ B8 ‖? . Thus algorithmA must use Ω(:) bits of space in
the worst case.

Lastly, the Ω(�−2) lower bound follows from the standard lower bound for ℓ? norm [32]. �

Remark 2.12. For every ? ≤ 2, the lower bound Ω(HHdim(S) + �−2) is existentially tight up

to polylog(=)-factor. Indeed, the system S∗ = {41 , . . . , 4:−1 , [: . . =]} has HHdim(S∗) = |S∗ | = :,
but admits an algorithm with space usage $(HHdim(S∗) + 1/�2) by explicitly storing the first

: − 1 coordinates and running an ℓ?-norm algorithm for the coordinates-subset [: . . =]. Thus,
Theorem 2.11 provides the best-possible dependence on �.

Remark 2.13. Some set systemsS ⊂ {0, 1}= admit a stronger lower bound hand ofΩ(HHdim(S)·
�−2). Indeed, consider a set system with HHdim(S) disjoint subsets where each subset has

cardinality �−2
, then a lower bound follows by a reduction from HHdim(S) independent

instances of Gap Hamming Distance, and apply [4], which is based on [22, 12]. Thus, the space

complexity in Theorem 2.10 provides the best-possible dependence on �.

2.4 Strong lower bounds for turnstile and sliding-window models

We now show an impossibility result for the subset-ℓ? problem in richer data streams, namely,

the strict turnstile and sliding-window models. Specifically, we exhibit a family of subsets

that has a small heavy-hitter dimension but does not admit efficient (nontrivial) streaming

algorithms in those richer data streams. This shows a strong separation from the insertion-only

model.

Recall that in the turnstile model, the stream contains additive updates to a vector E ∈ ℝ=
,

which is initialized to all-zeros. As the updates may be negative, it captures both insertions and

deletions. In the strict turnstile model, the coordinates of E must remain non-negative at all

times. For an even integer =, let Sint ⊂ 2
[=]

be the family of all intervals of length =/2 (and thus

cardinality =/2 + 1), i. e.,

Sint :=
{
[0..0 + =/2] : 0 = 1, . . . , =/2

}
.

We next show that Sint has a small heavy-hitter dimension (much smaller than its cardinality

|Sint | = =/2), and thus admits efficient algorithms for insertion-only streams.

Proposition 2.14. HHdim(Sint) ≤ 2.

Proof. Consider any vector E ∈ ℝ=
. We claim that �(Sint , E) contains at most one index from

[1..=/2]. Indeed, if there is such an index at all, let 9 be the smallest one. Then there is B ∈ Sint

such that supp(B ◦ E) = { 9}, which implies that E 9+1 , . . . , E=/2 must all be equal to 0. It follows

that 9 + 1, . . . , =/2 ∉ �(Sint , E), and the claim follows. A symmetric claim applies to the indices

from [=/2 + 1..=], and thus |�(Sint , E)| ≤ 2. �

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 17

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

We now show a strong space lower bound for every streaming algorithm in the turnstile

model.

Theorem 2.15. Suppose A is a (randomized) one-pass streaming algorithm that solves the subset-ℓ?
problem for Sint within approximation factor
 ≥ 1 for some ? ≥ 0. Then for some turnstile stream input,
A requires Ω(=) bits of space.

Before proving the theorem, we recall a known communication lower bound, which was

introduced and proved in [6], following the classical Index problem from [40]. In the Augmented
Index problem, denoted AUG= , Alice holds a binary vector G ∈ {0, 1}= , and Bob holds an index

9 ∈ [=] and a sequence G 9+1 , . . . , G= ∈ {0, 1} (part of Alice’s vector). Alice then sends a single

round of message to Bob, who is required to output G 9 .

Theorem 2.16 (Lower Bound for Augmented Index [6]). In every shared-randomness protocol for
AUG= (with success probability at least 0.9), Alice must send Ω(=) bits.

We are now ready to prove our theorem.

Proof of Theorem 2.15. Without loss of generality, suppose = > 0 is an even integer. Suppose we

have an algorithmA that solves, with
-approximation, the subset-ℓ? problem of Sint. We now

describe a protocol that solves the AUG=/2 problem. Now Alice has a binary vector G ∈ {0, 1}=/2,
and Bob has an index 9 and G 9+1 , G 9+2 , . . . G=/2. Alice treats her vector G as a stream of updates

and feeds it toA. She then sends the memory content ofA to Bob. Bob continues runningA
based on the memory content received from Alice. He then feeds −G 9+1 ,−G 9+2 , . . . ,−G=/2 to the

stream. After this, Bob queries the set B 9 = [9 . . 9 + =/2]. If the algorithm answers a number > 0,

Bob then claims G 9 = 1. Otherwise he claims G 9 = 0.

To show the correctness, we observe that after Bob’s updates, the vector in the stream is

exactly G′ = (G1 , G2 , . . . , G 9 , 0, 0, . . . , 0). Therefore, G′ ◦ B 9 = (0, . . . , 0, G 9 , 0, . . . , 0). Hence if G 9 = 0,

then with probability at least 0.9,A outputs 0 and if G 9 ≠ 0, then with probability at least 0.9,A
outputs > 0. Thus, the lower bound of AUG=/2 implies a space lower bound ofA. �

A similar argument applies to the sliding-window model, where the stream has a parameter

, ≥ 1 called window-size, and the input vector E ∈ ℝ=
at any time C is determined by the last

, additive updates, i. e., items from time C −, or earlier in the stream expire (are ignored).

Theorem 2.17. Suppose A is a (randomized) one-pass streaming algorithm that solves the subset-ℓ?
problem for Sint within approximation factor
 ≥ 1 for some ? ≥ 0. Then for some sliding-window
stream input,A requires Ω(min(=,,)) bits of space.

Proof. Suppose we have an algorithm A that solves, with
-approximation, the subset-ℓ?
problem for Sint for the most recent, updates at any time C. Let 3 = min(=/2,,). We now

describe a protocol that solves the AUG3 problem. Now Alice has a binary vector G ∈ {0, 1}3,
and Bob has an index 9 and G 9+1 , G 9+2 , . . . G3. Alice treats her vector G as a stream of updates

and feeds it toA in an order G3 , G3−1 , . . . , G1. She then sends the memory content ofA to Bob.

Bob continues running A based on the memory content received from Alice. He then feeds

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 18

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

arbitrary updates for G 9−1 to the stream such that all updates of G3 , G3−1 , . . . , G 9+1 expire except

the update of G 9 , i. e., Bob sends, −∑3
9′=9+1

G 9′ updates to the (9 − 1)-st coordinate of E. After

this, Bob queries the set B 9 = [9 , 9 + =/2]. If the algorithm answers a number > 0, Bob then claims

G 9 = 1. Otherwise he claims G 9 = 0.

It is easy to verify the correctness of the protocol and hence proves a Ω(min(=,,)) space
lower bound of the algorithm. �

2.5 Streaming algorithm with “for all” guarantee

We now show how to extend our algorithm to achieve the “for all” guarantee using space usage

$̃�(HHdim(S)2). The key is to establish a connection between the heavy-hitter dimension and

the VC-dimension (of every set system S), and the algorithm then follows by the standard

technique of amplifying the success probability by independent repetitions.

Recall that the VC-dimension of S is defined as the maximum cardinality of a set � ⊂ [=]
that is shattered, where � is called shattered if every subset of � can be realized as �∩(for some

(∈ S. The heavy-hitter dimension can be defined analogously, by modifying the definition

of being shattered to this: for every element 0 ∈ �, there is (∈ S such that (∩ � = {0}. It
then follows easily that VCdim(S) ≤ HHdim(S), proved formally in Proposition 2.18 below.

However the gap between them cannot be bounded by any fixed factor. For instance, when S is

the set of : ∈ [=] singleton sets, VCdim(S) = 1 whereas HHdim(S) = :.
Proposition 2.18. Let S ⊂ 2

[=], and denote its VC-dimension by VCdim(S). Then
VCdim(S) ≤ HHdim(S).

Proof. We show that S cannot shatter any set of size HHdim(S) + 1. Suppose S can shatter a set

S with |(| = HHdim(S) + 1. Then for each 0 ∈ S, we have a set B0 ∈ S such that {0} = B0 ∩ (.
This in turn indicates HHdim(S) ≥ HHdim(S) + 1, a contradiction. �

Lemma 2.19 (Sauer-Shelah Lemma [43, 46]). Every S ⊂ 2
[=] with VC-dimension : has cardinality

|S| = $(=:).
The next theorem achieves the “for all” guarantee by standard amplification, namely, by

reporting the median value of $(log|S|) independent repetitions, and using the above to bound

this number of repetitions.

Theorem 2.20. For every S ⊂ {0, 1}= there is a one-pass streaming algorithm, that when run and
� ∈ (0, 1) on an insertion-only stream accumulating to E ∈ ℝ= , it uses$((�−2+log log =)·HHdim(S)2 ·
log

2 =) words of space, and then when queried for B ∈ S, its output Î(B) satisfies

Pr

[
∀B ∈ S , Î(B) ∈ (1 ± �)‖B ◦ E‖0

]
≥ 0.9.

Proof. We apply Algorithm 2.10 $(log|S|) times independently in parallel, and answer any

query using the median value of all the repetitions. For the space bound, we use Lemma 2.19

and Proposition 2.18 to bound the number of repetitions by

$(log|S|) ≤ $(VCdim(S) · log =) ≤ $(HHdim(S) · log =).

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 19

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

For the desired error bound we use a union bound over all B ∈ S, where the error probability for

a fixed query B ∈ S is at most 2
−Ω(log|S|) ≤ 0.1/|S| by a standard Chernoff bound and a suitable

choice of constants. �

2.6 Generalizing the algorithm to the subset-ℓ1 norm

In the insertion-only streaming model, the ℓ1 norm of a vector E is simply the sum of all updates

(effectively without absolute values). Thus, we can then reduce ℓ1 to ℓ0, and obtain an algorithm

for subset-ℓ1, as follows. Assuming that the stream length < is bounded by < = poly(=), we

convert each update 0 9 ∈ [=] to an update of the form (0 9 , 9) to E′ ∈ ℝ=×<
, a binary vector in a

larger dimension. It is easy to verify that ‖E′‖0 = ‖E‖1. We also convert the set system S ∈ 2
[=]

to the new universe as follows. For each B ∈ S, we expand each of its entries B8 to < duplicates

of B8 , which yields a new set system S′ ⊂ 2
[=×<]

. The following lemma shows that the new set

system S′ has the same-heavy hitter dimension as S.

Lemma 2.21. HHdim(S′) = HHdim(S).

Proof. We first show HHdim(S) ≤ HHdim(S′). For each vector E ∈ ℝ=
, we can pad each

coordinate with < − 1 zeros to obtain a vector E′. Therefore, |�(E,S)| = |�(E′,S′)| and thus

HHdim(S) ≤ HHdim(S′). We now show the other direction, HHdim(S′) ≤ HHdim(S). For
any vector E′ ∈ ℝ=×<

, suppose an B′ ∈ S′ satisfies supp(B′◦E′) = {(8 , 9)} for some (8 , 9) ∈ [=]×[<].
Then it must be the case that E(8 , 9′) = 0 for any 9′ ≠ 9 since (8 , 9′) ∈ B′ for all 9′ ∈ [<]. Suppose
|�(E′, (′)| = :, then there exists : distinct indices 81 , 82 , . . . , 8: ∈ [=] and some : indices

91 , 92 , . . . 9: ∈ [<] such that for each ; ∈ [:] there exists B′
;
∈ S′ with supp(B′

;
◦ E′) = {(8; , 9;)}.

Consider a corresponding vector E ∈ ℝ=
with only E8; = 1 for ; = 1, 2, . . . , : and other places 0.

Then we have, for each ; ∈ [:], supp(B; ◦ E) = {8;}, where B; is the corresponding set of B′
;
. Hence

HHdim(S′) ≤ HHdim(S). �

We can now apply our algorithm for subset-ℓ0 on E
′
, and obtain an algorithm for the subset-ℓ1

norm.

Theorem 2.22. There is an algorithm that when run on an insertion-only stream that accumulates to E ∈
ℝ= and has length poly(=), the algorithm makes one pass using $((�−2+ log log =) log = ·HHdim(S))
words of space, and then when queried for B ∈ S, its output Î(B) satisfies

∀B ∈ S , Pr[̂I(B) ∈ (1 ± �)‖B ◦ E‖1] ≥ 0.9.

2.7 The entrywise update model

In this section, we show an algorithm that computes the subset-ℓ? in the entrywise update model.

For the entrywise update model, the algorithm for ℓ? is essentially equivalent for all ? ≥ 0,

because when an entry E8 arrives, the algorithm can simply raise it to power ? for free. Therefore,

we show only an algorithm for the subset-ℓ1 problem, and the algorithms for all other ? follows

automatically. Unlike the priority sampling algorithm of [48, 1, 26], we simply reduce each

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 20

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

entrywise update to a sequence of updates to an insertion-only stream of a higher-dimensional

vector.

Specifically, we assume that all entrywise updates are integers bounded by < = poly(=),
which ensures that every entry can be stored using $(log =) bits. Given an entrywise update,

say entry E8 in a vector E ∈ ℝ=
, our algorithm converts it to a sequence of E8 updates to a vector

E′ ∈ ℝ=×<
; similarly to Section 2.6, these updates are of the form ((8 , 9), 1) for 9 = 1, 2, . . . , E8 , and

we also convert the set system S ∈ 2
[=]

to a corresponding set system S′ ⊂ 2
[=×<]

. By applying

Theorem 2.22, we obtain the following corollary.

Corollary 2.23. Let S ⊂ 2
[=] be an arbitrary set system. Let ? ≥ 0, � ∈ (0, 1). In the entrywise update

model of an vector E ∈ ℝ= , there exists an algorithm that uses $((�−2 + log log =) log = ·HHdim(S))
words of space and for each query B ∈ S, it outputs a (1 ± �) approximation to ‖B ◦ E‖? with probability
at least 0.9.

3 Additive error for subset-ℓ? norms

In this section we design additive-error approximation algorithms for subset-norms (in contrast

to multiplicative approximation in the preceding section). Consider a set system S ⊂ 2
[=]
. If

S includes the all-ones vector (i. e., the set [=]), then the space complexity of (�‖E‖?)-additive
approximation of subset-ℓ? norm is clearly at least that of (1 + �)-multiplicative approximation

of subset-ℓ? norm (simply because of the entire vector E). We present an algorithm that matches

this lower bound, up to poly(�−1
log =) factors, for every ? ∈ (0,∞). It works for all possible

subsets, i. e., the set system S = 2
[=]

.

Theorem 3.1. Given ? ∈ (0,∞) and � ∈ (0, 1), Algorithm 4 makes a single pass over a data stream of
additive updates to a vector E ∈ ℝ= , and outputs a function � : {0, 1}= → ℝ that satisfies

∀B ∈ {0, 1}= , Pr

[
�(B) ∈ ‖B ◦ E‖? ± 2�‖E‖?

]
≥ 0.75,

where the probability is over the algorithm’s randomness. Moreover, the space complexity of the algorithm
and the function � is $?(�−3

polylog(=)) bits for ? ≤ 2 and $?(�−3=1−2/?
polylog(=)) bits for ? > 2.

At a high-level, Algorithm 4 follows the framework developed in [36, 5, 20], where every

coordinate is scaled at random and then the Count-Sketch algorithm is used to find heavy-hitters.

We employ a specific simple method established in [20], and thus need the following definition

and lemma from their work.

Definition 3.2 (
-inverse distribution [20]). Let
 ∈ (0,∞) be a parameter. The distribution of a

random variable - ∈ ℕ = {1, 2, . . .} is called
-inverse if

∀G ∈ ℕ, Pr[- < G] = 1 − 1

G

. (3.1)

Lemma 3.3 (Lemma 4 in [20]). Let ? ∈ (0,∞) and � ∈ (0, 1). Let : ≥ 2?�−2 be an even integer for
large enough 2? > 0 that depends only on ?. Let - ∈ ℝ:×= be a random matrix, whose entries have a

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 21

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

?-inverse distribution and they are pairwise independent. Given E ∈ ℝ= , let - ◦ E ∈ ℝ:×= be a matrix
given by (- ◦ E)8 , 9 := -8 , 9E 9 . Let / be the (:/2)-largest entry in absolute value in - ◦ E. Then

Pr

[
2
−1/? |/ | ∈ (1 ± �)‖E‖?

]
≥ 0.9.

We henceforth define+ := - ◦ E ∈ ℝ:=
, and view it as a vector by simply flattening the : × =

matrix. Throughout, let +
tail(:) denote the vector obtained from + by zeroing the : entries of

largest absolute value. Thus,

‖+
tail(:)‖22 :=

:=∑
9=:+1

+2

[9] ,

where*[9] denotes the 9-largest coordinate in absolute value in* .

Another ingredient is the famous Count-Sketch algorithm of [23], but we need a well-known

and slightly stronger guarantee from [25], as follows.

Proposition 3.4 (Lemma 7 in [25]). There is a one-pass algorithm, Count-Sketch, with parameters
: ∈ ℕ and �′ ∈ (0, 1), that given a stream of additive updates to a vector + ∈ ℝ=′, uses space of
$(:/�′2 · log

3 =′) bits to output an estimate +̂ ∈ ℝ=′, such that with high probability 1 − 1/=′2,

‖+̂ −+ ‖∞ ≤
�′√
:
‖+

tail(:)‖2.

We can now present our Algorithm 4 which is used in Theorem 3.1. The idea is to use

the estimator from Lemma 3.3, but in order to save space, instead of storing + = - ◦ E ∈ ℝ:=

explicitly, it estimates this vector using the Count-Sketch algorithm (where the parameters :

and �′ in Proposition 3.4 are set to : and �′(?, �, =) given in line 5 of Algorithm 4). We write +|B ,
for B ∈ {0, 1}= (representing B ⊂ [=]), to denote the vector obtained by restricting + to entries

corresponding to (8 , 9)where 8 ∈ [:] and 9 ∈ B (i. e., zeroing all other entries).

Before proving Theorem 3.1, we need the next lemma to bound the error of the Count-Sketch

algorithm in our setting. Its proof follows from a direct calculation and appears in Section 3.1.

Lemma 3.5. Let + := - ◦ E ∈ ℝ:= be a vector defined as in Lemma 3.3. Then with probability at least
0.9,

+

tail(:)

2

2

≤ �? ·


:‖E‖2? if ? < 2,

:‖E‖2
2
≤ :‖E‖2? · =1−2/? if ? > 2,

:‖E‖2
2
· log = if ? = 2.

holds for a suitable �? > 0 that depends only on ?.

Proof (of Theorem 3.1). We know by Lemma 3.3 that to estimate ‖E ◦ B‖? , it suffices to find the

(:/2)-largest coordinate in absolute value in +|B for : = Θ(�−2), and report its absolute value

scaled by 2
−1/?

. Observe that the input to the Count-Sketch instance CS is exactly the vector

+ = - ◦ E, and thus, with probability at least 0.99, its output vector +̂ satisfies

‖+̂ −+ ‖∞ ≤
�′√
:
‖+

tail(:)‖2 , (3.2)

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 22

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

where �′ is defined in line 5 of Algorithm 4, and we assume henceforth this event occurs.

Now let Î be as in the algorithm, i. e., the (:/2)-largest coordinate in absolute value in +̂|B ,
and let I be similarly in +|B . It follows easily from (3.2) that

|̂I − I | ≤ �′√
:
‖+

tail(:)‖2. (3.3)

Indeed, by definition of I, at least :/2 coordinates in +|B have value at least I, and (3.2) implies

that all the corresponding coordinates in +̂|B have value at least I − �′√
:
‖+

tail(:)‖2, which implies

Î ≥ I − �′√
:
‖+

tail(:)‖2. The other direction is proved similarly.

We now bound the additive error in (3.3) using Lemma 3.5. By plugging in the value of

�′ (depending on whether ? < 2, ? > 2, or ? = 2) and setting a sufficiently small 2′? > 0, with

probability at least 0.9,

�′√
:
‖+

tail(:)‖2 ≤ 2′?�
1/2
? · � ‖E‖? ≤ 2

1/? · �‖E‖? ,

thus 2
−1/? |̂I − I | ≤ � ‖E‖? . The claimed overall accuracy now follows, via a union bound, from

this last bound and Lemma 3.3.

To complete the proof, observe that the space complexity is dominated by that of the

Count-Sketch instance, which is $(:/�′2 · polylog(=)) bits (Proposition 3.4), as required. �

Boosting the probability. The algorithm in Theorem 3.1 is oblivious to the vector B, and thus

one can boost its success probability by parallel repetition and reporting the median estimate.

In particular, with only an $(log |S|) factor increase in the space, the additive approximation

will hold simultaneously for all the sets (∈ S.

3.1 Proof of Lemma 3.5

Proof of Lemma 3.5. We will prove the lemma separately for ? > 2 and for ? ≤ 2.

Case ? > 2: By definition of + ,

‖+ ‖2
2
=

∑
8∈[:], 9∈[=]

+2

8 , 9 and E[‖+ ‖2
2
] =

∑
8∈[:], 9∈[=]

E2

9 E[-
2

8 , 9].

To calculate E[-2

8 , 9
], observe that (3.1) implies Pr[-8 , 9 = G] = 1/G? − 1/(G + 1)? for all G ∈ ℕ, and

therefore

E[-2

8 , 9] =
∞∑
G=1

(G2

G?
− G2

(G + 1)?
)
=

∞∑
G=1

G2

G?
−
∞∑
G=2

(G − 1)2
G?

≤ �′?
∞∑
G=1

1

G?−1

≤ �′′? .

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 23

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

Algorithm 4 Additive Subset-ℓ? of E ∈ ℝ=

1: Input: ? ∈ (0,∞) and � ∈ (0, 1)
2: Initialize:
3: : ← Θ(�−2) ⊲ : is an even integer

4: generate a random matrix - ∈ ℝ:×=
whose entries have a ?-inverse distribution and they

are pairwise independent

5: initialize a Count-Sketch instance CS for a vector + ∈ ℝ:=
with parameters : and

�′ = 2′? ·


� for ? < 2;

�/(log =)1/2 for ? = 2;

�/=1/2−1/?
for ? > 2

for a suitable constant 2′? > 0 that depends on ?

6: Update(8 ,Δ):
7: feed the Count-Sketch instance CSwith : updates: ⊲maintain + = - ◦ E(

(1, 8), -1,8Δ
)
,
(
(2, 8), -2,8Δ

)
, . . . ,

(
(:, 8), -:,8Δ

)
.

8: Query(B ∈ {0, 1}=):
9: let +̂ be the estimate of + ∈ ℝ:=

provided by CS

10: let Î be the (:/2)-largest coordinate in absolute value in +̂|B .
11: return 2

−1/? |̂I |.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 24

http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

for some constants �′? , �
′′
? > 0 that depend on ?. Thus, E[‖+ ‖2

2
] ≤ �′′? : ‖E‖22, and by Markov’s

inequality, we obtain as claimed

Pr

[
‖+ ‖2

2
≥ 10�′′? : ‖E‖22

]
≤ 1

10

,

and we can also plug in the well-known comparison of norms ‖E‖
2
≤ ‖E‖1/2−1/?

? .

Case ? ≤ 2: Define the set

, :=

{
(8 , 9) ∈ [:] × [=] : |+8 , 9 | ≥ 20

1/? ‖E‖?
}
.

A simple calculation shows that

E[|, |] = :
∑
9∈[=]

Pr

[
|E 9 |-8 , 9 ≥ 20

1/? ‖E‖?
]
= :

∑
9∈[=]

|E 9 |?

20‖E‖??
=
:

20

.

By Markov’s inequality, the event ℰ = {|, | ≥ :} has probability Pr[ℰ] ≤ 1

20
. When the

complement event ℰ̄ occurs, every coordinate of +
tail(:) is not in, , i. e., has magnitude smaller

than 20
1/? ‖E‖? . Let us define the random variable

' :=
∑

8∈[:], 9∈[=]
E2

9-
2

8 , 9 · 1{|E 9 |-8 , 9≤20
1/? ‖E‖?} .

When ℰ̄ occurs, clearly ‖+
tail(:)‖2

2
≤ ', and we thus wish to bound ' (with high probability).

To this end, observe that for all 8 ∈ [:], 9 ∈ [=]with E 9 ≠ 0,

E
[
-2

8 , 9 · 1{|E 9 |-8 , 9≤20
1/? ‖E‖?}

]
=

(20)1/? ‖E‖?/|E 9 |∑
G=1

(G2

G?
− G2

(G + 1)?
)

≤ �′? ·
(20)1/? ‖E‖?/|E 9 |∑

G=1

1

G?−1

≤ �′′? ·
{
(‖E‖?/|E 9 |)2−? if ? < 2,

log = if ? = 2,

for some constants �′? , �
′′
? > 0 that depend on ?, where we used the fact that < = poly(=) and

thus log< = $(log =). It immediately follows that

E['] ≤ �′′? ·
{
:‖E‖2? if ? < 2,

:‖E‖2
2
· log = if ? = 2,

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 25

http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

By Markov’s inequality,

Pr

[
' ≥ 20�′′? · :‖E‖2?

]
≤ 1

20

for ? < 2

and Pr

[
' ≥ 20�′′? · :‖E‖22 log =

]
≤ 1

20

for ? = 2.

Now by a union bound on the above event and ℰ̄, with probability at least 0.9 we have

‖+
tail(:)‖22 ≤ ' <

{
20�′′? · :‖E‖2? if ? < 2,

20�′′? · :‖E‖22 log = if ? = 2,

which completes the proof of this case. �

4 Concluding remarks

To conclude, we study the universal streaming problem for subset-ℓ? norms, i. e., providing a

single summary of a stream of insertion-only updates to an input vector E ∈ ℝ=
, which suffices to

approximate any subset-ℓ0 norm from a given family S ⊂ 2
[=]

. (Recall that a subset-ℓ? norm of E

is the ℓ? norm of the vector induced by a subset of coordinates (∈ S.) We prove that the space

complexity of this problem is characterized by the heavy-hitter dimension of the set S, a notion
that we introduce and define as the maximum number (over all E ∈ ℝ=

) of distinct heavy-hitters

with respect to all subsets (∈ S. We further show that this characterization holds also for

subset-ℓ1 norms in the same insertion-only setting. However, it does not hold for more general

streaming models, namely, for the turnstile setting and the sliding-window setting, and thus there

is a strict separation between these models.

For subset-ℓ? norms with general ?, namely, every ? ∈ (0,∞)\{1}, we prove that the heavy-
hitter dimension characterizes the space complexity of universal streaming in the entrywise
updates model, where each coordinate of the vector is updated at most once. In the more general

model of insertion-only updates, it is remains open whether subset-ℓ? norms for ? ≠ 0, 1 admits

uniform streaming with space complexity $̃(HHdim(S)). For example, the major obstacle for

subset-ℓ2 norms is how to maintain the distinct ℓ2-heavy-hitters for every subset of coordinates

(∈ S. We leave this problem for future investigations.

References

[1] Noga Alon, Nick Duffield, Carsten Lund, and Mikkel Thorup: Estimating arbitrary

subset sums with few probes. In Proc. 24th Symp. on Principles of Database Systems (PODS’05),
pp. 317–325. ACM Press, 2005. [doi:10.1145/1065167.1065209] 2, 6, 20

[2] Noga Alon, Yossi Matias, and Mario Szegedy: The space complexity of approximating

the frequency moments. J. Comput. System Sci., 58(1):137–147, 1999. Preliminary version in

STOC’96. [doi:10.1006/jcss.1997.1545] 2, 5, 7

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 26

http://dx.doi.org/10.1145/1065167.1065209
https://doi.org/10.1145/237814.237823
http://dx.doi.org/10.1006/jcss.1997.1545
http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

[3] Alexandr Andoni: High frequency moments via max-stability. In Proc. 42nd Internat. Conf.
on Acoustics, Speech and Signal Processing (ICASSP’17), pp. 6364–6368. IEEE Comp. Soc.,

2017. [doi:10.1109/ICASSP.2017.7953381] 6, 8

[4] Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and

Qin Zhang: On sketching quadratic forms. In Proc. 7th Innovations in Theoret. Comp. Sci.
Conf. (ITCS’16), pp. 311–319. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[doi:10.1145/2840728.2840753, arXiv:1511.06099] 17

[5] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak: Streaming algorithms

via precision sampling. In Proc. 52nd FOCS, pp. 363–372. IEEE Comp. Soc., 2011.

[doi:10.1109/FOCS.2011.82] 6, 8, 21

[6] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar: The sketching

complexity of pattern matching. In Proc. 8th Internat. Workshop on Randomization and
Computation (RANDOM’04), pp. 261–272. Springer, 2004. [doi:10.1007/978-3-540-27821-
4_24] 8, 18

[7] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar: An information statistics

approach to data stream and communication complexity. J. Comput. System Sci., 68(4):702–
732, 2004. Preliminary version in FOCS’02. [doi:10.1016/j.jcss.2003.11.006] 5

[8] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan: Counting

distinct elements in a data stream. In Proc. 6th Internat. Workshop on Randomization and
Computation (RANDOM’02), pp. 1–10. Springer, 2002. [doi:10.1007/3-540-45726-7_1] 7

[9] Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha: Sim-

pler algorithm for estimating frequency moments of data streams. In Proc. 17th
Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’06), pp. 708–713. SIAM, 2006.

[doi:10.1145/1109557.1109634] 6

[10] Jarosław Błasiok: Optimal streaming and tracking distinct elements with high prob-

ability. ACM Trans. Algorithms, 16(1):3:1–28, 2020. Preliminary version in SODA’18.

[doi:10.1145/3309193, arXiv:1804.01642] 7

[11] Jarosław Błasiok, Vladimir Braverman, Stephen R. Chestnut, Robert Krauthgamer, and

Lin F. Yang: Streaming symmetric norms via measure concentration. In Proc. 49th STOC,
pp. 716–729. ACM Press, 2017. [doi:10.1145/3055399.3055424, arXiv:1511.01111] 2

[12] Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein: Information lower

bounds via self-reducibility. Theory Computing Sys., 59(2):377–396, 2016. Preliminary

version in CSR’13. [doi:10.1007/s00224-015-9655-z, ECCC:TR12-177] 17

[13] Vladimir Braverman and Stephen R. Chestnut: Universal sketches for the frequency

negative moments and other decreasing streaming sums. In Proc. 19th Internat. Workshop
on Randomization and Computation (RANDOM’15), pp. 591–605. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2015. [doi:10.4230/LIPIcs.APPROX-RANDOM.2015.591] 2

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 27

http://dx.doi.org/10.1109/ICASSP.2017.7953381
http://dx.doi.org/10.1145/2840728.2840753
http://arxiv.org/abs/1511.06099
http://dx.doi.org/10.1109/FOCS.2011.82
http://dx.doi.org/10.1007/978-3-540-27821-4_24
http://dx.doi.org/10.1007/978-3-540-27821-4_24
https://dl.acm.org/doi/10.5555/645413.652164
http://dx.doi.org/10.1016/j.jcss.2003.11.006
http://dx.doi.org/10.1007/3-540-45726-7_1
http://dx.doi.org/10.1145/1109557.1109634
https://doi.org/10.1137/1.9781611975031.156
http://dx.doi.org/10.1145/3309193
http://arxiv.org/abs/1804.01642
http://dx.doi.org/10.1145/3055399.3055424
http://arxiv.org/abs/1511.01111
https://doi.org/10.1007/978-3-642-38536-0_16
http://dx.doi.org/10.1007/s00224-015-9655-z
https://eccc.weizmann.ac.il/report/2012/177
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.591
http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

[14] Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang,

and David P. Woodruff: BPTree: An ℓ2 heavy hitters algorithm using constant memory. In

Proc. 36th Symp. on Principles of Database Systems (PODS’17), pp. 361–376. ACM Press, 2017.

[doi:10.1145/3034786.3034798, arXiv:1603.00759] 6

[15] Vladimir Braverman, Stephen R. Chestnut, David P. Woodruff, and Lin F. Yang: Streaming

space complexity of nearly all functions of one variable on frequency vectors. In Proc.
35th Symp. on Principles of Database Systems (PODS’16), pp. 261–276. ACM Press, 2016.

[doi:10.1145/2902251.2902282, arXiv:1601.07473] 2, 6

[16] Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger: An

optimal algorithm for large frequency moments using $(=1−2/:) bits. In Proc. 18th Internat.
Workshop on Randomization and Computation (RANDOM’14), pp. 531–544. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2014. [doi:10.4230/LIPIcs.APPROX-RANDOM.2014.531]

6

[17] Vladimir Braverman and Rafail Ostrovsky: Smooth histograms for sliding windows. In

Proc. 48th FOCS, pp. 283–293. IEEE Comp. Soc., 2007. [doi:10.1109/FOCS.2007.55] 4

[18] Vladimir Braverman and Rafail Ostrovsky: Zero-one frequency laws. In Proc. 42nd STOC,
pp. 281–290. ACM Press, 2010. [doi:10.1145/1806689.1806729] 2

[19] Vladimir Braverman, Rafail Ostrovsky, and Alan Roytman: Zero-one laws for sliding

windows and universal sketches. In Proc. 19th Internat. Workshop on Randomization and Com-
putation (RANDOM’15), pp. 573–590. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

2015. [doi:10.4230/LIPIcs.APPROX-RANDOM.2015.573] 2

[20] Vladimir Braverman, Emanuele Viola, David P. Woodruff, and Lin F. Yang: Revisiting

frequency moment estimation in random order streams. In Proc. 45th Internat. Colloq. on
Automata, Languages, and Programming (ICALP’18), pp. 25:1–14. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2018. [doi:10.4230/LIPIcs.ICALP.2018.25, arXiv:1803.02270] 8,

21

[21] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun: Near-optimal lower bounds on the

multi-party communication complexity of set disjointness. InProc. 18th IEEEConf. onComput.
Complexity (CCC’03), pp. 107–117. IEEE Comp. Soc., 2003. [doi:10.1109/CCC.2003.1214414]

5, 6

[22] Amit Chakrabarti and Oded Regev: An optimal lower bound on the communication

complexity of GAP-HAMMING-DISTANCE. SIAM J. Comput., 41(5):1299–1317, 2012.
[doi:10.1137/120861072] 17

[23] Moses Charikar, Kevin Chen, and Martin Farach-Colton: Finding frequent items in

data streams. Theoret. Comput. Sci., 312(1):3–15, 2004. Preliminary version in ICALP’02.

[doi:10.1016/S0304-3975(03)00400-6] 6, 22

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 28

http://dx.doi.org/10.1145/3034786.3034798
http://arxiv.org/abs/1603.00759
http://dx.doi.org/10.1145/2902251.2902282
http://arxiv.org/abs/1601.07473
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.531
http://dx.doi.org/10.1109/FOCS.2007.55
http://dx.doi.org/10.1145/1806689.1806729
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.573
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.25
http://arxiv.org/abs/1803.02270
http://dx.doi.org/10.1109/CCC.2003.1214414
http://dx.doi.org/10.1137/120861072
https://doi.org/10.1007/3-540-45465-9_59
http://dx.doi.org/10.1016/S0304-3975(03)00400-6
http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

[24] Edith Cohen, Nick Duffield, Haim Kaplan, Carstent Lund, and Mikkel Thorup: Algo-

rithms and estimators for summarization of unaggregated data streams. J. Comput. System
Sci., 80(7):1214–1244, 2014. [doi:10.1016/j.jcss.2014.04.009] 2

[25] Graham Cormode and S. Muthukrishnan: Combinatorial algorithms for compressed

sensing. In Proc. 13th Internat. Colloq. on Structural Information and Communication Complexity
(SIROCCO’06), pp. 280–294. Springer, 2006. [doi:10.1007/11780823_22] 22

[26] Nick Duffield, Carsten Lund, and Mikkel Thorup: Priority sampling for estimation of

arbitrary subset sums. J. ACM, 54(6):32, 2007. [doi:10.1145/1314690.1314696] 2, 3, 4, 5, 6, 8,

20

[27] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang:

On graph problems in a semi-streaming model. Theoret. Comput. Sci., 348(2–3):207–216,
2005. Preliminary version in ICALP’04. [doi:10.1016/j.tcs.2005.09.013] 2

[28] Philippe Flajolet and G. Nigel Martin: Probabilistic counting algorithms for data base

applications. J. Comput. System Sci., 31(2):182–209, 1985. [doi:10.1016/0022-0000(85)90041-8]
7, 14

[29] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and

Walter Willinger: Sonata: Query-driven streaming network telemetry. In Proc.
31st SIG Data Communication Conf. (SIGCOMM’18), pp. 357–371. ACM Press, 2018.

[doi:10.1145/3230543.3230555, arXiv:1705.01049] 3

[30] Sariel Har-Peled and Soham Mazumdar: On coresets for :-means and :-median clustering.

In Proc. 36th STOC, pp. 291–300. ACM Press, 2004. [doi:10.1145/1007352.1007400] 2

[31] Piotr Indyk: Stable distributions, pseudorandom generators, embeddings, and data

stream computation. J. ACM, 53(3):307–323, 2006. Preliminary version in FOCS’00.

[doi:10.1145/1147954.1147955] 2, 5

[32] Piotr Indyk and David P. Woodruff: Tight lower bounds for the distinct elements problem.

In Proc. 44th FOCS, pp. 283–288. IEEE Comp. Soc., 2003. [doi:10.1109/SFCS.2003.1238202]

5, 9, 17

[33] Piotr Indyk and David P. Woodruff: Optimal approximations of the frequency

moments of data streams. In Proc. 37th STOC, pp. 202–208. ACM Press, 2005.

[doi:10.1145/1060590.1060621] 2, 5

[34] T. S. Jayram and David P. Woodruff: Optimal bounds for Johnson-Lindenstrauss transforms

and streaming problems with subconstant error. ACM Trans. Algorithms, 9(3):26:1–17, 2013.
Preliminary version in SODA’11. [doi:10.1145/2483699.2483706] 7

[35] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff: Fast moment

estimation in data streams in optimal space. In Proc. 43rd STOC, pp. 745–754. ACM Press,

2011. [doi:10.1145/1993636.1993735, arXiv:1007.4191] 6

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 29

http://dx.doi.org/10.1016/j.jcss.2014.04.009
http://dx.doi.org/10.1007/11780823_22
http://dx.doi.org/10.1145/1314690.1314696
https://doi.org/10.1007/978-3-540-27836-8_46
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://dx.doi.org/10.1016/0022-0000(85)90041-8
http://dx.doi.org/10.1145/3230543.3230555
http://arxiv.org/abs/1705.01049
http://dx.doi.org/10.1145/1007352.1007400
https://doi.org/10.1109/SFCS.2000.892082
http://dx.doi.org/10.1145/1147954.1147955
http://dx.doi.org/10.1109/SFCS.2003.1238202
http://dx.doi.org/10.1145/1060590.1060621
https://doi.org/10.1137/1.9781611973082.1
http://dx.doi.org/10.1145/2483699.2483706
http://dx.doi.org/10.1145/1993636.1993735
http://arxiv.org/abs/1007.4191
http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

[36] Daniel M. Kane, Jelani Nelson, and David P. Woodruff: On the exact space complexity

of sketching and streaming small norms. In Proc. 21st Ann. ACM–SIAM Symp. on Discrete
Algorithms (SODA’10), pp. 1161–1178. SIAM, 2010. [doi:10.1137/1.9781611973075.93] 6, 21

[37] Daniel M. Kane, Jelani Nelson, and David P. Woodruff: An optimal algorithm for the

distinct elements problem. In Proc. 29th Symp. on Principles of Database Systems (PODS’10),
pp. 41–52. ACM Press, 2010. [doi:10.1145/1807085.1807094] 6, 7

[38] Ilan Kremer, Noam Nisan, and Dana Ron: On randomized one-round communication

complexity. Comput. Complexity, 8(1):21–49, 1999. Preliminary version in STOC’95, Errata

in Comput. Complexity 10 (2001), 314–315. [doi:10.1007/s000370050018] 16

[39] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir Braverman:

One sketch to rule them all: Rethinking network flow monitoring with univmon. In

Proc. 29th SIG Data Communication Conf. (SIGCOMM’16), pp. 101–114. ACM Press, 2016.

[doi:10.1145/2934872.2934906] 2

[40] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson: On data structures

and asymmetric communication complexity. J. Comput. System Sci., 57(1):37–49, 1998.
Preliminary version in STOC’95. [doi:10.1006/jcss.1998.1577] 18

[41] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat Arun,

Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim: Language-directed

hardware design for network performancemonitoring. In Proc. 30th SIGData Communication
Conf. (SIGCOMM’17), pp. 85–98. ACM Press, 2017. [doi:10.1145/3098822.3098829] 3

[42] Jelani Nelson: List of openproblems in sublinear algorithms: Problem30. sublinear.info,
accessed 2018-06-20. 2

[43] Norbert Sauer: On the density of families of sets. J. Combin. Theory–A, 13(1):145–147, 1972.
[doi:10.1016/0097-3165(72)90019-2] 19

[44] Vyas Sekar, Nick G. Duffield, Oliver Spatscheck, Jacobus E. van der Merwe, and Hui

Zhang: LADS: Large-scale automated DDoS detection system. In Proc. 12th USENIX
Annual Technical Conference, General Track (UATC’06), pp. 171–184. USENIX Association,

2006. USENIX. 3

[45] Vyas Sekar, Michael K. Reiter, and Hui Zhang: Revisiting the case for a minimalist

approach for network flow monitoring. In Proc. 10th SIGCOMM Internet Measurement Conf.
(IMC’10), pp. 328–341. ACM Press, 2010. [doi:10.1145/1879141.1879186] 2

[46] Saharon Shelah: A combinatorial problem; stability and order for models and theories in

infinitary languages. Pacific J. Math, 41(1):247–261, 1972. [doi:10.2140/pjm.1972.41.247] 19

[47] Anshumali Shrivastava, Arnd Christian Konig, and Mikhail Bilenko: Time adaptive

sketches (ada-sketches) for summarizing data streams. In Proc. 41st Internat. Conf. onManage-
ment of Data (SIGMOD’16), pp. 1417–1432. ACM Press, 2016. [doi:10.1145/2882903.2882946]

3

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 30

http://dx.doi.org/10.1137/1.9781611973075.93
http://dx.doi.org/10.1145/1807085.1807094
https://doi.org/10.1145/225058.225277
https://doi.org/10.1007/s000370100003
http://dx.doi.org/10.1007/s000370050018
http://dx.doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/225058.225093
http://dx.doi.org/10.1006/jcss.1998.1577
http://dx.doi.org/10.1145/3098822.3098829
https://sublinear.info/30
http://dx.doi.org/10.1016/0097-3165(72)90019-2
https://www.usenix.org/legacy/event/usenix06/tech/full_papers/sekar/sekar_html/lads.html
http://dx.doi.org/10.1145/1879141.1879186
http://dx.doi.org/10.2140/pjm.1972.41.247
http://dx.doi.org/10.1145/2882903.2882946
http://dx.doi.org/10.4086/toc

UNIVERSAL STREAMING OF SUBSET NORMS

[48] Mario Szegedy: The DLT priority sampling is essentially optimal. In Proc. 38th STOC, pp.
150–158. ACM Press, 2006. [doi:10.1145/1132516.1132539] 2, 4, 5, 6, 8, 20

[49] Daniel Ting: Data sketches for disaggregated subset sum and frequent item estimation. In

Proc. 44th Internat. Conf. on Management of Data (SIGMOD’18), pp. 1129–1140. ACM Press,

2018. [doi:10.1145/3183713.3183759, arXiv:1709.04048] 2, 3, 6

[50] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and Sunil P. Chakkappen: Join

size estimation subject to filter conditions. Proc. VLDB Endowment, 8(12):1530–1541, 2015.
[doi:10.14778/2824032.2824051] 3

[51] David P. Woodruff: Optimal space lower bounds for all frequency moments. In Proc. 15th
Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’04), pp. 167–175. SIAM, 2004. ACM

DL. 5, 7

AUTHORS

Vladimir Braverman

Associate professor

Department of Computer Science

Johns Hopkins University

Baltimore, Maryland, USA

vova cs jhu edu

https://www.cs.jhu.edu/~vova/

Robert Krauthgamer

Professor

Department of Computer Science and Applied Mathematics

The Weizmann Institute of Science

Rehovot, Israel

robert.krauthgamer weizmann ac il

http://www.wisdom.weizmann.ac.il/~robi/

Lin F. Yang

Assistant Professor

Department of Electrical and Computer Engineering

University of California, Los Angeles

Los Angeles, California, USA

linyang ee ucla edu

http://drlinyang.net

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 31

http://dx.doi.org/10.1145/1132516.1132539
http://dx.doi.org/10.1145/3183713.3183759
http://arxiv.org/abs/1709.04048
http://dx.doi.org/10.14778/2824032.2824051
https://dl.acm.org/doi/10.5555/982792.982817
https://dl.acm.org/doi/10.5555/982792.982817
https://www.cs.jhu.edu/~vova/
http://www.wisdom.weizmann.ac.il/~robi/
http://drlinyang.net
http://dx.doi.org/10.4086/toc

VLADIMIR BRAVERMAN, ROBERT KRAUTHGAMER, AND LIN F. YANG

ABOUT THE AUTHORS

Vladimir Braverman is an associate professor in theDepartment of Computer Science

at Johns Hopkins University, with a secondary appointment in the Department

of Applied Mathematics and Statistics. He is a member of the Algorithms and

Complexity group, the Johns Hopkins Mathematical Institute for Data Science

(MINDS), the Institute for Data Intensive Engineering and Science (IDIES) and

the Machine Learning group. Braverman graduated from UCLA; before that, he

was leading a research group at HyperRoll, a startup that was acquired by Oracle

in 2009. Braverman’s research interests include efficient sublinear algorithms

(such as sketches and coresets) and their applications to data science. He is a

recipient of an NSF CAREER award, a Google Faculty Award and a Cisco Faculty

Award.

Robert Krauthgamer (called “Robi” by his friends and colleagues) received his

Ph.D. at the Weizmann Institute of Science in 2001 under Uriel Feige. He was

subsequently a postdoc in Berkeley’s theory group, and then a Research Staff

Member at the theory group in the IBM Almaden Research Center. Since 2007,

he has been a faculty member at the Weizmann Institute of Science. Robi’s main

research area is the design of algorithms for problems involving combinatorial

optimization, finite metric spaces, high-dimensional geometry, data analysis, and

related areas. His favorite sport since youth has been swimming. Once he swam

across the Sea of Galilee in a 10 km competitive race, and was the last one to

arrive at the finish line.

Lin F. Yang is an assistant professor in the Electrical and Computer Engineering

Department at the University of California, Los Angeles. His research focuses on

developing and applying fast algorithms for machine learning and data science.

His current research focuses on reinforcement learning theory and applications,

learning for control, non-convex optimization, and streaming algorithms. He

received a Ph.D. in physics and a Ph.D. in computer science from Johns Hopkins

University and was a postdoctoral fellow at the Department of Operations

Research and Financial Engineering, Princeton University. He was a recipient of

the Simons Research Fellowship, the Dean Robert H. Roy Fellowship, and the

JHU MINDS best dissertation award.

THEORY OF COMPUTING, Volume 18 (20), 2022, pp. 1–32 32

http://www.weizmann.ac.il/
http://www.wisdom.weizmann.ac.il/~feige/
http://www.eecs.berkeley.edu/Research/Areas/THY/
https://researcher.watson.ibm.com/researcher/view_group.php?id=4207
http://www.almaden.ibm.com/
http://www.weizmann.ac.il/
http://en.wikipedia.org/wiki/Sea_of_Galilee
http://dx.doi.org/10.4086/toc

	Introduction
	Related work
	Preliminaries
	Technical overview

	The streaming complexity of subset-p norms
	Examples and properties of heavy-hitter dimension
	Streaming algorithm for the subset-0 norm
	Matching lower bound
	Strong lower bounds for turnstile and sliding-window models
	Streaming algorithm with ``for all'' guarantee
	Generalizing the algorithm to the subset-1 norm
	The entrywise update model

	Additive error for subset-p norms
	Proof of Lemma 3.5

	Concluding remarks
	References

