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Abstract. A community of = individuals splits into two camps, Red and Blue. The

individuals are connected by a social network, which influences their colors. Every

day each person changes their color according to the majority of their neighbors.

Red (Blue) wins if everyone in the community becomes Red (Blue) at some point.

We study this process when the underlying network is the random Erdős–Rényi

graph �(=, ?). With a balanced initial state (=/2 persons in each camp), it is clear

that each color wins with the same probability.

Our study reveals that for any constants ? and �, there is a constant 2 such that

if one camp has at least =/2 + 2 individuals at the initial state, then it wins with

probability at least 1 − �. The surprising fact here is that 2 does not depend on =,

the population of the community. When ? = 1/2 and � = .1, one can set 2 = 5,

meaning one camp has =/2 + 5 members initially. In other words, it takes only 5

extra people to win an election with overwhelming odds. We also generalize the

result to ? = ?= = o(1) in a separate paper.
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1 Introduction

1.1 The opinion exchange dynamics

Building mathematical models to explain how collective opinions are formed is an important

and interesting task (see [13] for a survey on the topic, with examples from various fields,

economy, sociology, statistical physics, to mention a few).

Obviously, our opinions are influenced by people around us, and this motivates the study

of the following natural and simple model: A community of = individuals splits into two

camps, Red and Blue, representing two competing opinions, which can be on any topic such

as brand competition, politics, ethical issues, etc. The individuals are connected by a social

network, which influences their opinion on a daily basis (by some specific rule). We say that

Red (respectively Blue) wins if everyone in the community becomes Red (respectively Blue) at

some point.

We study this process when the underlying network is random. In this paper, we focus on

the Erdős–Rényi random graph �(=, ?), which is the most popular model of random graphs

[4, 10]. We use the majority rule, which is a natural choice. When a new day comes, a vertex

scans its neighbors’ colors from the previous day and adopts the dominant one. If there is a tie,

it keeps its color.

Definition 1.1. The random graph �(=, ?) on = ∈ ℕ vertices and density ? ∈ (0, 1) is obtained
by putting an edge between any two vertices with probability ?, independently.

1.2 Results

With a balanced initial state (=/2 persons in each camp), by symmetry, each color wins with the

same probability @ < 1/2, regardless of ?. (Notice that there are graphs, such as the empty and

complete graphs, on which no one wins.) Our study reveals that for any given ? and �, there
is a constant 2 such that if one camp has at least =/2 + 2 individuals at the initial state, then it

wins with probability at least 1 − �. The surprising fact here is that 2 does not depend on =, the

population of the community. When ? = 1/2 and � = .1, one can set 2 as small as 5.

Theorem 1.2 (The power of few). Consider the (majority) process on �(=, 1/2). Assume that the Red
camp has at least =/2 + 5 vertices at the initial state, where = ≥ 1000. Then Red wins after the fourth
day with probability at least 90%.

This result can be statedwithout the Erdős–Rényi�(=, 1/2)model; one can state an equivalent

theorem by choosing the network uniformly, from the set of all graphs on = vertices.

This result reveals an interesting phenomenon, which we call “the power of few.” The

collective outcome can be extremely sensitive, as a modification of the smallest scale in the initial

setting leads to the opposite outcome.

Our result applies in the following equivalent settings.

Model 1. We fix the two camps, of sizes =/2 + 2 and =/2 − 2, and draw a random graph

� ∼ �(=, ?) over their union.
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Models 2. We draw a random graph � ∼ �(=, ?) first, let Red be a random subset of =/2 + 2
vertices (chosen uniformly from all subsets of that size), and Blue be the rest.

Model 3. We split the society into two camps of size =/2 each, then draw the random graph

� ∼ �(=, ?) on their union, then recolor 2 randomly selected Blue vertices to Red.

Model 4. Split the society into two camps (Red and Blue) of size =/2 − 2 each and a “swing”

group (with no color yet) of 22 individuals. Draw the random graph on their union. Now let

the swing group join the Red camp.

With Model 3, we can imagine a balanced election process at the beginning. Then 2 = 5

people move to the other camp. Theorem 1.2 asserts that this tiny group already guarantees the

final win with overwhelming odds. Similarly, Model 4 implies that a swing group of size 10

decides the outcome.

Our result can also be used to model the phenomenon that outcomes in seemingly identical

situations become opposite. Consider two communities, each has exactly = individuals, sharing

the same social network. In the first community, the Red camp has size =/2 + 2, and the Blue

camp has =/2 − 2. In the second community, the Blue camp has =/2 + 2 and the Red camp has

=/2 − 2. If = is large, there is no way to tell the difference between the two communities. Even if

we record everyone’s initial opinion, clerical errors will surely swallow the tiny difference of 22.

However, at the end, the collective opinion will be opposite, with high probability.

Now we state the general result for arbitrary constant density ?.

Theorem 1.3 (Asymptotic bound). Let ? be a constant in (0, 1) and 2= be a positive integer which may
depend on = . Assume that Red has =/2 + 2= in day 0 and the random graph is �(=, ?). Then Red wins
after four days with probability at least 1 −  (?)max{=−1 , 2−2

= }, where  (?) depends only on ?.

Both results follow from Theorem 1.6, which, in a slightly technical form, describes how the

process evolves day by day. Our results can be extended to cover the case when there are more

than 2 opinions; details will appear in a later paper [17].

1.3 Related results

Our problem is related to a well-studied class of opinion exchange dynamics problems. In the field

of Computer Science, loosely-related processes are studied in population protocols [2, 1], where

individuals/agents/nodes choose their next state based on that of their neighbors. The most

separating difference is the network, as connections in these models often randomly change with

time, while our study concerns a fixed network (randomly generated before the process begins).

The survey byMossel and Tamuz [13] discussed several models for these problems, including

the DeGroot model [6], where an individual’s next state is a weighted average of its neighbors’

current states, the voter model [5], where individuals change states by emulating a random

neighbor each day. The majority dynamics model is in fact the same as ours, and is also more

popular than the other two, having been studied in [12, 8, 3]. The key difference, as compared to

our study, is in the setups. In these earlier papers, each individual chooses his/her initial color

uniformly at random. The central limit theorem thus guarantees that with high probability, the

initial difference between the two camps is of order Θ(
√
=). Therefore, these papers did not
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touch upon the “power of few” phenomenon, which is our key message. On the other hand,

they considered sparse random graphs where the density ? = ?= → 0 as = → +∞.

In [3], Benjamini, Chan, O’Donnell, Tamuz, and Tan considered random graphs with

? ≥ �=−1/2
, where � is a sufficiently large constant, and showed that the dominating color wins

with probability at least .4 [3, Theorem 1.2], while conjecturing that this probability in fact tends

to 1 as = →∞. This conjecture was proved by Fountoulakis, Kang, and Makai [8, Theorem 1.1].

Theorem 1.4 (Fountoulakis, Kang, Makai). For any 0 < � ≤ 1 there is � = �(�) such that the
following holds for ? ≥ �=−1/2: With probability at least 1 − �, over the choice of the random graph
�(=, ?) and the choice of the initial state, the dominating color wins after four days.

For related results on random regular graphs, see [12, 13].

1.4 Extension for sparse random graphs

Note that the results presented in this paper only apply to a constant ?, which, in the context of

�(=, ?), produces dense graphs. For sparse graphs, i. e., when ? = ?= depends on = and tends to 0

as = → +∞, the main ideas in this paper can be used, but with different algebraic techniques, to

obtain a similar result.

Theorem 1.5. For any 0 < � ≤ 1 and � > 0 there is 2 = 2(�,�) such that for ? ≥ (1 + �)(log =)/=, if
Red starts with =/2 + 2/? members, then it wins with probability at least 1 − �.

The technical changes needed to prove this theorem require rewriting entire proofs with

new computations, so we leave the proof to our future paper [17]. Additional information

such as the length of the process and the explicit relation between the bound with ? and 2

will also be discussed there. Notice that when ? is a constant, this result covers the “Power of

Few” phenomenon as a special case, albeit with 2 much larger than 5. Thus, the techniques and

results in this paper still have merit since they achieve a specific, surprisingly small constant.

Theorem 1.5 no longer holds for ? < (log =)/= as in this case there are, with high probability,

isolated vertices. Any of these vertices keeps its original color forever. In this case, the number

of Blue vertices converges with time, and we obtain a bound on the limit in [17].

One can use Theorem 1.5 to derive a “delayed” version (in which Red may need more than 4

days) of Theorem 1.4, by first proving that with high probability, one side gains an advantage

of size at least �
√
= after the first day, for some constant �. This “majority side” then wins

with high probability given ? ≥ �=−1/2
(which satisfies the requirement ? ≥ (1+Ω(1))(log =)/=)

with � sufficiently large so that �� = ?�
√
= is large. The detailed argument is in Appendix A.

1.5 Notation

Below is the list of notations used throughout the paper.

• 1(: membership function of the set ( ⊂ + , so that 1((E) := 1E∈(.

• 'C , �C : Respectively the sets of Red and Blue vertices after day C. (At this point everyone

has updated their color C times.)
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• IC(D) := 1{D∈'C }: indicator of the event that D is Red after day C, taking values in {0, 1}.

• JC(D) := 2IC(D) − 1: indicator of the same event, but taking values in {−1, 1}.

• D ∼ E ≡ (D, E) ∈ �: Event that D and E are adjacent.

• #(E) := {D : D ∼ E}: The neighborhood of E.

• ,DE := 1{D∼E} - Indicator of the adjacency between D and E.

• Φ(0, 1) :=
∫ 1

0
e
−G2/2
√

2�
3G andΦ(0) := Φ(−∞, 0), Φ0(0) := Φ(0, 0). Note thatΦ(0) = Φ0(0)+1/2.

• Given a random variable -, we let supp(-) be the support of -, namely the smallest

subset ( of ℝ such that P(- ∉ () = 0. When - is discrete, supp(-) is simply the set of

possible values of -.

1.6 Main Theorem

Themain theorem concerns dense graphs, where ? is at least a constant. When given appropriate

values for the parameters, it implies the “Power of Few” phenomenon in Theorem 1.2.

Theorem 1.6. Assume ? is a real number in (0, 1) and = and 2 are positive integers such that

�(=, ?, 2) :=
√
=Φ0

(
2?2 +min{?, 1 − ?}√

?(1 − ?)=

)
− .6

1 − 2? + 2?2√
?(1 − ?)

− .8
?
> 0. (1.1)

Consider the election process on � ∼ �(=, ?) with
���0

�� ≤ =/2 − 2. We have

• P
(���1

�� ≤ =

2

− .8
√
=

?

)
≥ 1 − %1, where

%1 = %1(=, ?, 2) :=
.25 + .7

(
1 − 2? + 2?2

)
2
(
1 + 422=−2

)
�2(?, =, 2) .

• P
(���2

�� ≤ .4= ��� ���1

�� ≤ =

2

− .8
√
=

?

)
≥ 1 − %2, where

%2 = %2(=) := =−1

exp

(
−(.076= − 1.38

√
=)

)
.

• P
(���3

�� ≤ ?(= − 1)
3

��� ���2

�� ≤ .4=) ≥ 1 − %3, where

%3 = %3(=, ?) := =−1

exp

(
−.02=(?3= − 80)

)
.
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• P
(���4

�� = 0

��� ���3

�� ≤ ?(= − 1)
3

)
≥ 1 − %4, where

%4 = %4(=, ?) := = exp

(
−2

9

?2(= − 1)
)
.

Consequently, '4 = +(�) with probability at least 1 − (%1 + %2 + %3 + %4).

Note that the condition (1.1) is asymptotically the same as 2 = Ω(?−3/2).
The proof for this theorem has two main parts corresponding to the next two sections.

1. One day 1, the number of Red and Blue neighbors of each node are binomial with means

roughly =/2 + 2 and =/2 − 2 respectively. The central limit theorem then implies that

most of their masses are concentrated within an interval of length Θ(
√
=) around their

respective expectations. A subinterval of constant length in this interval has Θ(=−1/2)
mass. We thus expect that the probability that Reds outnumber Blues in the neighborhood

of a given node is 1/2 +Ω(=−1/2). Thus, we expect that the number of Red nodes after the

first day is =/2 +Ω(=1/2), meaning =/2 −Ω(=1/2) Blue nodes.1 We use this intuition to

find the right bound for

���1

��
in Theorem 1.6, and prove it in Section 2.

2. On subsequent days, the coloring depends on the graph so the argument for day 1 is

no longer available. We instead show that the number of Blues decreases regardless of

the coloring after day 1, as long as Red has Ω(
√
=) extra nodes. Using Hoeffding bound

(Theorem 3.1), we show that for a given coloring, the probability one can find “many”

nodes with a majority of neighbors in Blue is small, sufficiently to beat the union bound

over all colorings. This bypasses the dependency issue after day 1. The details are in

Section 3.

From Theorem 1.6, one can deduce Theorems 1.2 and 1.3 in a few steps.

Proof of Theorem 1.2. Assume Theorem 1.6. Observe that if Equation (1.1) holds for some value

of =, then it holds for all larger values of =. Let = ≥ 1000, ? = 1/2 and 2 = 5, we have (1.1)

satisfied. A routine calculation then shows that

%1(=, ?, 2) ≤ .0902, max

{
%2(=), %3(=, ?), %4(=, ?)

}
< 10

−10 ,

which implies that P (�4 ≠ ∅) < .1 or equivalently that Red wins in the fourth day with

probability at least .9 (conditioned on the event

���0

�� ≤ =
2
− 2). �

Proof of Theorem 1.3. In this proof, only = and 2 = 2= can vary. We can assume, without

loss of generality, that 2= ≤ =/2. Assuming Theorem 1.6, a routine calculation shows that

1While this paper was under review, Sah and Sawhney in a recent paper [14] showed that

���
1

��
obeys a Gaussian

limit law with mean =/2 − Θ(2√?=) and variance Θ(=)when = →∞ for ? > (log =)−1/16
.

THEORY OF COMPUTING, Volume 19 (6), 2023, pp. 1–21 6

http://dx.doi.org/10.4086/toc


REACHING A CONSENSUS ON RANDOM NETWORKS: THE POWER OF FEW

%2 , %3 , %4 = o(=−2) and, so %1 + %2 + %3 + %4 = %1 + o(=−2). By Theorem 1.6, we then have

P('4 = +(�)) ≥ 1 − (%1 + >(=−2)) = 1 −
.25 + .7(1 − 2? + 2?2)2

(
1 + 422=−2

)(√
= Φ0

(
2?2=+min{?,1−?}√

?(1−?)=

)
− .6(1−2?+2?2)√

?(1−?)
− .8

?

)
2

− >(=−2).

We make use of the fact Φ0 is increasing, while G ↦→ Φ0(G)/G is decreasing, which implies

Φ0(G) ≥ min{1, G/H}Φ0(H) ∀G, H > 0. Then:

√
=Φ0

(
2?2= +min{?, 1 − ?}√

?(1 − ?)=

)
≥
√
=min

{
1,

2=√
(1 − ?)=

}
Φ0

(
2

√
?
)

≥ min

{
√
=,

2=√
1 − ?

}
Φ0

(
2

√
?
)
≥ min

{√
=, 2=

}
Φ0

(
2

√
?
)
.

When = and 2= are both sufficiently large and ? is a constant, we have

min

{√
=, 2=

}
Φ0

(
2

√
?
)
≥ 2

[
.6(1 − 2? + 2?2)√

?(1 − ?)
+ .8
?

]
Therefore we can give a lower bound on the denominator of %1:

√
= Φ0

(
2?2= +min{?, 1 − ?}√

?(1 − ?)=

)
−
.6(1 − 2? + 2?2)√

?(1 − ?)
− .8
?
≥
Φ0

(
2

√
?
)

2

min

{√
=, 2=

}
.

Now we use the trivial facts 2= ≤ =/2 and 1 − 2? + 2?2 ≤ 1 to give an upper bound on the

numerator of %1:

.25 + .7(1 − 2? + 2?2)2
(
1 + 422=−2

)
≤ .25 + .7 · 1 · (1 + 1) < 2.

Combining the above, we get

%1 ≤
2(

min{2= ,
√
=}Φ0(2

√
?)/2

)
2

=
4Φ0(2

√
?)−2

min{
√
=, 2=}2

= 4Φ0(2
√
?)−2

max

{
1

=
,

1

22

=

}
.

The term >(=−2) is also absorbed into this bound, since =−2 < =−1
. Therefore we have

P('4 = +(�)) ≥ 1 −  (?)max

{
1

=
,

1

22

=

}
.

which is the desired bound where  (?) can be chosen as 4Φ0(2
√
?)−2 + 1. �
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1.7 Open questions

Let �(?, :, =) be the probability that Red wins if its camp has size =/2 + : in the beginning.

Theorem 1.2 shows that �(.5, 5, =) ≥ .9 (given that = is sufficiently large). In other words,

five defectors guarantee Red’s victory with overwhelming odds when ? = 1/2. In fact, we

have �(.5, 4, =) ≥ .77 by plugging in the same values for �1 and �2 with 2 = 4 in the proof of

Theorem 1.2. We conjecture that one defector already brings a non-trivial advantage.

Conjecture 1.7 (The power of one). There is a constant �(?) > 0 for each constant ? > 0 such that
�(?, 1, =) ≥ 1/2 + �(?) for all sufficiently large =. 1

In the following numerical experiment, we run ) = 10000 independent trials. In each trial,

we fix a set of # = 10000 nodes with 5001 Red and 4999 Blue (meaning 2 = 1), generate a

graph from �(#, 1/2), and simulate the process on the resulting graph. We record the number

of wins and the number of days to achieve the win in percentage in Table 1. Among others,

we see that Red wins within 3 days with frequency more than .9. The source code for the

simulation along with execution instructions can be found online at https://github.com/
thbl2012/majority-dynamics-simulation.

T p Red Blue Winner Last day Count Frequency

10
4

1/2 5001 4999 Blue 3 496 4.96 %

10
4

1/2 5001 4999 Blue 4 77 0.77 %

10
4

1/2 5001 4999 Blue 5 3 0.03 %

10
4

1/2 5001 4999 Blue 7 1 0.01 %

10
4

1/2 5001 4999 Red 2 25 0.25 %

10
4

1/2 5001 4999 Red 3 9313 93.13 %

10
4

1/2 5001 4999 Red 4 85 0.85 %

Table 1: Winners and winning days with their frequencies

Imagine that people defect from the Blue camp to the Red camp one by one. The value of the
8-th defector is defined as E(?, 8, =) := �(?, 8, =) − �(?, 8 − 1, =) (where we take �(?, 0, =) = 1/2).
It is intuitive to think that the value of each extra defector decreases. (Clearly defector number

=/2 adds no value.)

Conjecture 1.8 (Values of defectors). For any fixed ?, 8, and = large enough, E(?, 8, =) ≥ E(?, 8+1, =).2

It is clear that the Conjecture 1.8 implies Conjecture 1.7, with � = .4
5
= .08, although the

simulation results above suggests that � can be at least .43.

In the next two sections we give the proof of our main result, Theorem 1.6.

1Both Conjectures 1.7 and 1.8 are proven for ? > (log =)−1/16
in [14]. See footnote 1 a few paragraphs below

Theorem 1.6.

2See footnote 1 after Conjecture 1.7.
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2 Day One

Firstly, let us recall a few terms defined in Theorem 1.6.

�(=, ?, 2) :=
√
=Φ0

(
2?2 +min{?, 1 − ?}√

?(1 − ?)=

)
− .61 − 2? + 2?2√

?(1 − ?)
− .8
?
,

%1(=, ?, 2) :=
.25 + .7

(
1 − 2? + 2?2

)
2
(
1 + 422=−2

)
�(=, ?, 2)2 .

Lemma 2.1. Given ? ∈ (0, 1) and =, 2 ∈ ℕ such that �(=, ?, 2) > 0, The election process on� ∼ �(=, ?)
with

���0

�� ≤ =/2 − 2 satisfies
P

(���1

�� > =

2

− .8
√
=

?

)
≤ %1 (=, ?, 2) .

The core of the proof relies on some preliminary results regarding the difference of two

binomial random variables, which we discuss next.

2.1 Background on the difference of Binomial Random Variables

The difference of two binomial random variables with the same probability ? can be written as a

sum of independent random variables, each of which is either a Bin(1, ?) variable or minus of

one. A natural way to bound this sum is done via a Berry–Esseen normal approximation.

Theorem 2.2 (Berry–Esseen). Let = be any positive integer. If -1 , -2 , -3 , . . . , -= are random variables
with zero means, variances �2

1
, �2

2
, · · · , �2

= > 0, and absolute third moments E
[
|-8 |3

]
= �8 < ∞, we

have:

sup

G∈ℝ

�����P
(
=∑
8=1

-8 ≤ G
)
−Φ

(
G

�-

)����� ≤ �0 ·
∑=
8=1

�8

�3

-

,

where �- =
(∑=

8=1
�2

8

)
1/2 and �0 is a constant.

The original proof by Esseen [7] yielded �0 = 7.59, and this constant has been improved a

number of times. The latest work by Shevtsova [15] achieved �0 = .56, which will be used for

the rest of the paper. A direct application of this theorem gives the following lemma.

Lemma 2.3. For ? ∈ (0, 1), � =
√
?(1 − ?) and =1 , =2 ∈ ℕ such that =1 > =2. let.1 ∼ Bin(=1 , ?), .2 ∼

Bin(=2 , ?) be independent random variables. Then for any 3 ∈ ℝ,

P (.1 > .2 + 3) ≥
1

2

+Φ0

(
?(=1 − =2) − 3√
?(1 − ?)(=1 + =2)

)
−
.56

(
1 − 2? + 2?2

)√
?(1 − ?)(=1 + =2)

.
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Proof. Let - = .1 −.2. By definition, we have - = -1 + -2 + -3 + · · · + -=1+=2
, where all the -8

are independent and either -8 or −-8 is Bin(1, ?). Then E [-] = ∑
8 E [-8] = ?(=1 − =2). For all 8,

Var [-8] = ?(1 − ?) and E
[
|-8 − E [-8] |3

]
= ?(1 − ?)3 + (1 − ?)?3 = ?(1 − ?)(1 − 2? + 2?2).

Applying Theorem 2.2, we have

P (.1 ≤ .2 + 3) = P (- − E [-] ≤ 3 − ?(=1 − =2))

≤ Φ

(
3 − ?(=1 − =2)√

Var [-]

)
+ .56

∑
8 E

[
|-8 − E [-8] |3

]
Var [-]3/2

= Φ

(
3 − ?(=1 − =2)√
?(1 − ?)(=1 + =2)

)
+ .56

?(1 − ?)(1 − 2? + 2?2)(=1 + =2)
(?(1 − ?)(=1 + =2))3/2

=
1

2

−Φ0

(
?(=1 − =2) − 3√
?(1 − ?)(=1 + =2)

)
+ .56(1 − 2? + 2?2)√

?(1 − ?)(=1 + =2)
,

and the claim follows by taking the complement event. �

Lemma 2.4. Let ? ∈ (0, 1) be a constant, and -1 ∼ Bin(=1 , ?) and -2 ∼ Bin(=2 , ?) be independent
r.v.s. Then for any integer 3,

P (-1 = -2 + 3) ≤
1.12

(
1 − 2? + 2?2

)√
?(1 − ?)(=1 + =2)

.

Proof. Let = = =1 + =2 and � = E [-1] − E [-2] = ?(=1 − =2). Fix � ∈ (0, 1), by the same

computations in Lemma 2.3, we have

P (-1 − -2 ≤ 3 − �) ≥ Φ
(
3 − � − �√
?(1 − ?)=

)
−
.56

(
1 − 2? + 2?2

)√
?(1 − ?)=

,

P (-1 − -2 < 3 + �) ≤ Φ
(
3 − � + �√
?(1 − ?)=

)
+
.56

(
1 − 2? − 2?2

)√
?(1 − ?)=

.

It follows that

P(-1 = -2 + 3) ≤ P(3 − � < -1 − -2 < 3 + �)

≤ Φ

(
3 − � + �√
?(1 − ?)=

)
−Φ

(
3 − � − �√
?(1 − ?)=

)
+

1.12

(
1 − 2? + 2?2

)√
?(1 − ?)=

.

Letting �→ 0, we obtain the desired claim. �
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Proof of Lemma 2.1

Recall that

��'1

�� = = −
���1

��
. Our goal is to give an upper bound on the probability that��'1

�� < =/2 + 3
√
= for any given term 3. Recall that

��'1

�� = ∑
E∈+ I1(E), where I1(E) is 1 if E is Red

after Day 1 and 0 otherwise. We have: Since the indicators are not independent, a natural choice

for bounding their sum is to use Chebysev’s inequality. We proceed in two steps:

1. Give a lower bound on E
[��'1

��]
by lowerbounding each term E [I1(E)].

2. Give anupper boundonVar
[��'1

��]
byupperbounding eachVar [I1(E)] andCov [I1(E), I1(E′)].

Let � :=
√
?(1 − ?), which appears inmost equations in this proof. Note that 1−2?+2?2 = 1−2�2

.

Claim 2.5. E
[��'1

��] ≥ =

2

+ �1(=, ?, 2)
√
=, where

�1(=, ?, 2) =
√
=Φ0

(
2?2 +min{?, 1 − ?}

�
√
=

)
− .61 − 2�2

�
= �(=, ?, 2) + .8

√
=

?
.

Proof. For E ∈ + and ( ⊂ + , let 3((E) be the number of neighbors E has in (. By the majority

and tie-breaking rules , we have for each E ∈ + ,

E ∈ '1 ⇔ 3'0
(E) > 3�0

(E) − I0(E). (2.1)

Note that 3'0
(E) ∼ Bin

(��'0

�� − I0(E), ?) and 3�0
(E) ∼ Bin

(���0

�� + I0(E) − 1, ?
)
. By Lemma 2.3, we

have:

E [I1(E)] = P (E ∈ '1) = P (3'0
(E) > 3�0

(E) − I0(E))

≥ 1

2

+Φ0

(
?
(��'0

�� − ���0

�� + 1 − 2I0(E)
)
+ I0(E)

�
√
= − 1

)
−
.56

(
1 − 2�2

)
�
√
= − 1

=
1

2

+Φ0

(
2?2 + ?E
�
√
= − 1

)
−
.56

(
1 − 2�2

)
�
√
= − 1

≥ 1

2

+Φ0

(
2?2 +min{?, 1 − ?}

�
√
=

)
−
.6

(
1 − 2�2

)
�
√
=1

,

where ?E := ? (1 − I0(E)) + (1− ?)I0(E) ≥ min{?, 1− ?}, hence the last inequality. Summing over

all E ∈ + , we get

E
[��'1

��] ≥ =

2

+
[
√
=Φ0

(
2?2 +min{?, 1 − ?}

�
√
=

)
−
.6

(
1 − 2�2

)√
?(1 − ?)

]
√
=.

The proof is complete. �

Claim 2.6. Var
[��'1

��] ≤ .25= + .7
(
1 − 2�2

)
2
(
= + 422=−1

)
.

THEORY OF COMPUTING, Volume 19 (6), 2023, pp. 1–21 11

http://dx.doi.org/10.4086/toc


LINH TRAN AND VAN VU

Proof. We first have:

Var
[��'1

��] = ∑
E∈+

Var [I1(E)] + 2

∑
E1≠E2

Cov [I1(E1), I1(E2)] .

The variances Var [I1(E)] are easy due to I1(E) being a Bernoulli variable:

Var [I1(E)] = E [I1(E)]
(
1 − E [I1(E)]

)
= .25 − (E [I1(E)] − .5)2 ≤ .25. (2.2)

Bounding the covariance Cov [I1(E1), I1(E2)] for two distinct vertices E1 , E2 requires a bit more

care, as the indicators are dependent. By definition

Cov [I1(E1), I1(E2)] = P (E1 , E2 ∈ '1) − P (E1 ∈ '1)P (E2 ∈ '1) .

Consider the event {E1 , E2 ∈ '1}; P (E1 , E2 ∈ '1) can be written as

P (E1 , E2 ∈ '1 |E1 ∼ E2)P(E1 ∼ E2) + P (E1 , E2 ∈ '1 |E1 6∼ E2)P(E1 6∼ E2).

Notice that after we reveal the adjacency between E1 and E2, the remaining vertices in the

neighborhoods of E1 and E2 are independent. Letting 08 = P(E8 ∈ '1 | E1 ∼ E2), 18 = P(E8 ∈ '1 |
E1 6∼ E2) , we have

P (E1 , E2 ∈ '1) = ?0102 + (1 − ?)1112.

Splitting up the other two events similarly gives P (E8 ∈ '1) = ?08 + (1 − ?)18 for 8 = 1, 2. Putting

the above together, we can write Cov [I1(E1), I1(E2)] as

?0102 + (1 − ?)1212 − (?01 + (1 − ?)11) (?02 + (1 − ?)12)
= ?(1 − ?)(01 − 11)(02 − 12) = �2(01 − 11)(02 − 12).

(2.3)

To bound 08 − 18 , we use logical reasoning to express it as something separate from the current

context. We start with 8 = 1. The analysis for 02 − 12 is analogous. Assume E1 ∼ E2 for now, then

01 = P (3'0
(E1) ≥ 3�0

(E1) − I0(E1) + 1) ,

by Eq. (2.1). Define two binomial random variables:

- = 3'0
(E1) − I0(E2) =

��#(E1) ∩ '0 \ {E1 , E2}
�� ∼ Bin

(��'0

�� − I0(E1) − I0(E2), ?
)
,

. = 3�0
(E1) + I0(E2) − 1 =

��#(E1) ∩ �0 \ {E1 , E2}
�� ∼ Bin

(���0

�� + I0(E1) + I0(E2) − 2, ?
)
.

We have

01 = P (- + I0(E2) + I0(E1) ≥ . + 2 − I0(E2)) = P (- − . ≥ 1 − I0(E1) − J0(E2)) .

Similarly, when conditioning on E1 6∼ E2, we get 11 = P (- − . ≥ 1 − I0(E1)) .
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Let us perform a case analysis on the initial color of E2.

E2 ∈ '0 ⇒ 01 − 11 = P(- − . ≥ −I0(E1)) − P(- − . ≥ 1 − I0(E1)) = P(- − . = −I0(E1)).
E2 ∈ �0 ⇒ 01 − 11 = P(- − . ≥ 2 − I0(E1)) − P(- − . ≥ 1 − I0(E1)) = −P(- − . = 1 − I0(E1)).

Both cases give us

01 − 11 = J
0
(E2)P

(
- − . = 1 − I0(E1) − I0(E2)

)
,

where - ∼ Bin

(��'0

�� − I0(E1) − I0(E2), ?
)
and . ∼ Bin

(���0

�� + I0(E1) + I0(E2) − 2, ?
)
.

We apply the same analysis for 02 and 12 and use Eq. (2.3) to get

Cov [I1(E1), I1(E2)] = �2

J
0
(E1)J0(E2)P

(
- − . = 1 − I0(E1) − I0(E2)

)
2

.

If the initial colors of E1 and E2 are different Cov [I1(E1), I1(E2)] ≤ 0, so we can exclude them

from the upper bound. When E1 and E2 are of the same initial color, by Lemma 2.4, we have

Cov [I1(E1), I1(E2)] ≤ �2

(
1.12

(
1 − 2�2

)
�
√
= − 2

)2

≤ 1.4

(
1 − 2�2

)
2

=
.

Hence ∑
E1≠E2

Cov [I1(E1), I1(E2)] ≤
[(��'0

��
2

)
+

(���0

��
2

)]
· 1.4 ·

(
1 − 2�2

)
2

=

=
1.4

=

[
=2

4

+ 22 − =
2

] (
1 − 2�2

)
2

≤ .35

(
1 − 2�2

)
2

(
= + 422

=

)
.

Equations (2.2) and (2.1) together yield

Var
[��'1

��] ≤ .25= + .7
(
1 − 2�2

)
2
(
= + 422=−1

)
. (2.4)

The proof is complete. �

From Claims 2.5 and 2.6, Chebyshev’s inequality gives

P
(���1

�� > =

2

− .8
?

√
=

)
= P

(��'1

�� < =

2

+ .8
?

√
=

)
≤

Var
[��'1

��](
E

[��'1

��] − =
2
− .8

?

√
=
)

2

≤
.25= + .7

(
1 − 2�2

)
2
(
= + 422=−1

)
=

(√
=Φ0

(
2?2+min{?,1−?}

�
√
=

)
− .6 1−2�2√

?(1−?)
− .8

?

)
2

.

Dividing both the nominator and denominator by = and substituting � =
√
?(1 − ?), we get back

%1(=, ?, 2) and finish the proof of Lemma 2.1. art one of Theorem 1.6 is complete.
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3 Day Two and after

Next, we analyze the situation after the first day. As mentioned in Section 1.6, the previous

argument is unusable due to the loss of independence from day 2 onwards. Instead, we use

“shrinking arguments” to argue that it is likely for the Blue camp to repeatedly shrink to empty,

regardless of the choice of its members, due to the structure of �. The core of our shrinking

argument is Hoeffding’s inequality, a classical result that gives exponentially small probability

tails for sums of independent random variables.

Theorem 3.1 (Hoeffding’s inequality). Let {-8}=8=1
be independent random variables and {08}=8=1

,
{18}=8=1

be real numbers such that for all 8 = 1, =, supp(-) ⊆ [08 , 18]. Then for - = -1 + -2 + · · · + -= ,
we have

max

{
P (- ≥ E [-] + C) , P (- ≤ E [-] − C)

}
≤ exp

(
− 2C2∑=

8=1
(18 − 08)2

)
.

The proof ofHoeffding’s inequality is available in several graduate level probability textbooks,

e. g., [18]. The original proof given by Hoeffding appeared in [9].

Before discussing our shrinking arguments, we quickly record a useful lemma to simplify

binomial coefficients that may appear in union bounds.

Lemma 3.2. For any integers = ≥ 1 and 0 ≤ : ≤ =,
(
=

:

)
<

2
=

√
=
.

Proof. This is well known. Observing that

(=
:

)
≤

( =
b=/2c

)
, the case of even = is stated in [11, 2.6.2

Proposition]. The case of odd = = 2< − 1 follows immediately:(
2< − 1

< − 1

)
=

1

2

(
2<

<

)
<

1

2

2
2<

√
2<

=
2

2<−1

√
2<

<
2

2<−1

√
2< − 1

. �

A simple yet useful shrinking argument is that, in the �(=, ?) model, it is with high

probability that all vertices in � have many neighbors, so a small enough Blue camp will not be

able to influence anyone by a majority, thus inevitably vanishes the next day.

Lemma 3.3 (Part 4 of Theorem 1.6). For ? ∈ (0, 1) and = ∈ ℕ>1, with probability at least

1 − = exp

(
−2

9

?2(= − 1)
)
= 1 − %4(=, ?),

� is such that all vertices have more than 2

3
?(= − 1) neighbors, thus any choice of the Blue camp of at

most 1

3
?(= − 1) members vanishes the next day.

Proof. In a �(=, ?) graph, 3(E) is a sum of (= − 1) Bin(1, ?) random variables, so Theorem 3.1

implies that for any D ∈ + ,

P
(
3(D) ≤ 2

3

?(= − 1)
)
≤ P

(
3(D) − E [3(D)] ≤ −1

3

?(= − 1)
)
≤ exp

(
−2

9

?2(= − 1)
)
.
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By a union bound, the probability that all vertices have more than
2

3
?(= − 1) neighbors is at least

1 − = exp

(
− 2

9
?2(= − 1)

)
= 1 − %4(=, ?). Given this, a Blue camp of size

1

3
?(= − 1) surely vanishes

the next day since it cannot form a majority in the neighborhood of any vertex. The result then

follows. �

This simple lemma completes the fourth part of Theorem 1.6. The arguments for Parts 2 and

3 require slightly more complexity, but both come directly from the following lemma.

Lemma 3.4. Let ? ∈ (0, 1), =, =0 ∈ ℕ, =0 < =
2
. Then for all < ∈ ℕ, < ≤ =, with probability at least

1 − 4
=

=
exp

(
−2?2(= − 2=0 − 1)2<

= + < − 2

)
,

� is such that any choice of the Blue camp of at most =0 members shrinks to below < in the next day.

Proof of Lemma 3.4. Consider a subset ( of + with < elements. We first bound the probability

that ( entirely turns Blue the next day. Let (', �) be the initial coloring with

����� = =0 < =/2.
Similarly to the usual JC , let J(E) = 1 if E ∈ ' and −1 otherwise. For each E ∈ + , let dif(E) :=��#(E) ∩ '�� − ��#(E) ∩ ��� = ∑

D∈+ J(D),DE , and let dif(() :=
∑
E∈( dif(E). We break down dif(() as

follows.

dif(() =
∑
E∈+

[
1((E)

∑
D∈+

J(D),DE

]
=

∑
D≠E

[
J(D)1((E) + J(E)1((D)

]
,DE . (3.1)

This is now a sum of independent variables, so we can apply Theorem 3.1.

P (( ⊆ �1 | �0) ≤ P(dif(() ≤ 0) ≤ exp

[
− E [dif(()]2∑

D≠E

(
sup supp(-DE,DE) − inf supp(-DE,DE)

)
2

]
,

(3.2)

where -DE := J(D)1((E) + J(E)1((D). The following table sums up respective values of -DE for

(D, E) among the sets ' ∩ (, ' \ (, � ∩ ( and � \ (.

D \ E ' ∩ ( � ∩ ( ' ∩ (2 � ∩ (2
' ∩ ( 2 0

1 −1

� ∩ ( 0 −2

' ∩ (2 1

0

� ∩ (2 −1

(3.3)

Substituting back into Equation (3.1), we get

dif(() =
∑

{D,E}⊂(∩'
(2,DE) −

∑
{D,E}⊂(∩�

(2,DE) +
∑
D∈(

∑
E∈'\(

,DE −
∑
D∈(

∑
E∈�\(

,DE .

For convenience in the following computations, let <' :=
��( ∩ '��

and <� :=
��( ∩ ���.
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Note that

��� \ (�� = =0 − <� and

��' \ (�� = = − =0 − <'. Let, be a Bin(1, ?) random variable.

Observe that ( is a sum of

(<'

2

)
=

<'(<'−1)
2

copies of 2, ,

(<�

2

)
=

<�(<�−1)
2

copies of (−2,),
<(= − =0 − <') copies of, , and <(=0 − <�) copies of (−,), all independent. Therefore

E [dif(()] = ?
[
2 · <'(<' − 1)

2

− 2 · <�(<� − 1)
2

+ <(= − =0 − <') − <(=0 − <�)
]

= ?
[
<2

' − <
2

� − <' + <� + <(= − 2=0 − <' + <�)
]

= ?
[
(<' − <�)(<' + <�) − <(<' − <�) + <(= − 2=0) − <' + <�)

]
= ?

[
<(<' − <�) − <(<' − <�) + <(= − 2=0) − (< − <�) + <�

]
= ?

[
<(= − 2=0) − < + 2<�

]
≥ ?

[
<(= − 2=0) − <

]
= ?<(= − 2=0 − 1).

Moreover, supp(,DE) = 0, 1, so supp(-DE,DE) = {0, -DE}, thus

sup supp(-DE,DE) − inf supp(-DE,DE) = |-DE | for all D ≠ E.

Therefore the denominator of the exponent in Equation (3.2) is∑
D≠E

(
sup supp(-DE,DE) − inf supp(-DE,DE)

)
2

=
∑
D≠E

-2

DE

=
∑

{D,E}⊂(∩'
2

2 +
∑

{D,E}⊂(∩�
(−2)2 +

∑
D∈(

∑
E∈'\(

1
2 +

∑
D∈(

∑
E∈�\(
(−1)2

= 4 · <'(<' − 1)
2

+ 4 · <�(<� − 1)
2

+ <(= − =0 − <') + <(=0 − <�)

= 2<2

' + 2<2

� − 2<' − 2<� + <(= − <' − <�) = 2(<' + <�)2 − 4<'<� − 2< + <(= − <)
≤ 2(<' + <�)2 − 2< + <(= − <) = 2<2 − 2< + <(= − <) = <(= + < − 2).

Substituting this bound into Equation (3.2), we get

P(( ⊆ �1 | �0 = �) ≤ exp

[
−

2

(
?<(= − 2=0 − 1)

)
2

<(= + < − 2)

]
= exp

[
−2?2(= − 2=0 − 1)2<

= + < − 2

]
.

Applying a double union bound over choices of ( and �, noting that by Lemma 3.2, the number

of choices

( =
=0

) (=
<

)
is at most 4

=/=, so we have

P
(
∃�0 ∈

(
+

=0

)
, ∃( ∈

(
+

<

)
, ( ⊂ �1

)
≤ 4

=

=
exp

(
−

2?2(= − 2=0 − 1)2<
= + < − 2

)
.

Taking the complement event, we get the desired result. �

Lemma 3.4 is sufficient to prove parts 2 and 3 of Theorem 1.6. The following lemmas are

direct corollaries of Lemma 3.4.
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Lemma 3.5 (Part 2 of Theorem 1.6). In the election process on � ∼ �(=, ?), with probability at least

1 − =−1

exp (−.025=) = 1 − %2(=), (3.4)

� is such that any choice of the Blue camp of at most =/2 − (.8/?)
√
= = =�

1
members shrinks to size at

most .4= = =�
2
the next day.

Proof of Lemma 3.5. Let =2 :=
⌊
=/2 − (.8/?)

√
=
⌋
and < := d.4=e. By Lemma 3.4, � is such that

every Blue set of at most =2 vertices shrinks to size < − 1 with probability at least

1 − 4
=

=
exp

(
−

2?2(= − 2=2 − 1)2<
= + < − 2

)
= 1 − 1

=
exp

[
−

(
2?2(= − 2=2 − 1)2<

= + < − 2

− 2= log 2

)]
.

We have

<

= + < − 2

≥ <

= + < ≥ 2/7, and = − 2=2 − 1 ≥ 1.6
√
=

?
− 1.

Therefore can bound the exponent of the RHS of Equation (3) as follows:

2?2(= − 2=2 − 1)2<
= + < − 2

− 2= log 2 ≥ 4

7

?2

(
1.6
√
=

?
− 1

)
− 2= log 2

=

(
10.24

7

− 2 log 2

)
= − 12.8

7

?
√
= + 4

7

?2 ≥ .076= − 1.83

√
=.

The proof is complete. �

Lemma 3.6 (Part 3 of Theorem 1.6). In the election process on � ∼ �(=, ?), with probability at least

1 − =−1

exp

(
−.02=(?3= − 80)

)
= 1 − %3(=, ?),

� is such that any choice of the Blue camp with at most .4= members shrinks to at most 1

3
?(= − 1)

members the next day.

Proof of Lemma 3.6. Let =2 := b.4=c and < := d1
3
?(= − 1)e. By Lemma 3.4, � satisfies that every

Blue set of at most =2 vertices shrinks to size < − 1 with probability at least

1 − 4
=

=
exp

(
−

2?2(= − 2=2 − 1)2<
= + < − 2

)
= 1 − 1

=
exp

[
−
(
2?2(= − 2=2 − 1)2<

= + < − 2

− 2= log 2

)]
. (3.5)

Since =2 ≤ .4=, we have (= − 2=2 − 1)2 ≥ (.2= − 1)2. Furthermore, < ≥ 1

3
?(= − 1) so

<

= + < − 2

≥ ?(= − 1)/3
= + ?(= − 1)/3 − 1

=
?

3 + ? ≥
?

4

.
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Therefore we can bound the exponent in the RHS of Equation (3.5) as follows:

2?2(= − 2=2 − 1)2<
= + < − 2

− 2= log 2 ≥ 2?2(.2= − 1)2<
= + < − 2

− 2= log 2 ≥ ?3(.2= − 1)2
2

− 2= log 2

= ?3

(
.02=2 − .2= + 1

2

)
− 2= log 2 ≥ .02?3=2 − (.2?3 + 2 log 2)= + ?

3

2

= .02=(?3= − 10?3 − 100 log 2) ≥ .02=(?3= − 80),

where the last inequality is due to 10?3 + 100 log 2 ≤ 10 + 100 log 2 < 80. The result follows. �

These lemmas and Lemma 3.3, together with Lemma 2.1 form the complete “chain of

shrinking” for the number of Blue vertices to reach 0 in four days, hence wrapping up the proof

of Theorem 1.6.

4 Conclusion

The majority dynamics scheme on a network is a process where each of the = individuals is

assigned an initial color, which changes daily to match the majority among their neighbors. Our

main result, Theorem 1.6, when the network is a �(=, ?) random graph, yields an explicit lower

bound based on =, ? and 2 for the probability that the side with the initial majority wins. It has

two important implications. The first is a surprising phenomenon, which we call the Power of
Few phenomenon (Theorem 1.2), which shows that when ? = 1/2 and � = .1, 2 can be set to just

5, meaning five extra people is all it takes to win a large election with overwhelming odds. The

second is an asymptotic dependency between the �, = and 2 (Theorem 1.3), which shows that

for any fixed ?, there is a constant  (?) such that choosing = and 2 both large enough so that

 (?)max{=−1 , 2−2} < � will ensure that the winning probability is at least 1 − �.
Although the results in this paper only apply to dense �(=, ?) graphs, we do cover sparse

graphs in a separate in-progress paper [17], where we obtain the Power of Few phenomenon

for ? = Ω((log =)/=), and discuss the end result (other than a win) for lower values of ?. We

nevertheless mention one of the main results proved in the upcoming paper (Theorem 1.5),

and use it to prove the main theorem of the paper [8] by Fountoulakis, Kang and Makai in

Appendix A.

A Proof of Fountoulakis et al’s Theorem from Theorem 1.5

In this Appendix we give a proof of the main theorem by Fountoulakis et al in [8] (Theorem 1.4)

using the main theorem in our upcoming paper (Theorem 1.5).

Proof. Assume Theorem 1.5. Let '0 and �0 respectively be the initial Red and Blue camps. Fix a

constant 0 < 2′ ≤ �/6.
��'0

�� ∼ Bin(=, 1/2) since it is a sum of Bin(1, 1/2) variables. An application

of the Berry–Esseen theorem (Theorem 2.2; with .56 = .56) implies that

P
(��'0

�� − =
2

≤ 2′
√
=
)
≤ Φ(22′) + .56√

=
, and P

(��'0

�� − =
2

≤ −2′
√
=
)
≥ Φ(−22′) − .56√

=
,
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Thus

P
(�����'0

�� − =
2

��� ≤ 2′√=) ≤ (
Φ(22′) + .56√

=

)
−

(
Φ(−22′) − .56√

=

)
≤ Φ(−22′, 22′) + 20.56√

=
≤ 42′√

2�
+ 20.56√

=
≤ �

3

+ 20.56√
=
≤ �/2,

for sufficiently large =.

On the other hand, if

����'0

�� − =/2�� > 2′
√
=, then one of the sides has more than =/2 + 2′

√
=

initial members, which we call the majority side. Now we apply Theorem 1.5 with � replaced by

�/2. Notice that in the setting of Theorem 1.4 , if we have ? = �=−1/2
for � sufficiently large,

then 2′
√
= ≥ 2/?, where 2 is the constant in Theorem 1.5. Thus, by this theorem, the probability

for the majority side to win is at least 1 − �/2, and we are done by the union bound. �
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