
THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71
www.theoryofcomputing.org

SPECIAL ISSUE: APPROX-RANDOM 2020

Pinning Down the Strong Wilber-1 Bound

for Binary Search Trees

Parinya Chalermsook
‡

Julia Chuzhoy
§

Thatchaphol Saranurak

Received June 13, 2021; Revised August 10, 2022; Published December 19, 2023

Abstract. Dynamic Optimality Conjecture, postulating the existence of an $(1)-
competitive online algorithm for binary search trees (BSTs), is among the most

fundamental open problems in dynamic data structures. The conjecture remains

wide open, despite extensive work and some notable progress, including, for

example, the $(log log =)-competitive Tango Trees, which is the best currently

known competitive ratio. One of the main hurdles towards settling the conjecture is

that we currently do not have polynomial-time approximation algorithms achieving

better than an $(log log =)-approximation, even in the offline setting. All known

non-trivial algorithms for BSTs rely on comparing the algorithm’s cost with the

so-called Wilber-1 bound (WB-1). Therefore, establishing the worst-case relationship

An extended abstract of this paper appeared in the Proceedings of the 23rd Internat. Conf. on Approximation

Algorithms and Combinatorial Optimization (APPROX’20)

‡
Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and

innovation programme (grant agreement No. 759557) and by the Academy of Finland Research Fellows program,

under grant No. 310415.

§
Supported in part by NSF grant CCF-1616584. Part of the work was done while the second author was a Weston

visiting professor at the Department of Computer Science and Applied Mathematics, Weizmann Institute of Science.

ACM Classification: Theory of computation→ Data structure design and analysis

AMS Classification: 68Q25, 68W25

Key words and phrases: binary search trees, dynamic optimality, data structures

© 2023 Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2023.v019a008

http://dx.doi.org/10.4086/toc
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.33
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.33
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2023.v019a008

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

between this bound and the optimal solution cost appears crucial for further progress,

and it is an interesting open question in its own right.

Our contribution is twofold. First, we show that the gap between WB-1 and

the optimal solution value can be as large as Ω(log log =/log log log =); in fact, we

show that the gap holds even for several stronger variants of the bound.1 Second,

we show, given an integer � > 0, a �-approximation algorithm that runs in time

exp

(
$

(
=1/2Ω(�)

log =
))
. In particular, this yields a constant-factor approximation

algorithm with subexponential running time.2 Moreover, we obtain a simpler and

cleaner efficient $(log log =)-approximation algorithm that can be used in an online

setting. Finally, we suggest a new bound, that we call the Guillotine Bound, that is
stronger than WB-1, while maintaining its algorithm-friendly nature, that we hope

will lead to better algorithms. All our results use the geometric interpretation of the

problem, leading to cleaner and simpler analysis.

1 Introduction

1.1 Binary search trees

Binary search trees (BST’s) are a fundamental data structure that has been extensively studied

for many decades. Informally, suppose we are given as input an online access sequence

- = {G1 , . . . , G<} of keys from {1, . . . , =}, and our goal is to maintain a binary search tree)

over the set {1, . . . , =} of keys. The algorithm is allowed to modify the tree) after each access;

the tree obtained after the 8th access is denoted by)8+1. Each such modification involves a

sequence of rotation operations that transform the current tree)8 into a new tree)8+1. The cost

of the transformation is the total number of rotations performed plus the depth of the key G8
in the tree)8 . The total cost of the algorithm is the total cost of all transformations performed

as the sequence - is processed. We denote by OPT(-) the smallest cost of any algorithm for

maintaining a BST for the access sequence -, when the whole sequence - is known to the

algorithm in advance.

Several algorithms for BST’s, whose costs are guaranteed to be $(< log =) for any access

sequence, such as AVL-trees [1] and red-black trees [2], are known since the 60’s (see [10],

Chapters 12 and 13). Moreover, it is well known that there are length-< access sequences -

on = keys, for which OPT(-) = Ω(< log =). However, such optimal worst-case guarantees are

often unsatisfactory from both practical and theoretical perspectives, as one can often obtain

better results for “structured” inputs. Arguably, a better notion of the algorithm’s performance

to consider is instance optimality, where the algorithm’s performance is compared to the optimal

cost OPT(-) for the specific input access sequence -. This notion is naturally captured by the

algorithm’s competitive ratio: we say that an algorithm for BST’s is -competitive, if, for every

1A recent independent paper by Lecomte andWeinstein (ESA’20) shows an even stronger,Ω(log log =), separation.
2The term “subexponential time” in this paper refers to the running time 2

>(=)
.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 2

https://doi.org/10.4230/LIPIcs.ESA.2020.68
http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

online input access sequence -, the cost of the algorithm’s execution on - is at most ·OPT(-).
Since for every length-< access sequence -, OPT(-) ≥ <, the above-mentioned algorithms

that provide worst-case $(< log =)-cost guarantees are also $(log =)-competitive. However,

there are many known important special cases, in which the value of the optimal solution is

$(<), and for which the existence of an $(1)-competitive algorithm would lead to a much

better performance, including some interesting applications, such as, for example, adaptive

sorting [27, 7, 23, 26, 15, 24, 13, 9, 8, 3, 6, 5, 19].

1.1.1 The Dynamic Optimality Conjecture

A striking conjecture of Sleator and Tarjan [25] from 1985, called the dynamic optimality conjecture,
asserts that the Splay Trees provide an $(1)-competitive algorithm for BST’s. This conjecture has

sparked a long line of research, but despite the continuing effort, and the seeming simplicity

of BST’s, it remains widely open. In a breakthrough result, Demaine et al. [12] proposed the

Tango Trees algorithm, that achieves an $(log log =)-competitive ratio, and has remained the

best known algorithm for the problem, for over 15 years. A natural avenue for overcoming this

barrier is to first consider the “easier” task of designing (offline) approximation algorithms,

whose approximation factor is below $(log log =). Designing better approximation algorithms

is often a precursor to obtaining better online algorithms, and it is a natural stepping stone

towards this goal.

1.1.2 The Wilber bounds

Themain obstacle towards designing better algorithms, both in the online and the offline settings,

is obtaining tight lower bounds on the value OPT(-), that can be used in algorithm design. In

order to improve upon the trivial $(log =) approximation, the lower bound OPT(-) ≥ < is not

sufficient1. Wilber [29] proposed two new bounds, that we refer to as the Wilber-1 Bound, or

Wilber’s first bound, (WB-1) and the Wilber-2 Bound (WB-2). He proved that, for every input

sequence -, the values of both these bounds on - are at most OPT(-). The breakthrough

result of Demaine et al. [12], that gives an $(log log =)-competitive online algorithm, relies

on the WB-1 bound. In particular, they show that the cost of the solution produced by their

algorithm is within an $(log log =)-factor from the WB-1 bound on the given input sequence -,

and hence from OPT(-). This in turn implies that, for every input sequence -, the value of the

WB-1 bound is within an $(log log =) factor from OPT(-). Follow-up work [28, 16] improved

several aspects of Tango Trees, but it did not improve the approximation factor. Additional

lower bounds on OPT, that subsume both the WB-1 and the WB-2 bounds, were suggested in

[11, 14, 17], but unfortunately it is not clear how to exploit them in algorithm design. To this day,

the only method we have for designing non-trivial online or offline approximation algorithms

for BST’s is by relying on the WB-1 bound, and this seems to be the most promising approach

for obtaining better algorithms. In order to make further progress on both online and offline

1This is due to the existence of sequences - with OPT(-) = Ω(< log =).

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 3

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

approximation algorithms for BST’s, it therefore appears crucial that we better understand the

relationship between the WB-1 bound and the optimal solution cost.

Informally, theWB-1 bound relies on recursive partitioning of the input key sequence, that can be

represented by a partitioning tree. The standard WB-1 bound (that we refer to as the weak WB-1

bound) only considers a single such partitioning tree. It is well-known (see, e.g., [12, 28, 18]),

that the gap between OPT(-) and the weak WB-1 bound for an access sequence - may be as

large as Ω(log log =). However, the “bad” access sequence - used to obtain this gap is highly

dependent on the fixed partitioning tree). It is then natural to consider a stronger variant of

WB-1, that we refer to as strongWB-1 bound and denote by WB(-), that maximizes the weak

WB-1 bound over all such partitioning trees. As suggested by Iacono [18], and by Kozma [20],

this gives a promising approach for improving the $(log log =)-approximation factor.

1.1.3 Our results

In this paper, we show that, even for this strong variant of WB-1, the gap between OPT(-) and
WB(-) may be as large as Ω(log log =/log log log =). This negative result extends to an even

stronger variant of WB-1 that we discuss below.

Our second set of results is algorithmic. We show, for any positive integer �, an (offline) �-

approximation algorithm that runs in time poly(<) ·exp

(
$(=1/2Ω(�)

log =)
)
. When� is constant,

we obtain an$(1)-approximation in subexponential time. When� isΘ(log log =), our algorithm
matches current polynomial-time approximation ratio, which is $(log log =). In the latter case,

we can also adapt the algorithm to the online setting, obtaining an $(log log =)-competitive

online algorithm.

All our results use the geometric interpretation of the problem, introduced by Demaine et al. [11],

leading to clean divide-and-conquer-style arguments that avoid, for example, the notion of

pointers and rotations. We feel that this approach, in addition to providing a cleaner and simpler

view of the problem, is more natural to work with in the context of approximation algorithms,

and should be more amenable to the powerful geometric techniques in the field.

1.2 Independent work

Independently from our work, Lecomte and Weinstein [21] showed that second Wilber bound

(also called funnel bound) dominates WB-1, and moreover, they show an access sequence - for

which the two bounds have a gap of Ω(log log =). In particular, their result implies that the gap

between WB(-) and OPT(-) isΩ(log log =) for that access sequence. Their result subsumes our

Theorem 1.1 entirely (but not the extension discussed in Section 1.3.3).

We note that the access sequence - used in our negative results provides a gap of

Ω(log log =/log log log =)

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 4

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

between the WB-2 and the WB-1 bounds, although we only realized this after hearing the

statement of the results of [21]. Additionally, Lecomte andWeinstein show thatWB-2 is invariant

under rotations, and use this to show that, when the WB-2 is constant, then the Independent

Rectangle bound of [11] is linear.

1.3 Statements of our results

We now formally state our results.

1.3.1 Geometric representation

We use the geometric interpretation of the problem, introduced by Demaine et al. [11], that we

refer to as the Min-Sat problem. Let % be any set of points in the plane. We say that two points

?, @ ∈ % are aligned iff either their G-coordinates are equal, or their H-coordinates are equal. If ?

and @ are not aligned, then let �?,@ be the smallest closed axis-aligned rectangle containing both

? and @; notice that ? and @ must be diagonally opposite corners of this rectangle. We say that

the pair (?, @) of points is satisfied in % iff there is some additional point A ≠ ?, @ in % that lies in

�?,@ (the point may lie on the boundary of the rectangle). Lastly, we say that the set % of points

is satisfied iff for every pair ?, @ ∈ % of distinct points, either ? and @ are aligned, or they are

satisfied in %.

In the Min-Sat problem, the input is a set % of points in the plane with integral G- and H-

coordinates; we assume that all G-coordinates are between 1 and =, and all H-coordinates

are between 1 and < and distinct from each other, and that |% | = <. The goal is to find a

minimum-cardinality set . of points, such that the set % ∪ . of points is satisfied.

An access sequence - over keys {1, . . . , =} can be represented by a set % of points in the plane

as follows: if a key G is accessed at time H, then add the point (G, H) to %. Demaine et al. [11]

showed that, for every access sequence -, if we denote by % the corresponding set of points in

the plane, then the value of the optimal solution to theMin-Sat problem on % isΘ(OPT(-)). They
also showed that, in order to obtain an $()-approximation algorithm for BST’s, it is sufficient

to obtain an -approximation algorithm for the Min-Sat problem. In the online version of the

Min-Sat problem, at every time step C, we discover the unique input point whose H-coordinate is

C, and we need to make an irrevocable decision on which points with H-coordinate C to add to

the solution. Demaine et al. [11] also showed that an -competitive online algorithm for Min-Sat
implies an $()-competitive online algorithm for BST’s. For convenience, we do not distinguish

between the input access sequence - and the corresponding set of points in the plane, that we

also denote by -.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 5

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

1.3.2 Negative results for WB-1

We say that an input access sequence - is a permutation if each key in {1, . . . , =} is accessed
exactly once. Equivalently, in the geometric view, every column with an integral G-coordinate

contains exactly one input point.

Informally, theWB-1 bound for an input sequence - is defined as follows. Let � be the bounding

box containing all points of -, and consider any vertical line ! drawn across �, that partitions

it into two vertical strips, separating the points of - into two subsets -1 and -2. Assume

that the points of - are ordered by their H-coordinates from smallest to largest. We say that

a pair (G, G′) ∈ - of points cross the line !, iff G and G′ are consecutive points of -, and they

lie on different sides of !. Let �(!) be the number of all pairs of points in - that cross !.

We then continue this process recursively with -1 and -2, with the final value of the WB-1

bound being the sum of the two resulting bounds obtained for -1 and -2, and �(!). This

recursive partitioning process can be represented by a binary tree) that we call a partitioning
tree (we note that the partitioning tree is not related to the BST tree that the BST algorithm

maintains). Every vertex E of the partitioning tree is associated with a vertical strip ((E),
where for the root vertex A, ((A) = �. If the partitioning algorithm uses a vertical line ! to

partition the strip ((E) into two sub-strips (1 and (2, then vertex E has two children, whose

corresponding strips are (1 and (2. Note that every sequence of vertical lines used in the

recursive partitioning procedure corresponds to a unique partitioning tree and vice versa. Given

a set - of points and a partitioning tree), we denote by WB)(-) the WB-1 bound obtained for

- while following the partitioning scheme defined by). Wilber [29] showed that, for every

partitioning tree), OPT(-) ≥ Ω(WB)(-)) holds. Moreover, Demaine et al. [12] showed that, if

) is a balanced tree, then OPT(-) ≤ $(log log =) ·WB)(-). These two bounds are used to obtain

the $(log log =)-competitive algorithm of [12]. We call this variant of WB-1, that is defined with

respect to a fixed tree), the weak WB-1 bound.

Unfortunately, it is well-known (see, e.g., [12, 28, 18]), that the gap between OPT(-) and
the weak WB-1 bound on an input - may be as large as Ω(log log =). In other words, for

any fixed partitioning tree), there exists an input - (that depends on)), with WB)(-) ≤
$(OPT(-)/log log =). However, the construction of this “bad” input - depends on the fixed

partitioning tree).

We consider a stronger variant of WB-1, that we refer to as strong WB-1 bound and denote

by WB(-), that maximizes the weak WB-1 bound over all such partitioning trees, that is,

WB(-) = max){WB)(-)}.
Using this stronger bound as an alternative to weakWB-1 in order to obtain better approximation

algorithms was suggested by Iacono [18], and by Kozma [20].

Our first result rules out this approach: we show that, even for the strong WB-1 bound, the gap

between WB(-) and OPT(-)may be as large asΩ(log log =/log log log =), even if the input - is

a permutation.

Theorem 1.1. For infinitely many integer =, there exists an access sequence - on = keys with |- | = =,

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 6

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

such that - is a permutation, OPT(-) ≥ Ω(= log log =), but WB(-) ≤ $(= log log log =).

In particular, for every partitioning tree),
OPT(-)
WB) (-) ≥ Ω

(
log log =

log log log =

)
for infinitelymany sequences

-. We note that it is well known (see, e.g., [6]), that any 2-approximation algorithm for

permutation input can be turned into an $(2)-approximation algorithm for any input sequence.

However, the known instances that achieve an Ω(log log =)-gap between the weak WB-1 bound

and OPT are not permutations. Therefore, our result is the first to provide a super-constant gap

between WB-1 and OPT for permutations, even for the case of weak WB-1.

1.3.3 Extension of WB-1

We consider natural generalizations of the WB-1 bound that allow partitioning the plane both

horizontally and vertically. We call the new bounds the consistent Guillotine Bound and the

Guillotine Bound. Our negative result extends to the consistent Guillotine Bound but not to the

Guillotine Bound. The Guillotine Bound seems to maintain the algorithm-friendly nature of

WB-1, and in particular it naturally fits into the algorithmic framework that we propose. We

hope that this bound can lead to improved algorithms, both in the offline and the online settings

1.3.4 Separating the two Wilber bounds

The sequence - given by Theorem 1.1 not only provides a separation between WB-1 and OPT,
but it also provides a separation between WB-1 and WB-2. The latter can be defined in the

geometric view as follows. Recall that, for a pair of points G, H ∈ -, �G,H is the smallest closed

rectangle containing both G and H. For a point G in the access sequence -, the funnel of G is

the set of all points H ∈ -, for which �G,H does not contain any point of - \ {G, H}, and alt(G)
is the number of alterations between the left of G and the right of G in the funnel of G. The

second Wilber Bound for sequence - is then defined as: WB(2)(-) = |- | + ∑
G∈- alt(G). We

show that, for the sequence - given by Theorem 1.1, WB(2)(-) ≥ Ω(= log log =) holds, and
thereforeWB(2)(-)/WB(-) ≥ Ω(log log =/log log log =) for that sequence, implying that the gap

betweenWB(-) andWB(2)(-)may be as large asΩ(log log =/log log log =). We note that we only

realized that our results provide this stronger separation between the two Wilber bounds after

hearing the statements of the results from the independent work of Lecomte and Weinstein [21]

mentioned above.

1.3.5 Algorithmic results

We provide new simple approximation algorithms for the problem, that rely on its geometric

interpretation, namely the Min-Sat problem.

Theorem 1.2. There is an offline algorithm for Min-Sat, that, given any integer � ≥ 1, and an access
sequence - of length m to n keys, produces a solution of cost at most � · OPT(-) and has running time

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 7

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

poly(<) · exp

(
$

(
=1/2Ω(�)

log =
))
. For � = Θ(log log =), the algorithm’s running time is polynomial

in = and <, and it can be adapted to the online setting, achieving an $(log log =)-competitive ratio.

While the $(log log =)-approximation factor achieved by our algorithm in time poly(<=) is
similar to that achieved by other known algorithms [12, 16, 28], this is the first algorithm that

relies solely on the geometric formulation of the problem, which is arguably cleaner, simpler,

and better suited for exploiting the rich toolkit of algorithmic techniques developed in the areas

of online and approximation algorithms.

1.3.6 Erratum

Some erroneous complexity theoretic inferences, made in the paragraph following the statement

of Theorem 2 (page 33:6) in the conference version of this paper [4], are retracted in the

present article. In particular, at this time we are unable to rule out, under any plausible

complexity-theoretic assumption, the possibility that constant-factor approximation of Min-Sat
is NP-hard.

The main results are not affected and are identical in the two versions.

2 Preliminaries

All our results only use the geometric interpretation of the problem, that we refer to as the

Min-Sat problem. We include the formal definition of algorithms for BST’s and formally state

their equivalence.

2.1 The Min-Sat problem

For a point ? ∈ ℝ2
in the plane, we denote by ?.G and ?.H its G- and H-coordinates, respectively.

Given any pair ?, ?′ of points, we say that they are aligned if ?.G = ?′.G or ?.H = ?′.H. If ? and ?′

are not aligned, then we let �?,?′ be the smallest closed axis-aligned rectangle containing both ?

and ?′; note that ? and ?′ must be diagonally opposite corners of the rectangle.

Definition 2.1. We say that a non-aligned pair ?, ?′ of points is satisfied by a point ?′′ if ?′′ is
distinct from ? and ?′ and ?′′ ∈ �?,?′ (where ?′′ may lie on the boundary of the rectangle). We

say that a set (of points is satisfied if for every non-aligned pair ?, ?′ ∈ (of points, there is some

point ?′′ ∈ (that satisfies this pair.

We refer to horizontal and vertical lines as rows and columns respectively. For a collection of

points -, the active rows of - are the rows that contain at least one point in -. We define the

notion of active columns analogously. We denote by A(-) and 2(-) the number of active rows and

active columns of the point set -, respectively. We say that a point set - is a semi-permutation

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 8

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

if every active row contains exactly one point of -. Note that, if - is a semi-permutation,

then 2(-) ≤ A(-). We say that - is a permutation if it is a semi-permutation, and additionally,

every active column contains exactly one point of -. Clearly, if - is a permutation, then

2(-) = A(-) = |- |. We denote by � the smallest closed rectangle containing all points of -, and

call � the bounding box.

We are now ready to define the Min-Sat problem. The input to the problem is a set - of points

that is a semi-permutation, and the goal is to compute a minimum-cardinality set . of points,

such that - ∪ . is satisfied. We say that a set . of points is a feasible solution for - if - ∪ . is

satisfied. We denote by OPT(-) the minimum value |. | of any feasible solution . for -.2

In the online version of the Min-Sat problem, at every time step C, we discover the unique input

point from - whose H-coordinate is C, and we need to make an irrevocable decision on which

points with H-coordinate C to add to the solution .. As shown by Demaine et al. [11], theMin-Sat
problem is equivalent to the BST problem, in the following sense:

Theorem 2.2 (Demaine et al.). Any efficient -approximation algorithm forMin-Sat can be transformed
into an efficient $()-approximation algorithm for BST’s, and similarly any online -competitive
algorithm for Min-Sat can be transformed into an online $()-competitive algorithm for BST’s.

2.2 Basic geometric properties

The following observation is well known (see, e.g., Observation 2.1 from [11]).

Observation 2.3. Let / be any satisfied point set. Then for every pair ?, @ ∈ / of distinct points,

there is a point A ∈ �?,@ \ {?, @} such that A.G = ?.G or A.H = ?.H.

Proof. Since the set / is satisfied, rectangle �?,@ must contain at least one point of / that is

distinct from ? and @. Among all such points, let A be the one with smallest ℓ1-distance to ?.

We claim that either ?.G = A.G, or ?.H = A.H. Indeed, assume otherwise. Then ? and A are not

aligned, but no point of / lies in �?,A \ {?, A}, contradicting the fact that / is a satisfied point

set. �

2.2.1 Collapsing sets of columns or rows

Assume that we are given any set - of points, and any collection C of consecutive active columns

for -. In order to collapse the set C of columns, we replace C with a single representative

column � (for concreteness, we use the column of C with minimum G-coordinate). For every

point ? ∈ - that lies on a column of C, we replace ? with a new point, lying on the column �,

whose H-coordinate remains the same. Formally, we replace point ? with point (G, ?.H), where

2In the original paper that introduced this problem [11], the value of the solution is defined as |- ∪ . |, while

our solution value is |. |. For the purpose of showing the results in this paper, the two definitions are equivalent to

within a factor of 2.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 9

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

G is the G-coordinate of the column �. We denote by -|C the resulting new set of points. We can

similarly define collapsing set of rows. The following useful observation is easy to verify.

Observation 2.4. Let (be any set of points, and let C be any collection of consecutive active

columns (or rows) with respect to (. If (is a satisfied set of points, then so is (|C .

Proof. It is sufficient to prove the observation for the case where C contains two consecutive

active columns, that we denote by � and �′, which are collapsed into the column �. We can

then apply this argument iteratively to collapse any number of columns.

Assume for contradiction that the set (|C of points is not satisfied, and let ?, @ ∈ (|C be a pair
of points that are not satisfied. Note that, if ? and @ cannot both lie on the column � in (|C .
Moreover, if both ? and @ lie to the right, or to the left of the column �, then they continue to be

satisfied by the same point A ∈ (that satisfied them in set (. We now consider two cases.

Assume first that ? lies to the left of the column �, and @ lies to the right of the column � in

point set (|C . Let A be the point that satisfied the pair (?, @) in point set (. If A lied on column �

in (, then it remains on column � in (|C . If A lied on column �′ in (, then a copy of A lies on

column � in (|C , and this copy continues to satisfy the pair (?, @). Otherwise, point A belongs to

set (|C , and it continues to satisfy the pair (?, @).
It now remains to consider the case when exactly one of the two points (say ?) lies on the column

� in (|C . Assume w.l.o.g. that @ lies to the right of ? and below it in (|C . Then either ? belongs

to ((in which case we denote ?′ = ?), or ? is a copy of some point ?′ that lies on column �′ in
(. Let A be the point that satisfies the pair (?′, @) of points in (. Using the same reasoning as

before, it is easy to see that either A belongs to (|C , where it continues to satisfy the pair (?, @) of
points, or a copy of A belongs to (|C , and it also continues to satisfy the pair (?, @).
It is easy to verify that an analogue of Observation 2.4 holds for collapsing rows as well. �

2.2.2 Canonical solutions

We say that a solution . for input - is canonical iff every point ? ∈ . lies on an active row and

an active column of -. It is easy to see that any solution can be transformed into a canonical

solution, without increasing its cost.

Observation 2.5. There is an efficient algorithm, that, given an instance - of Min-Sat and any

feasible solution . for -, computes a feasible canonical solution .̂ for - with |.̂ | ≤ |. |.

Proof. Let � and �′ be any pair of consecutive active columns for -, such that some point of

. lies strictly between � and �′. Let C be the set of all columns that lie between � and �′,
including � but excluding �′, that contain points of - ∪ .. We collapse the columns in C into

the column �, obtaining a new feasible solution for instance - (we use Observation 2.4). We

continue this process until every point of the resulting solution . lies on an active column, and

we perform the same procedure for the rows. �

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 10

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

2.3 Partitioning trees

We now turn to define partitioning trees, that are central to both defining the WB-1 bound and

to describing our algorithm.

Let - be the a set of points that is a semi-permutation. We can assume without loss of generality

that every column with an integral G-coordinate between 1 and 2(-) inclusive contains at least
one point of -. Let � be the bounding box of -. Assume that the set of active columns is

{�1 , . . . , �0}, where 0 = 2(-), and that for all 1 ≤ 8 ≤ 0, the G-coordinate of column �8 is 8. Let

ℒ be the set of all vertical lines with half-integral G-coordinates between 1 + 1/2 and 0 − 1/2
(inclusive). Throughout, we refer to the vertical lines in ℒ as auxiliary columns. Let � be an

arbitrary ordering of the lines of ℒ and denote � = (!1 , !2 , . . . , !0−1). We define a hierarchical

partition of the bounding box � into vertical strips using �, as follows. We perform 0 − 1

iterations. In the first iteration, we partition the bounding box �, using the line !1, into two

vertical strips, (! and (�. For 1 < 8 ≤ 0 − 1, in iteration 8 we consider the line !8 , and we let (be

the unique vertical strip in the current partition that contains the line !8 . We then partition (

into two vertical sub-strips by the line !8 . When the partitioning algorithm terminates, every

vertical strip contains exactly one active column.

Figure 1: An Illustration of a partitioning tree and the corresponding sequence � = (!1 , . . . , !7).
Strip ((E) corresponds to node E that owns line !6.

This partitioning process can be naturally described by a binary tree) =)(�), that we call a

partitioning tree associated with the ordering � (see Figure 1). Each node E ∈ +()) is associated
with a vertical strip ((E) of the bounding box �. The strip ((A) of the root vertex A of) is the

bounding box �. For every inner vertex E ∈ +()), if (= ((E) is the vertical strip associated with

E, and if ! ∈ ℒ is the first line in � that lies strictly in (, then line ! partitions (into two sub-strips,

((E1) and ((E2), corresponding to the two children E1 and E2 of E in the partitioning tree. We

say that E owns the line !, and we denote ! = !(E). For each leaf node E, the corresponding strip

((E) contains exactly one active column of -, and E does not own any line of ℒ. For each vertex

E ∈ +()), let #(E) = |- ∩ ((E)| be the number of points from - that lie in ((E), and let width(E)
be the width of the strip ((E). Given a partition tree) for point set -, we refer to the vertical

strips in {((E)}E∈) as)-strips.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 11

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

2.4 The WB-1 bound

The WB-1 bound3 is defined with respect to an ordering (or a permutation) � of the auxiliary

columns, or, equivalently, with respect to the partitioning tree)(�). It will be helpful to keep

both these views in mind. In this paper, we will make a clear distinction between a weak variant

of the WB-1 bound, as defined by Wilber himself in [29] and a strong variant, as mentioned in

[18].

Let - be a semi-permutation, and let ℒ be the corresponding set of auxiliary columns. Consider

an arbitrary fixed ordering � of columns in ℒ and its corresponding partition tree) =)(�). For
each inner node E ∈ +()), consider the set -′ = - ∩ ((E) of input points that lie in the strip ((E),
and let !(E) ∈ ℒ be the line that E owns. We denote -′ = {?1 , ?2 , . . . , ?:}, where the points

are indexed in the increasing order of their H-coordinates; since - is a semi-permutation, no

two points of - may have the same H-coordinate. For 1 ≤ 9 < :, we say that the ordered pair

(? 9 , ? 9+1) of points form a crossing of !(E) iff ? 9 , ? 9+1 lie on the opposite sides of the line !(E). We

let cost(E) be the total number of crossings of !(E) by the points of - ∩ ((E). When ! = !(E), we

also write cost(!) to denote cost(E). If E is a leaf vertex, then its cost is set to 0.

Definition 2.6 (WB-1 bound). For any semi-permutation -, an ordering � of the auxiliary

columns in ℒ, and the corresponding partitioning tree) =)(�), the (weak) WB-1 bound of

- with respect to � is: WB�(-) = WB)(-) =
∑
E∈+()) cost(E). The strong WB-1 bound of - is

WB(-) = max� WB�(-), where the maximum is taken over all permutations � of the lines in ℒ.

It is well known that the WB-1 bound is a lower bound on the optimal solution cost:

Claim 2.7. For any semi-permutation -, WB(-) ≤ 2 · OPT(-).

The original proof of this fact is due to Wilber [29], which was later presented in the geometric

view by Demaine et al. [11], via the notion of independent rectangles. In Section 8, we include a

direct geometric proof of this fact.

We note a simple observation, that the cost can be bounded by the number of points on the

smaller side.

Observation 2.8. Let - be a semi-permutation, � an ordering of the auxiliary columns in ℒ, and
let) =)(�) be the corresponding partitioning tree. Let E ∈ +()) be any inner vertex of the tree,

whose two child vertices are denoted by E1 and E2. Then cost(E) ≤ 2 min{|-∩((E1)|, |-∩((E2)|}.

Proof. For simplicity, we denote -′ = - ∩ ((E1) and -′′ = - ∩ ((E2). Assume w.l.o.g. that

|-′ | ≤ |-′′ |. Notice that, if the pair (?8 , ?8+1) of points in ((E) define a crossing of !(E), then one

of ?8 , ?8+1 must lie in -′. Every point ? 9 ∈ -′ may participate in at most two pairs of points that

define crossings: the pairs (? 9−1 , ? 9) and (? 9 , ? 9+1). Therefore, the total number of crossings of

!(E) is at most 2|-′ |. �

3Also called Interleaving bound [12], the first Wilber bound, “interleave lower bound” [29], or alternation

bound [18]

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 12

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

Figure 2: An illustration of a split of - by ℒ′ = {!1 , !2 , !3}.

3 Geometric decomposition theorems

In this section, we develop several technical tools that will allow us to decompose a given

instance into a number of sub-instances. We then analyze the optimal solution costs and the

Wilber bound values for the resulting subinstances.

3.1 Split instances

Consider a semi-permutation -. We define the split instanceswith respect to any subsetℒ′ ⊆ ℒ
of the auxiliary columns for -: Notice that the lines in ℒ′ partition the bounding box � into a

collection of internally disjoint strips, that we denote by {(1 , . . . , (:} where : = |ℒ′ | + 1. We can

then define the strip instances -8 ⊆ - as containing all vertices of - ∩ (8 for all 1 ≤ 8 ≤ :, and
the compressed instance -̃, that is obtained by collapsing, for each 1 ≤ 8 ≤ :, all active columns

that lie in strip (8 , into a single column. We call these resulting instances (-̃ , {-8}:8=1
) a split of -

by ℒ′. See Figure 2.

Observation 3.1. Let ℒ′ ⊆ ℒ be a collection of lines and (-̃ , {-8}:8=1
) be a split of - by ℒ′. Then

• ∑
8 A(-8) = A(-)

• ∑
8 2(-8)) = 2(-)

• 2(-̃) ≤ :

The first property holds since - is a semi-permutation.

Consider an arbitrary ordering � of the lines in ℒ, such that the lines of ℒ′ appear at the
beginning of �. The lines in ℒ′ split � naturally into : + 1 orderings. Let (1 , . . . , (: be the strips

obtained from partitioning box � by ℒ′, and for each 8 ∈ [:], ℒ8 is a collection of lines in strip (8 .

Now, �8 can be defined by naturally inducing � to the lines in ℒ8 , and �̃ is the ordering of lines

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 13

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

in ℒ′ induced by �. We say that �̃, �1 , . . . , �: are the split orderings of � by ℒ′. Similarly, the

lines ℒ′ also split the partitioning tree) =)(�) into)̃ =)(�̃) and)1 , . . . ,): where)8 =)(�8)
for all 8 ∈ [:]. These partitioning trees are called the split partitioning trees of) by ℒ′.
Observation 3.2. For ℒ′ ⊆ ℒ and ordering �, let (-̃ , {-8}:8=1

) and (�̃, {�8}) be the split instances
and split orderings respectively. Then,

:∑
8=1

WB�8 (-8) +WB�̃(-̃) = WB�(-)

This property can be viewed as a “perfect” decomposition property of the weak WB-1 bound

with respect to the split operation.

3.2 Decomposition theorem for the optimal solution

We prove the following recurrence about the “subadditivity” property of OPT under the

decomposition into split instances.

Theorem 3.3. Let ℒ′ ⊆ ℒ be a collection of lines and (-̃ , {-8}:8=1
) be a split instance of - by ℒ′. Then

:∑
8=1

OPT(-8) + OPT(-̃) ≤ OPT(-).

Proof. Let {(8}:8=1
be the strips partitioned by ℒ′. Let . be an optimal canonical solution for

-, so that every point of . lies on an active row and an active column for -. For each 8, let .8
denote the set of points of . that lie in the strip (8 . Since these points lie in the interior of the

strip, . =
⋃:
8=1
.8 .

For each 8, let ℛ8 denote the set of all rows ', such that: (i) ' contains a point of -; (ii) ' contains

no point of -8 ; and (iii) at least one point of .8 lies on '. Let <8 = |ℛ8 |. We need the following

claim.

Claim 3.4. There is a feasible solution .̂ to instance -̃, containing at most
∑
8 <8 points.

Proof. We construct the solution .̂ for -̃ as follows. Consider 8 ∈ [:]. Let �8 be the unique

column into which the columns lying in the strip (8 were collapsed. For every point ? ∈ .8 that
lies on a row ' ∈ ℛ8 , we add a new point !(?) on the intersection of row ' and column �8 to

the solution .̂. Once we process all strips 8 ∈ [:], we obtain a final set of points .̂. It is easy to

verify that |.̂ | = ∑
8 <8 . In order to see that .̂ is a feasible solution to instance -̃, it is enough to

show that the set -̃ ∪ .̂ of points is satisfied. Notice that set - ∪ . of points is satisfied, and

set -̃ ∪ .̂ is obtained from - ∪ . by collapsing sets of active columns lying in each strip (8 for

8 ∈ [:]. From Observation 2.4, the point set -̃ ∪ .̂ is satisfied. �

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 14

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

We now consider the strip instances {-8}8∈[:] and prove the following claim, that will complete

the proof of the lemma.

Claim 3.5. For each 8 ∈ [:], OPT(-8) ≤ |.8 | − <8 .

Proof. Notice first that the point set -8 ∪ .8 must be satisfied. We will modify point set .8 , to

obtain another set .′
8
, so that .′

8
remains a feasible solution for -8 , and |.′8 | ≤ |.8 | − <8 .

In order to do so, we perform <8 iterations. In each iteration, we will decrease the size of .8
by at least one, while also decreasing the cardinality of the set ℛ8 of rows by exactly 1, and

maintaining the feasibility of the solution .8 for -8 .

In every iteration, we select two arbitrary rows ' and '′, such that: (i) ' ∈ ℛ8 ; (ii) '′ is an active

row for instance -8 , and (iii) no point of .8 ∪ -8 lies strictly between rows ' and '′. We collapse

the rows ' and '′ into the row '′. From Observation 2.4, the resulting new set .8 of points

remains a feasible solution for instance -8 . We claim that |.8 | decreases by at least 1. In order

to show this, it is enough to show that there are two points ?, ?′ ∈ -8 ∪ .8 , with ? ∈ ', ?′ ∈ '′,
such that the G-coordinates of ? and ?′ are the same; in this case, after we collapse the rows, G

and G′ are mapped to the same point. Assume for contradiction that no such two points exist.

Let ? ∈ ' ∩ (-8 ∪ .8), ?′ ∈ '′ ∩ .8 be a pair of points with smallest horizontal distance. Such

points must exist since ' contains a point of -8 and '
′
contains a point of .8 . But then no other

point of -8 ∪ .8 lies in �?,?′, so the pair (?, ?′) is not satisfied in -8 ∪ .8 , a contradiction. �

�

3.3 Decomposition theorem for the strong WB-1 bound.

We prove the following recurrence about the strong WB-1 bound bound.

Theorem 3.6. Let ℒ′ ⊆ ℒ be a collection of lines and (-̃ , {-8}:8=1
) be a split instance of - by ℒ′. Then

WB(-) ≤ 4WB(-̃) + 8

:∑
8=1

WB(-8) + $(|- |).

We find this result somewhat surprising. One can think of the expressionWB(-̃)+∑
8∈[:]WB(-8)

as a WB-1 bound obtained by first cutting along the lines that serve as boundaries of the strips

(8 for 8 ∈ [:], and then starting to cut inside the individual strips afterwards. However, WB(-)
is the maximum of WB�(-) obtained over all possible orderings �, including those that do not

obey this cutting order.

The remainder of this section is dedicated to the proof of Theorem 3.6. For each 1 ≤ 8 ≤ :, we

denote by ℬ8 be the set of consecutive active columns containing the points of -8 , and we refer

to it as a block. For brevity, we also say “Wilber bound” to mean the strong WB-1 bound in this

section.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 15

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

3.3.1 Forbidden points

For the sake of the proof, we need the notion of forbidden points. Let -̂ be some semi-

permutation and ℒ̂ be the set of auxiliary columns for -̂. Let � ⊆ -̂ be a set of points that we

refer to as forbidden points. We now define the strong WB-1 bound with respect to the forbidden

points, WB�(-̂).

Consider any permutation �̂ of the lines in ℒ̂. Intuitively, WB��̂(-̂) counts all the crossings

contributed to WB�̂(-̂) but excludes all crossing pairs (?, ?′) where at least one of ?, ?′ lie

in �. Similar to WB(-), we define WB�(-̂) = max�̂ WB��̂(-̂), where the maximum is over all

permutations �̂ of the lines in ℒ̂.

Next, we define WB��̂(-̂)more formally. Let) =)(�̂) be the partitioning tree associated with �̂.
For each vertex E ∈ +()), let ! = !(E) be the line that belongs to E, and let Cr�̂(!) be the set of
all crossings (?, ?′) that contribute to cost(!); that is, ? and ?′ are two points that lie in the strip

((E) on two opposite sides of !, and no other point of -̂ ∩ ((E) lies between the row of ? and

the row of ?′. Let Cr�̂ =
⋃
!∈ℒ̂ Cr�̂(!). Observe that WB�̂(-) = |Cr�̂ | by definition. We say that

a crossing (?, ?′) ∈ Cr�̂(!) is forbidden iff at least one of ?, ?′ lie in �; otherwise the crossing is

allowed. We let Cr
�
�̂(!) be the set of crossings obtained from Cr�̂(!) by discarding all forbidden

crossings. We then let Cr
�
�̂ =

⋃
!∈ℒ̂ Cr

�
�̂(!), and WB��̂(-̂) = |Cr

�
�̂ |.

We emphasize that WB�(-̂) is not necessarily the same as WB(-̂ \ �), as some crossings of the

instance -̂ \ � may not correspond to allowed crossings of instance -̂.

3.3.2 Proof overview and notation

Consider first the compressed instance -̃, that is a semi-permutation. We denote its set of

active columns by C̃ = {�1 , . . . , �:}, where the columns are indexed in their natural left-to-right

order. Therefore, �8 is the column that was obtained by collapsing all active columns in strip

(8 . It would be convenient for us to slightly modify the instance -̃ by simply multiplying

all G-coordinates of the points in -̃ and of the columns in C̃ by factor 2. Note that this does

not affect the value of the optimal solution or of the Wilber bound, but it ensures that every

consecutive pair of columns in C̃ is separated by a column with an integral G-coordinate. We let

ℒ̃ be the set of all vertical lines with half-integral coordinates in the resulting instance -̃.

Similarly, we modify the original instance -, by inserting, for every consecutive pair ℬ8 ,ℬ8+1 of

blocks, a new column with an integral coordinate that lies between the columns of ℬ8 and the

columns of ℬ8+1. This transformation does not affect the optimal solution cost or the value of

the Wilber bound. For all 1 ≤ 8 ≤ # , we denote @8 = |ℬ8 |. We denote by ℒ the set of all vertical

lines with half-integral coordinates in the resulting instance -.

Consider any block ℬ8 . We denote by ℒ8 =
{
!1

8
, . . . , !

@8+1

8

}
the set of @8 + 1 consecutive vertical

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 16

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

lines in ℒ, where !1

8
appears immediately before the first column of ℬ8 , and !

@8+1

8
appears

immediately after the last column of ℬ8 . Notice that ℒ = ⋃#
8=1
ℒ8 .

Recall that our goal is to show thatWB(-) ≤ 4WB(-̃)+8

∑:
8=1

WB(-8)+$(|- |). In order to do so,

wefix apermutation � ofℒ thatmaximizesWB�(-), so thatWB(-) = WB�(-). We thengradually

transform it into a permutation �̃ of ℒ̃, such thatWB�̃(-̃) ≥ WB�(-)/4− 2

∑:
8=1

WB(-8) −$(|- |).
This will prove that WB(-) ≤ 4WB(-̃) + 8

∑:
8=1

WB(-8) + $(|- |).
In order to perform this transformation, we will process every block ℬ8 one-by-one. When

block ℬ8 is processed, we will “consolidate” all lines of ℒ8 , so that they will appear almost

consecutively in the permutation �, and we will show that this process does not increase

the Wilber bound by too much. The final permutation that we obtain after processing every

block ℬ8 can then be naturally transformed into a permutation �̃ of ℒ̃, whose Wilber bound

cost is similar. The main challenge is to analyze the increase in the Wilber bound in every

iteration. In order to facilitate the analysis, we will work with the Wilber bound with respect

to forbidden points. Specifically, we will define a set � ⊆ - of forbidden points, such that

WB��(-) ≥ WB�(-)/4 −
∑:
8=1

WB(-8). For every block ℬ8 , we will also define a bit 18 ∈ {0, 1},
that will eventually guide the way in which the lines of ℒ8 are consolidated. As the algorithm

progresses, we will modify the set � of forbidden points by discarding some points from it,

and we will show that the increase in the Wilber bound with respect to the new set � is small

relatively to the original Wilber bound with respect to the old set �. We start by defining the set

� of forbidden points, and the bits 18 for the blocks ℬ8 . We then show how to use these bits in

order to transform permutation � of ℒ into a new permutation �′ of ℒ, which will in turn be

transformed into a permutation �̃ of ℒ̃.
From now on we assume that the permutation � of the lines in ℒ is fixed.

3.3.3 Defining the set of forbidden points

Consider any block ℬ8 , for 1 ≤ 8 ≤ :. We denote by !∗
8
∈ ℒ8 the vertical line that appears first in

the permutation � among all lines of ℒ8 , and we denote by !∗∗
8
∈ ℒ8 the line that appears last in

� among all lines of ℒ8 .
We perform : iteration. In iteration 8, for 1 ≤ 8 ≤ :, we consider the block ℬ8 . We let 18 ∈ {0, 1}
be a bit chosen uniformly at random, independently from all other random bits. If 18 = 0, then

all points of -8 that lie to the left of !∗
8
are added to the set � of forbidden points; otherwise, all

points of -8 that lie to the right of !∗
8
are added to the set � of forbidden points. We show that

the expected number of the remaining crossings is large.

Claim 3.7. The expectation, over the choice of the bits 18 , of |Cr
�
� | is at least |WB(-)|/4−∑:

8=1
WB(-8).

Proof. Consider any crossing (?, ?′) ∈ Cr�. We consider two cases. Assume first that there is

some index 8, such that both ? and ?′ belong to -8 , and they lie on opposite sides of !∗
8
. In

this case, (?, ?′) becomes a forbidden crossing with probability 1. However, the total number

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 17

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

of all such crossings is bounded by WB(-8). Indeed, if we denote by ℒ̂8 the set of all vertical
lines with half-integral coordinates for instance -8 , then permutation � of ℒ naturally induces

permutation �8 of ℒ̂8 . Moreover, any crossing (?, ?′) ∈ Cr� with ?, ?′ ∈ -8 must also contribute

to the cost of �8 in instance -8 . Since the cost of �8 is bounded by ,�(-8), the number of

crossings (?, ?′) ∈ Cr� with ?, ?′ ∈ -8 is bounded by,�(-8).
Consider now any crossing (?, ?′) ∈ Cr�, and assume that there is no index 8, such that

both ? and ?′ belong to -8 , and they lie on opposite sides of !∗
8
. Then with probability

at least 1/4, this crossing remains allowed. Therefore, the expectation of |Cr
�
� | is at least

|Cr� |/4 −
∑:
8=1

WB(-8) = |WB�(-)|/4 −
∑:
8=1

WB(-8) = |WB(-)|/4 −∑:
8=1

WB(-8). �

From the above claim, there is a choice of the bits 11 , . . . , 1: , such that, if we define the set �

of forbidden points with respect to these bits as before, then |Cr
�
� | ≥ WB(-)/4 −∑:

8=1
WB(-8).

From now on we assume that the values of the bits 11 , . . . , 1: are fixed, and that the resulting set

� of forbidden points satisfies that |Cr
�
� | ≥ WB(-)/4 −∑:

8=1
WB(-8).

3.3.4 Transforming � into �′

We now show how to transform the original permutation � of ℒ into a new permutation �′ of
ℒ, which we will later transform into a permutation �̃ of ℒ̃. We perform : iterations. The input

to the 8th iteration is a permutation �8 of ℒ and a subset �8 ⊆ � of forbidden points. The output

of the iteration is a new permutation �8+1 of ℒ, and a set �8+1 ⊆ �8 of forbidden points. The final

permutation is �′ = �:+1, and the final set �:+1 of forbidden points will be empty. The input to

the first iteration is �1 = � and �1 = �. We now fix some 1 ≤ 8 ≤ :, and show how to execute the

8th iteration. Intuitively, in the 8th iteration, we consolidate the lines of ℒ8 . Recall that we have

denoted by !∗
8
, !∗∗

8
∈ ℒ8 the first and the last lines of ℒ8 , respectively, in the permutation �. We

only move the lines of ℒ8 in iteration 8, so this ensures that, in permutation �8 , the first line of
ℒ8 that appears in the permutation is !∗

8
, and the last line is !∗∗

8
.

We now describe the 8th iteration. Recall that we are given as input a permutation �8 of the lines
of ℒ, and a subset �8 ⊆ � of forbidden points. We consider the block ℬ8 and the corresponding

bit 18 .

Assume first that 18 = 0; recall that in this case, all points of - that lie on the columns of ℬ8 to
the left of !∗

8
are forbidden (see Figure 3). We start by switching the locations of !∗

8
and !1

8
in the

permutation �8 (recall that !1

8
is the leftmost line in ℒ8). Therefore, !1

8
becomes the first line of

ℒ8 in the resulting permutation. Next, we consider the location of line !∗∗
8
in �8 , and we place the

lines !
@8+1

8
, !2

8
, !3

8
, . . . , !

@8
8
in that location, in this order. This defines the new permutation �8+1.

Assume now that 18 = 1; recall that in this case, all points of - that lie on the columns of ℬ8 to
the right of !∗

8
are forbidden (see Figure 3). We start by switching the locations of !∗

8
and !

@8+1

8

in the permutation �8 (recall that !
@8+1

8
is the rightmost line in ℒ8). Therefore, !@8+1

8
becomes

the first line of ℒ8 in the resulting permutation. Next, we consider the location of line !∗∗
8
in

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 18

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

ℬ𝑖

𝐿𝑖
3

𝐿𝑖
2

𝐿𝑖
1

𝐿𝑖
5

𝐿𝑖
4

𝜎𝑖

ℬ𝑖

𝐿𝑖
3

𝐿𝑖
2

𝐿𝑖
1

𝐿𝑖
5

𝐿𝑖
4

𝜎𝑖+1

𝑏𝑖 = 0

𝐿𝑖
3

𝐿𝑖
2

𝐿𝑖
1

𝐿𝑖
5

𝐿𝑖
4

𝜎𝑖

𝐿𝑖
3

𝐿𝑖
2

𝐿𝑖
1

𝐿𝑖
5

𝐿𝑖
4

𝜎𝑖+1

ℬ𝑖 ℬ𝑖

𝑏𝑖 = 1

Figure 3: Modification from �8 to �8+1. In the figure, ℒ8 = {!1

8
, . . . , !5

8
}, !∗

8
= !3

8
and !∗∗

8
= !4

8
.

Points with horizontal strips are forbidden.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 19

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

�8 , and we place the lines !1

8
, !2

8
, !3

8
, . . . , !

@8
8
in that location, in this order. This defines the new

permutation �8+1.

Lastly, we discard from �8 all points that lie on the columns of ℬ8 , obtaining the new set �8+1 of

forbidden points.

Once every block ℬ8 is processed, we obtain a final permutation �:+1 that we denote by �′, and
the final set �:+1 = ∅ of forbidden lines. The following lemma is central to our analysis. It shows

that the Wilber bound does not decrease by much after every iteration. The Wilber bound is

defined with respect to the appropriate sets of forbidden points.

Lemma 3.8. For all 1 ≤ 8 ≤ :, WB�8+1

�8+1

(-) ≥ WB�8�8 (-) −WB(-8) − $(|-8 |).

Assume first that the lemma is correct. Recall that we have ensured that WB�1

�1

(-) = WB��(-) ≥
WB(-)/4 −∑:

8=1
WB(-8). Since �:+1 = ∅, this will ensure that:

WB�′(-) ≥ WB��(-) −
∑
8

WB(-8) − $(|- |) ≥ WB(-)/4 − 2

∑
8

WB(-8) − $(|- |).

We now focus on the proof of the lemma.

Proof. In order to simplify the notation, we denote �8 by �̂, �8+1 by �̂′. We also denote �8 by �̂,

and �8+1 by �̂
′
.

Consider a line ! ∈ ℒ. Recall that Cr�̂(!) is the set of all crossings that are charged to the line

! in permutation �̂. Recall that Cr
�̂
�̂(!) ⊆ Cr�̂(!) is obtained from the set Cr�̂(!) of crossings,

by discarding all crossings (?, ?′) where ? ∈ �̂ or ?′ ∈ �̂ holds. The set Cr
�̂′

�̂′(!) of crossings is
defined similarly.

We start by showing that for every line ! ∈ ℒ that does not lie in ℒ8 , the number of crossings

charged to it does not decrease, that is, Cr
�̂′

�̂′(!) ≥ Cr
�̂
�̂(!).

Claim 3.9. For every line ! ∈ ℒ \ ℒ8 , Cr
�̂′

�̂′(!) ≥ Cr
�̂
�̂(!).

Proof. Consider any line ! ∈ ℒ \ ℒ8 . Let E ∈ +()(�̂)) be the vertex of the partitioning tree)(�̂)
corresponding to �̂ to which ! belongs, and let (= ((E) be the corresponding strip. Similarly,

we define E′ ∈ +()(�̂′)) and (′ = ((E′)with respect to �̂′. Recall that !∗
8
is the first line of ℒ8 to

appear in the permutation �, and !∗∗
8
is the last such line. We now consider five cases.

• Case 1. The first case happens if ! appears before line !∗
8
in the permutation �̂. Notice

that the prefixes of the permutations �̂ and �̂′ are identical up to the location in which !∗
8

appears in �̂. Therefore, (= (′, and Cr�̂(!) = Cr�̂′(!). Since �̂′ ⊆ �̂, every crossing that is

forbidden in �̂′ was also forbidden in �̂. So Cr
�̂
�̂(!) ⊆ Cr

�̂′

�̂′(!), and Cr
�̂′

�̂′(!) ≥ Cr
�̂
�̂(!).

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 20

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

𝐿𝑖
∗

𝐿𝑖
2

𝐿𝑖
1

𝐿𝑖
5

𝐿𝑖
4

𝜎𝑖

𝐿𝑖
3

𝐿𝑖
2

𝐿𝑖
1

𝐿𝑖
5

𝐿𝑖
4

𝜎𝑖+1

𝑏𝑖 = 0

𝐿 𝐿

𝑝1

𝑝2

𝑝1

𝑝2

𝑎𝑎

′

ℬ𝑖 ℬ𝑖

Figure 4: Illustration of the injective mapping of each crossing in Cr
�̂
�̂(!) to a crossing in Cr

�̂′

�̂′(!).
Points with horizontal strips are forbidden points from �̂.

• Case 2. The second case happens if ! appears after !∗∗
8
in �̂. Notice that, if we denote by

ℒ′ ⊆ ℒ the set of all lines of ℒ that lie before ! in �̂, and define ℒ′′ similarly for �̂′, then

ℒ′ = ℒ′′. Therefore, (= (′ holds. Using the same reasoning as in Case 1, Cr
�̂′

�̂′(!) ≥ Cr
�̂
�̂(!).

• Case 3. The third case is when ! appears between !∗
8
and !∗∗

8
in �̂, but neither boundary of

the strip (belongs to ℒ8 . If we denote by ℒ′ ⊆ ℒ \ ℒ8 the set of all lines of ℒ \ ℒ8 that lie
before ! in �̂, and define ℒ′′ ⊆ ℒ \ ℒ8 similarly for �̂′, then ℒ′ = ℒ′′. Therefore, (= (′

holds. Using the same reasoning as in Cases 1 and 2, Cr
�̂′

�̂′(!) ≥ Cr
�̂
�̂(!).

Case 4. The fourth case is when ! appears between !∗
8
and !∗∗

8
in the permutation �̂,

and the left boundary of (belongs to ℒ8 . Notice that the left boundary of (must either

coincide with !∗
8
, or appear to the right of it.

Assume first that 18 = 0, so we have replaced !∗
8
with the line !1

8
, that lies to the left of !∗

8
.

Since no other lines of ℒ8 appear in �̂′ until the original location of line !∗∗
8
, it is easy to

verify that the right boundary of (′ is the same as the right boundary of (, and its left

boundary is the line !1

8
, that is, we have pushed the left boundary to the left. In order to

prove that |Cr
�̂′

�̂′(!)| ≥ |Cr
�̂
�̂(!)|, we map every crossing (?1 , ?2) ∈ Cr

�̂
�̂(!) to some crossing

(?′
1
, ?′

2
) ∈ Cr

�̂′

�̂′(!), so that no two crossings of Cr
�̂
�̂(!) are mapped to the same crossing of

Cr
�̂′

�̂′(!).

Consider any crossing (?1 , ?2) ∈ Cr
�̂
�̂(!) (see Figure 4). We know that ?1 , ?2 ∈ (, and they

lie on opposite sides of !. We assume w.l.o.g. that ?1 lies to the left of !. Moreover, no

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 21

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

point of - ∩ (lies between the row of ?1 and the row of ?2. It is however possible that

(?1 , ?2) is not a crossing of Cr�̂′(!), since by moving the left boundary of (to the left, we

add more points to the strip, some of which may lie between the row of ?1 and the row

of ?2. Let � be the set of all points that lie between the row of ?1 and the row of ?2 in (
′
.

Notice that the points of � are not forbidden in �̂′. Let 0 ∈ � be the point of 0 whose row

is closest to the row of ?2; if � = ∅, then we set 0 = ?1. Then (0, ?2) defines a crossing in

Cr�̂′(!), and, since neither point lies in �̂′, (0, ?2) ∈ Cr
�̂′

�̂′(!). In this way, we map every

crossing (?1 , ?2) ∈ Cr
�̂
�̂(!) to some crossing (?′

1
, ?′

2
) ∈ Cr

�̂′

�̂′(!). It is easy to verify that no

two crossings of Cr
�̂
�̂(!) are mapped to the same crossing of Cr

�̂′

�̂′(!). We conclude that

|Cr
�̂′

�̂′(!)| ≥ |Cr
�̂
�̂(!)|.

Lastly, assume that 18 = 1. Recall that the set of all points of - lying between !∗
8
and

!
@8+1

8
is forbidden in �̂ but not in �̂′, and that we have replaced !∗

8
with the line !

@8+1

8
, that

lies to the right of !∗
8
. Therefore, the right boundary of (remains the same, and the left

boundary is pushed to the right. In order to prove that |Cr
�̂′

�̂′(!)| ≥ |Cr
�̂
�̂(!)|, we show

that every crossing (?1 , ?2) ∈ Cr
�̂
�̂(!) belongs to Cr

�̂′

�̂′(!). Indeed, consider any crossing

(?1 , ?2) ∈ Cr
�̂
�̂(!). We know that ?1 , ?2 ∈ (, and they lie on opposite sides of !. We assume

w.l.o.g. that ?1 lies to the left of !. Since ?1 cannot be a forbidden point, it must lie to the

right of !
@8+1

8
. Moreover, no point of - ∩ (lies between the row of ?1 and the row of ?2. It

is now easy to verify that (?1 , ?2) is also a crossing in Cr
�̂′

�̂′(!).

•• Case 5. The fifth case happens when ! appears between !∗
8
and !∗∗

8
in the permutation �̂,

and the right boundary of (belongs to ℒ8 . This case is symmetric to the fourth case and is

analyzed similarly.

�

It now remains to analyze the crossings of the lines in ℒ8 . We do so in the following two

claims. The first claim shows that switching !∗
8
with !1

8
or !

@8+1

8
does not decrease the number of

crossings.

Claim 3.10. If 1 = 0, then |Cr
�̂′

�̂′(!
1

8
)| ≥ |Cr

�̂
�̂(!
∗
8
)|; if 1 = 1, then |Cr

�̂′

�̂′(!
@8+1

8
)| ≥ |Cr

�̂
�̂(!
∗
8
)|.

Proof. Assume first that 1 = 0, so we have replaced !∗
8
with !1

8
in the permutation. As before,

we let E ∈ +()(�̂)) be the vertex to which !∗
8
belongs, and we let (= ((E) be the corresponding

strip. Similarly, we define E′ ∈ +()(�̂′)) and (′ = ((E′)with respect to line !1

8
and permutation

�̂′. Notice that, until the appearance of !∗
8
in �̂, the two permutations are identical. Therefore,

(= (′ must hold. Recall also that all points of - that lie between !∗
8
and !1

8
are forbidden in

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 22

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

�̂, but not in �̂′. In order to show that |Cr
�̂′

�̂′(!
1

8
)| ≥ |Cr

�̂
�̂(!
∗
8
)|, it is enough to show that every

crossing (?1 , ?2) ∈ Cr
�̂
�̂(!
∗
8
) also lies in Cr

�̂′

�̂′(!
1

8
).

Consider now some crossing (?1 , ?2) ∈ Cr
�̂
�̂(!
∗
8
). Recall that one of ?1 , ?2 must lie to the left of !∗

8
and the other to the right of it, with both points lying in (. Assume w.l.o.g. that ?1 lies to the left

of !∗
8
. Since ?1 ∉ �̂, it must lie to the left of !1

8
. Moreover, no point of - ∩ (may lie between the

row of ?1 and the row of ?2. It is then easy to verify that (?1 , ?2) is also a crossing in Cr
�̂′

�̂′(!
1

8
),

and so |Cr
�̂′

�̂′(!
1

8
)| ≥ |Cr

�̂
�̂(!
∗
8
)|.

The second case, when 1 = 1, is symmetric. �

Lastly, we show that for all lines ! ∈ ℒ8 \
{
!∗
8

}
, their total contribution to Cr

�̂
�̂ is small.

Claim 3.11.
∑
!∈ℒ8\{!∗8} |Cr

�̂
�̂(!)| ≤ WB(-8) + $(|-8 |).

Assume first that the claim is correct. We have shown so far that the total contribution of

all lines in ℒ8 \
{
!∗
8

}
to Cr

�̂
�̂ is at most WB(-8) + $(|-8 |); that the contribution of one of the

lines !1

8
, !

@8+1

8
to Cr

�̂′

�̂′ is at least as large as the contribution of !∗
8
to Cr

�̂
�̂; and that for every line

! ∉ ℒ8 , its contribution to Cr
�̂′

�̂′ is at least as large as its contribution to Cr
�̂
�̂. It then follows that

|Cr
�̂′

�̂′ | ≥ |Cr
�̂
�̂ | −WB(-8) +$(|-8 |), and soWB�8+1

�8+1

(-) ≥ WB�8�8 (-) −WB(-8) +$(|-8 |). Therefore,
in order to prove Lemma 3.8, it is now enough to prove Claim 3.11.

Proof. (Of Claim 3.11) Consider some line ! ∈ ℒ8 \
{
!∗
8

}
, and let E ∈ +()(�̂)) be the vertex to

which ! belongs. Notice that ! appears in �̂ after !∗
8
. Therefore, if (= ((E) is the strip that !

partitioned, then at least one of the boundaries of (lies in ℒ8 . If exactly one boundary of (

lies in ℒ8 , then we say that (is an external strip; otherwise, we say that (is an internal strip.
Consider now some crossing (?, ?′) ∈ Cr�̂((). Since ! ∈ ℒ8 , and at least one boundary of (lies

in ℒ8 , at least one of the points ?, ?′ must belong to -8 . If exactly one of ?, ?′ lies in -8 , then
we say that (?, ?′) is a type-1 crossing; otherwise it is a type-2 crossing. Notice that, if (is an

internal strip, then only type-2 crossings of ! are possible. We now bound the total number of

type-1 and type-2 crossings separately, in the following two observations.

Observation 3.12. The total number of type-2 crossings in

⋃
!∈ℒ8\{!∗8} Cr�̂(!) is at most WB(-8).

Proof. Permutation �̂ of the lines in ℒ naturally induces a permutation �̂8 of the lines in ℒ8 . The
number of type-2 crossings charged to all lines in ℒ8 is then at most WB�̂8 (-8) ≤ WB(-8). �

Observation 3.13. The total number of type-1 crossings in

⋃
!∈ℒ8\{!∗8} Cr�̂(!) ≤ $(|-8 |).

Proof. Consider a line ! ∈ ℒ8 \
{
!∗
8

}
, and let (be the strip that it splits. Recall that, if there are

any type-1 crossings in Cr�̂(!), then (must be an external strip. Line ! partitions (into two new

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 23

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

strips, that we denote by (′ and (′′. Notice that exactly one of these strips (say (′) is an internal

strip, and the other strip is external. Therefore, the points of -8 ∩ (′ will never participate in

type-1 crossings again. Recall that, from Observation 2.8, the total number of crossings in Cr�̂(!)
is bounded by 2|(′ ∩ -8 |. We say that the points of (′ ∩ -8 pay for these crossings. Since every

point of -8 will pay for a type-1 crossing at most once, we conclude that the total number of

type-1 crossings in

⋃
!∈ℒ8\{!∗8} Cr�̂(!) is bounded by 2|-8 |. �

Weconclude that the total number of all crossings in

⋃
!∈ℒ8\{!∗8} Cr�̂(!) is atmostWB(-8)+$(|-8 |).

Since, for every line !, Cr
�̂
�̂(!) ⊆ Cr�̂(!), we get that

∑
!∈ℒ8\{!∗8} |Cr

�̂
�̂(!)| ≤ WB(-8) +$(|-8 |). �

�

To summarize, we have transformed a permutation � of ℒ into a permutation �′ of ℒ, and we

have shown that WB�′(-) ≥ WB(-)/4 − 2

∑:
8=1

WB(-8) − $(|- |).

3.3.5 Transforming �′ into �̃

In this final step, we transform the permutation �′ of ℒ into a permutation �̃ of ℒ̃, and we will

show that WB�̃(-̃) ≥ WB�′(-) − |- |.
The transformation is straightforward. Consider some block ℬ8 , and the corresponding set

ℒ8 ⊆ ℒ of lines. Recall that the lines in ℒ8 are indexed !1

8
, . . . , !

@8+1

8
in this left-to-right order,

where !1

8
appears to the left of the first column of ℬ8 , and !@8+1

8
appears to the right of the last

column of ℬ8 . Recall also that, in the current permutation �′, one of the following happens:

either (i) line !1

8
appears in the permutation first, and lines !

@8+1

8
, !2

8
, . . . , !

@

8
appear at some later

point consecutively in this order; or (ii) line !
@8+1

8
appears in the permutation first, and lines

!1

8
, !2

8
, . . . , !

@

8
appear somewhere later in the permutation consecutively in this order. Therefore,

for all 2 ≤ 9 ≤ @, line ! 9
8
separates a strip whose left boundary is !

9−1

8
and right boundary is !

@8+1

8
.

It is easy to see that the cost of each such line !
9

8
in permutation �′ is bounded by the number of

points of - that lie on the unique active column that appears between !
9−1

8
and !

9

8
. The total

cost of all such lines is then bounded by |-8 |.
Let �̃∗ be a sequence of lines obtained from �′ by deleting, for all 1 ≤ 8 ≤ :, all lines !2

8
, . . . , !

@

8

from it. Then �̃∗ naturally defines a permutation �̃ of the set ℒ̃ of vertical lines. Moreover,

from the above discussion, the total contribution of all deleted lines to WB�′(-) is at most |- |,
so WB�̃(-̃) ≥ WB�′(-) − |- | ≥ WB(-)/4 − 2

∑
8 WB(-8) − $(|- |). We conclude that WB(-̃) ≥

WB�̃(-̃) ≥ WB(-)/4 − 2

∑
8 WB(-8) − $(|- |), and WB(-) ≤ 4WB(-̃) + 8

∑
8 WB(-8) + $(|- |).

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 24

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

4 Separation results for the strong Wilber bound

In this section we present our negative results, proving Theorem 1.1, and extend it to obtain a

separation result between the first and second Wilber bounds.

4.1 Basic tools

Our construction combines known input sequences and their properties, some of which have

been proved in the standard tree view of binary search trees. We discuss these facts in the

geometric context.

4.1.1 Monotonically increasing sequence

We say that an input set - of points is monotonically increasing iff - is a permutation, and

moreover for every pair ?, ?′ ∈ - of points, if ?.G < ?′.G, then ?.H < ?′.H must hold. It is well

known that the value of the optimal solution of monotonically increasing sequences is low, and

we exploit this fact in our negative results.

Observation 4.1. If - is a monotonically increasing set of points, then OPT(-) ≤ |- | − 1.

Proof. We order points in - based on their G-coordinates as - = {?1 , . . . , ?<} such that

?1.G < ?2.G < . . . < ?< .G. For each 8 = 1, . . . , < − 1 we define @8 = ((?8).G, (?8+1).H) and the set

. = {@1 , . . . , @<−1}. It is easy to verify that . is a feasible solution for -. �

4.1.2 Bit reversal sequence (BRS)

The bit-reversal sequence, first described by Wilber [29], is a family of explicit input sequences

whose optimal value is asymptotically largest possible, that is, OPT(-) = Ω(|- | log |- |). The
original sequence was described in the language of binary representation of strings. Here we

use the geometric variant of BRS, which is more convenient for our analysis.

Let 8 ≥ 0 be an integer and ℛ ⊆ ℕ and C ⊆ ℕ be subsets of active rows and columns such that

|ℛ| = |C| = 2
8
. The level-8 bit-reversal instance BRS(8 ,ℛ , C) contains 2

8
points whose sets of

active rows and columns are exactly ℛ and C respectively. The instances are defined inductively.

The level-0 instance BRS(0, {�}, {'}), containing a single point at the intersection of row '

and column �. Assume now that we have defined, for all 1 ≤ 8′ ≤ 8, and any sets ℛ′, C′ of 2
8′

integers, the corresponding instance BRS(8′,ℛ′, C′). We define instance BRS(8 + 1,ℛ , C), where

|ℛ| = |C| = 2
8+1

, as follows.

Consider the columns in C in their natural left-to-right order, and define C;4 5 C to be the

first 2
8
columns and CA8,ℎC = C \ C;4 5 C . Denote ℛ = {'1 , . . . , '2

8+1}, where the rows are

indexed in their natural bottom to top order, and let ℛ4E4= = {'2 , '4 , . . . , '2
8+1} and ℛ>33 =

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 25

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

{'1 , '3 , . . . , '2
8+1−1
} be the sets of all even-indexed and all odd-indexed rows, respectively.

Notice that |C;4 5 C | = |CA8,ℎC | = |ℛ4E4= | = |ℛ>33 | = 2
8
. The instance BRS(8 + 1,ℛ , C) is defined to

be BRS(8 ,ℛ>33 , C;4 5 C) ∪ BRS(8 ,ℛ4E4= , CA8,ℎC). See Figure 5 for an illustration.

It is well-known [29] that, if - is a bit-reversal sequence on = points, then OPT(-) ≥ Ω(= log =).

Claim 4.2. Let - = BRS(8 , C ,ℛ), for any 8 ≥ 0 and any sets C and ℛ of columns and rows, respectively,
with |ℛ| = |C| = 2

8 . Then |- | = 2
8 , and OPT(-) ≥ WB(-)

2
≥ Ω(|- | log |- |).

Next, we present two additional technical tools that we use in our construction.

4.1.3 Exponentially spaced columns

Recall that we defined the bit reversal instance BRS(ℓ ,ℛ , C), where ℛ and C are sets of 2
ℓ

rows and columns, respectively, that serve in the resulting instance as the sets of active rows

and columns; the instance contains = = 2
ℓ
points. In the Exponentially-Spaced BRS instance

ES-BRS(ℓ ,ℛ), we are still given a set ℛ of 2
ℓ
rows that will serve as active rows in the resulting

instance, but we define the set C of columns in a specific way. For an integer 8, let �8 be the

column whose G-coordinate is 8 and C contain, for each 0 ≤ 8 < 2
ℓ
, the column �

2
8 . Denoting

= 2
= = 2

2
ℓ
, the G-coordinates of the columns in C are {1, 2, 4, 8, . . . , #/2}. The instance is

then defined to be BRS(ℓ ,ℛ , C) for this specific set C of columns. Notice that the instance

contains = = log# = 2
ℓ
input points.

It is easy to see that any point set - = ES-BRS(ℓ ,ℛ) satisfies OPT(-) = Ω(= log =). We remark

that this idea of exponentially spaced columns is inspired by the instance used by Iacono [18]

to prove a gap between the weak WB-1 bound and OPT(-). However, Iacono’s instance is

tailored to specific partitioning tree), and it is clear that there is another partitioning tree)′

with OPT(-) = Θ(,�)′(-)). Therefore, this instance does not give a separation result for the

strong WB-1 bound, and in fact it does not provide negative results for the weak WB-1 bound

when the input point set is a permutation.

4.1.4 Cyclic shift of columns

Suppose we are given a point set -, and let C = {�0 , . . . , �#−1} be any set of columns indexed in

their natural left-to-right order, such that all points of - lie on columns of C (but some columns

may contain no points of -). Let 0 ≤ B < # be any integer. We denote by - B
a cyclic shift of -

by B units with respect to C, obtained as follows. For every point ? ∈ - on column � 9 , we add a

new point ?B to - B
, that lies on the same row as ? and on column �(9+B) mod # . In other words,

we shift the point ? by B steps to the right (with respect to C) in a circular manner. Equivalently,

we move the last B columns of C to the beginning of the instance. The following claim shows

that the value of the optimal solution does not decrease significantly in the shifted instance.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 26

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

Claim 4.3. Let - be any point set that is a semi-permutation. Let 0 ≤ B < # be a shift value, and let
-′ = - B be the instance obtained from - by a cyclic shift of its points by B units to the right. Then
OPT(-′) ≥ OPT(-) − |- |.

Proof. Let .′ be an optimal canonical solution to instance -′. We partition .′ into two subsets:

set .′
1
consists of all points lying on the first B columns with integral coordinates, and set .′

2

consists of all points lying on the remaining columns. We also partition the points of -′ into two

subsets -′
1
and -′

2
similarly. Notice that -′

1
∪ .′

1
must be a satisfied set of points, and similarly,

-′
2
∪ .′

2
is a satisfied set of points. Our goal is to use these sets to construct a feasible solution

for - of size |- | + |.′
1
| + |.′

2
| = |- | + OPT(-′).

Next, we partition the set - of points into two subsets: set -1 contains all points lying on the

last B columns with integral coordinates, and set -2 contains all points lying on the remaining

columns. Since -1 and -2 are simply horizontal shifts of the sets -′
1
and -′

2
of points, we can

define a set .1 of |.′
1
| points such that .1 is a canonical feasible solution for -1, and we can define

a set .2 for -2 similarly. Let � be a column with a half-integral G-coordinate that separates -1

from -2 (that is, all points of -1 lie to the right of � while all points of -2 lie to its left.) We

construct a new set / of points, of cardinality |- |, such that .1 ∪ .2 ∪ / is a feasible solution to

instance -. In order to construct the point set /, for each point ? ∈ -, we add a point ?′ with

the same H-coordinate, that lies on column �, to /. Notice that |/ | = |- |.
We claim that /∪(.1∪.2) is a feasible solution for -, and this will complete the proof. Consider

any two points ?, @ ∈ / ∪ (.1 ∪.2) ∪- that are not aligned. Let �1 and �2 be the strips obtained

from the bounding box � by partitioning it with column �, so that -1 ⊆ �1 and -2 ⊆ �2. If

both ? and @ lie in the interior of the same strip, say �1, we are done since set -1 ∪ .1 of points

is satisfied. So, assume that one of the points (say ?) lies in the interior of one of the strips

(say �1), while the other point either lies on �, or in the interior of �2. Then ? ∈ -1 ∪ .1 must

hold. Moreover, since .1 is a canonical solution for -1, point ? lies on a row that is active for -1.

Therefore, some point ?′ ∈ -1 lies on the same row (where possibly ?′ = ?). But then a copy of

?′ that was added to the set / and lies on the column � satisfies the pair (?, @). �

4.1.5 Partial costs of WB-1 bound

We use simple facts about the Wilber bound. The following is a property of any balanced binary

search trees.

Lemma 4.4. For any semi-permutation -, WB(-) ≤ 2OPT(-) ≤ $(A(-) log 2(-)).

Our analysis also uses partial costs of the WB-1 bound restricted to a subtree and a path.

Claim 4.5. Consider a set - of points that is a semi-permutation, an ordering � of the auxiliary columns
in ℒ and the corresponding partitioning tree) =)(�). Let E ∈ +()) be any vertex of the tree. Then the
following hold:

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 27

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

• Let)E be the subtree of) rooted at E. Then∑
D∈+()E)

cost(D) = WB)E (- ∩ ((E)) ≤ $(#(E) log(#(E)))

• Let D be any descendant vertex of E, and let % be the unique path in) connecting D to E. Then∑
I∈+(%) cost(I) ≤ 2#(E).

Proof. The first assertion follows from the definition of the weak WB-1 bound and Lemma 4.4.

We now prove the second assertion. Denote % = (E = E1 , E2 , . . . , E: = D). For all 1 < 8 ≤ :, we

let E′
8
be the unique sibling of the vertex E8 in the tree). We also let -8 be the set of points of -

that lie in the strip ((E′
8
), and we let -′ be the set of all points of - that lie in the strip ((E:). It is

easy to verify that -2 , . . . , -: , -
′
are all mutually disjoint (since the strips {((E′

8
)}@
8=2

and ((E:)
are disjoint), and that they are contained in - ∩ ((E). Therefore, ∑@

8=2
|-8 | + |-′ | ≤ #(E).

From Observation 2.8, for all 1 ≤ 8 < :, cost(E8) ≤ 2#(E′
8
) = 2|-8 |, and cost(E:) ≤ 2#(E:) = 2|-′ |.

Therefore,

∑
I∈+(%) cost(I) ≤ 2

∑@

8=2
|-8 | + 2|-′ | ≤ 2#(E). �

4.2 Construction of the bad instance

We construct two instances: instance -̂ on # ∗ points, that is a semi-permutation (but is

somewhat easier to analyze), and instance -∗ in # ∗ points, which is a permutation; the analysis

of instance -∗ heavily relies on the analysis of instance -̂. We will show that the optimal

solution value of both instances is Ω(# ∗ log log# ∗), but the cost of the Wilber Bound is at most

$(# ∗ log log log# ∗). Our construction uses the following three parameters. We let ℓ ≥ 1 be an

integer, and we set = = 2
ℓ
and # = 2

=
.

4.2.1 First instance

We now construct our first instance -̂, which is a semi-permutation containing # columns.

Intuitively, we create # instances -0 , -1 , . . . , -#−1
, where instance - B

is an exponentially-

spaced BRS instance that is shifted by B units. We then stack these instances on top of one

another in this order.

Formally, for all 0 ≤ 9 ≤ # −1, we define a set ℛ 9 of = consecutive rows with integral coordinates,

such that the rows of ℛ0 ,ℛ1 , . . . ,ℛ#−1 appear in this bottom-to-top order. Specifically, set ℛ 9
contains all rows whose H-coordinates are in { 9= + 1, 9= + 2, . . . , (9 + 1)=}.
For every integer 0 ≤ B ≤ # − 1, we define a set of points - B

, which is a cyclic shift of instance

ES-BRS(ℓ ,ℛB) by B units. Recall that |- B | = 2
ℓ = = and that the points in - B

appear on the rows

in ℛB and a set CB of columns, whose G-coordinates are in {
(
2
9 + B

)
mod # : 0 ≤ 9 < =}. We

then let our final instance be -̂ =
⋃#−1

B=0
- B

. From now on, we denote # ∗ = |-̂ |. Recall that

|# ∗ | = # · = = # log# .

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 28

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

Observe that the number of active columns in -̂ is # . Since the instance is symmetric and

contains # ∗ = # log# points, every column contains exactly log# points. Each row contains

exactly one point, so -̂ is a semi-permutation. (See Figure 5 for an illustration).

Figure 5: An illustration of our construction. The figure on the left shows the instance

BRS(2, [4], [4]). The figure on the right combines three copies -0 , -1 , -2
of the corresponding

exponentially-spaced instance, with horizontal shifts of 0, 1, and 2, respectively. The red points

are shifted copies of the same point in different sub-instances.

Lastly, we need the following bound on the value of the optimal solution of instance -̂.

Observation 4.6. OPT(-̂) = Ω(# ∗ log log# ∗)

Proof. From Claims 4.2 and 4.3, for each 0 ≤ B ≤ # − 1, each sub-instance - B
has OPT(- B) ≥

Ω(= log =) = Ω(log# log log#). Therefore,OPT(-̂) ≥ ∑#−1

B=0
OPT(- B) = Ω(# log# log log#) =

Ω(# ∗ log log# ∗) (we have used the fact that # ∗ = # log#). �

4.2.2 Second instance

We now construct our second and final instance, -∗, that is a permutation. In order to do so,

we start with the instance -̂, and, for every active column � of -̂, we create = = log# new

columns (that we view as copies of �), �1 , . . . , �log#
, which replace the column �. We denote

this set of columns by ℬ(�), and we refer it as the block of columns representing �. Recall that
the original column � contains log# input points of -̂. We place each such input point on a

distinct column of ℬ(�), so that the points form a monotonically increasing sequence (see the

definition in Section 4.1). This completes the definition of the final instance -∗. We obtain the

following immediate bound on the optimal solution cost of instance -∗.

Claim 4.7. OPT(-∗) ≥ OPT(-̂) = Ω(# ∗ log log# ∗).

Next, we proceed to prove the following theorem.

Theorem 4.8. WB(-̂) ≤ $(# ∗ log log log# ∗).

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 29

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

Recall again the instance -̂. Recall that it consists of# instances-0 , -1 , . . . , -#−1
that are stacked

on top of each other vertically in this order. We rename these instances as-1 , -2 , . . . , -# , so -9 is

exactly ES-BRS(log#), that is shifted by (9−1) units to the right. Recall that |-̂ | = # ∗ = # log# ,

and each instance -B contains exactly log# points. We denote by C the set of # columns,

whose G-coordinates are 1, 2, . . . , # . All points of -̂ lie on the columns of C. For convenience,
for 1 ≤ 9 ≤ # , we denote by � 9 the column of C whose G-coordinate is 9.

Let � be any ordering of the auxiliary columns in ℒ, and let) =)(�) be the corresponding

partitioning tree. It is enough to show that, for any such ordering �, the value of WB�(-̂) is
bounded by $(# ∗ log log log# ∗).

The total costs of the bound is divided into two parts as follows. Recall that ,��(-̂) is the
sum, over all vertices E ∈ +()), of cost(E). If E is a leaf vertex, then cost(E) = 0. Otherwise,

let ! = !(E) be the line of ℒ that E owns. Index the points in - ∩ ((E) by @1 , . . . , @I in their

bottom-to-top order. A consecutive pair (@ 9 , @ 9+1) of points is a crossing iff they lie on different

sides of !(E). We distinguish between the two types of crossings that contribute towards cost(E).
We say that the crossing (@ 9 , @ 9+1) is of type-1 if both @ 9 and @ 9+1 belong to the same shifted

instance -B for some 0 ≤ B ≤ # − 1. Otherwise, they are of type-2. Note that, if (@ 9 , @ 9+1) is a
crossing of type 2, with @ 9 ∈ -B and @ 9+1 ∈ -B′ , then B, B′ are not necessarily consecutive integers,

as it is possible that for some indices B′′, -B′′ has no points that lie in the strip ((E). We now let

cost1(E) be the total number of type-1 crossings of !(E), and cost2(E) the total number of type-2

crossings. Note that cost(E) = cost1(E) + cost2(E). We also define cost1(�) =
∑
E∈+()) cost1(E) and

cost2(�) =
∑
E∈+()) cost2(E). Clearly, WB�(-̂) = cost1(�) + cost2(�). We prove the following two

theorems.

Theorem 4.9. For every ordering � of the auxiliary columns in ℒ, cost1(�) ≤ $(# ∗ log log log# ∗).

Theorem 4.10. For every vertex E ∈ +()), cost2(E) ≤ $(log#) + $(cost1(E)).

We prove these theorems in Section 4.3 and 4.4. The latter implies that cost2(�) ≤ $(cost1(�)) +
$(|+())| · log#) = $(# ∗ log log log# ∗) + $(# log#) = $(# ∗ log log log# ∗). Combining the

two theorems together completes the proof of Theorem 4.8.

4.2.3 Upper bounding WB(-∗)

We argue that WB(-∗) = $(# ∗ log log log# ∗), completing the proof of Theorem 1.1. Recall that

instance -∗ is obtained from instance -̂ by replacing every active column � of -∗ with a block

ℬ(�) of columns, and then placing the points of � on the columns of ℬ(�) so that they form a

monotone increasing sequence, while preserving their H-coordinates. The resulting collection

of all blocks ℬ(�) partitions the set of all active columns of -∗. We denote this set of blocks by

ℬ1 , . . . ,ℬ# . The idea is to use Theorem 3.6 in order to bound WB(-∗).
Consider a set of lines ℒ′ (with half-integral G-coordinates) that partition the bounding box

� into # strips, where the 8th strip contains the block ℬ8 of columns, so |ℒ′ | = (# − 1). We

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 30

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

consider a split of instance -∗ by ℒ′: This gives us a collection of strip instances

{
-∗
8

}
1≤8≤# and

the compressed instance -̃∗. Notice that the compressed instance is precisely -̂, and each strip

instance -∗
8
is a monotone increasing point set.

Since each strip instance -∗
8
is monotonously increasing, from Observation 4.1 and Claim 2.7,

for all 8, WB(-∗
8
) ≤ $(OPT(-∗

8
)) ≤ $(|-∗

8
|). From Theorem 3.6, we then get that: WB(-∗) ≤

4WB(-̂) + 8

∑
8 WB(-∗

8
) + $(|-∗ |) ≤ 4WB(-̂) + $(|-∗ |) ≤ $(# ∗ log log log# ∗).

4.3 Bounding type-1 crossings

The goal of this subsection is to prove Theorem 4.9.

We prove this theorem by a probabilistic argument. Consider the following experiment. Fix the

permutation � of ℒ. Pick an integer B ∈ {0, . . . , # − 1} uniformly at random, and let - be the

resulting instance -B . This random process generates an input - containing = = log# points.

Equivalently, let ?1 , ?2 , . . . , ?log# be the points in BRS(ℓ) ordered from left to right. Once we

choose a random shift B, we move these points to columns in CB = {29 + B mod #}, where

point ? 9 would be moved to G-coordinate 2
9 + B mod # . Therefore, in the analysis, we view the

location of points ?1 , . . . , ?log# as random variables.

We denote by �(�) the expected value of WB�(-), over the choices of the shift B. The following

observation is immediate, and follows from the fact that the final instance -̂ contains every

instance -B for all shifts B ∈ {0, . . . , # − 1}.

Observation 4.11. cost1(�) = # · �(�)

Therefore, in order to prove Theorem 4.9, it is sufficient to show that, for every fixed permutation

� of ℒ, �(�) ≤ $(log# log log log#) (recall that # ∗ = # log#).

We assume from now on that the permutation � (and the corresponding partitioning tree)) is

fixed, and we analyze the expectation �(�). Let E ∈ +()). We say that ((E) is a seam strip iff point

?1 lies in the strip ((E). We say that ((E) is a bad strip (or that E is a bad node) if the following

two conditions hold: (i) ((E) is not a seam strip; and (ii) ((E) contains at least 100 log log#

points of -. Let ℰ(E) be the bad event that ((E) is a bad strip.

Claim 4.12. For every vertex E ∈ +()), Pr [ℰ(E)] ≤ 8 width(((E))
log

100 #
.

Proof. Fix a vertex E ∈ +()). For convenience, we denote ((E) by (. Let B be the random integer

chosen by the algorithm and let -B = - be the resulting point set. Assume that (is a bad strip,

and let ! be the vertical line that serves as the left boundary of (. Let ? 9 be the point of -B that

lies to the left of !, and among all such points, we take the one closest to !. Recall that for each

1 ≤ 9 < log# , there are 2
9 − 1 columns of C that lie between the column of ? 9 and the column of

? 9+1.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 31

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

If (is a bad strip, then it must contain points ? 9+1 , ? 9+2 , . . . , ? 9+@ , where @ = 100 log log# .

Therefore, the number of columns of C in strip (is at least 2
9+@−2

, or, equivalently, width(() ≥
2
9+@/4 ≥ (29 log

100 #)/4. In particular, 2
9 ≤ 4 width(()/log

100 # .

Therefore, in order for (to be a bad strip, the shift B must be chosen in such a way that the point

? 9 , that is the rightmost point of -B lying to the left of !, has 2
9 ≤ 4 width(()/log

100 # . It is easy

to verify that the total number of all such shifts B is bounded by 8 width(()/log
100 # .

In order to see this, consider an equivalent experiment, in which we keep the instance -1

fixed, and instead choose a random shift B ∈ {0, . . . , # − 1} for the line !. For the bad event

ℰ(E) to happen, the line ! must fall in the interval between G-coordinate 0 and G-coordinate

8 width(()/log
100 # . Since every integral shift B is chosen with the same probability 1/# , the

probability that ℰ(E) happens is at most
8 width(()
log

100 #
. �

Consider now the partitioning tree). We partition the vertices of) into log# + 1 classes

&1 , . . . , &log#+1. A vertex E ∈ +()) lies in class &8 iff 2
8 ≤ width(((E)) < 2

8+1
. Therefore, every

vertex of) belongs to exactly one class.

Consider now some vertex E ∈ +()), and assume that it lies in class &8 . We say that E is an

important vertex for class &8 iff no ancestor of E in the tree) belongs to class &8 . Notice that, if D

is an ancestor of E, and D ∈ & 9 , then 9 ≥ 8 must hold.

For each 1 ≤ 8 ≤ log# + 1, let*8 be the set of all important vertices of class &8 .

Observation 4.13. For each 1 ≤ 8 ≤ log# + 1, |*8 | ≤ #/28 .

Proof. Since no vertex of*8 may be an ancestor of another vertex, the strips in {((E) | E ∈ *8}
are mutually disjoint, except for possibly sharing their boundaries. Since each strip has width at

least 2
8
, and we have exactly # columns, the number of such strips is bounded by #/28 . �

Let ℰ be the bad event that there is some index 1 ≤ 8 ≤ log# + 1, and some important vertex

E ∈ *8 of class &8 , for which the event ℰ(E) happens. Applying the Union Bound to all strips in

{((E) | E ∈ *8} and all indices 1 ≤ 8 ≤ log# , we obtain the following corollary of Claim 4.12.

Corollary 4.14. Pr [ℰ] ≤ 32

log
99 #

.

Proof. Fix some index 1 ≤ 8 ≤ log# . Recall that for every important vertex E ∈ *8 , the

probability that the event ℰ(E) happens is at most
8 width(((E))
log

100 #
≤ 8·28+1

log
100 #

= 16·28
log

100 #
. From

Observation 4.13, |*8 | ≤ #/28 . From the union bound, the probability that event ℰ(E) happens
for any E ∈ *8 is bounded by

16

log
100 #

. Using the union bound over all 1 ≤ 8 ≤ log# + 1, we

conclude that Pr [ℰ] ≤ 32

log
99 #

. �

Lastly, we show that, if event ℰ does not happen, then the cost of the Wilber Bound is sufficiently

small.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 32

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

Lemma 4.15. Let 1 ≤ B ≤ # be a shift for which ℰ does not happen. Then:

,��(-B) ≤ $(log# log log log#).

Proof. Consider the partitioning tree) =)(�). We say that a vertex E ∈ +()) is a seam vertex iff

((E) is a seam strip, that is, the point ?1 in instance -B lies in ((E). Clearly, the root of) is a

seam vertex, and for every seam vertex E, exactly one of its children is a seam vertex. Therefore,

there is a root-to-leaf path % that only consists of seam vertices, and every seam vertex lies on

%. We denote the vertices of % by E1 , E2 , . . . , E@ , where E1 is the root of), and E@ is a leaf. For

1 < 8 ≤ @, we denote by E′
8
the sibling of the vertex E8 . Note that all strips ((E′

2
), . . . , ((E′@) are

mutually disjoint, except for possibly sharing boundaries, and so

∑@

8=2
#(E′

8
) ≤ |-B | = log# .

Moreover, from Claim 4.5,

∑@

8=1
cost(E8) ≤ 2|-B | = 2 log# .

For each 1 < 8 ≤ @, let)8 be the subtree of) rooted at the vertex E′
8
. We prove the following

claim:

Claim 4.16. For all 1 < 8 ≤ @, the total cost of all vertices in)8 is at most $(#(E′
8
) log log log#).

Assume first that the above claim is correct. Notice that every vertex of) that does not lie on

the path % must belong to one of the trees)8 . The total cost of all vertices lying in all trees)8
is then bounded by

∑@

8=2
$(#(E′

8
) log log log#) ≤ $(log# log log log#). Since the total cost

of all vertices on the path % is bounded by 2 log# , overall, the total cost of all vertices in) is

bounded by $(log# log log log#).
In order to complete the proof of Lemma 4.15, it now remains to prove Claim 4.16.

Proof. Claim 4.16 We fix some index 1 < 8 ≤ @, and consider the vertex E′
8
. If the parent E8−1 of E

′
8

belongs to a different class than E′
8
, then E′

8
must be an important vertex in its class. In this case,

since we have assumed that Event ℰ does not happen, #(E′
8
) ≤ $(log log#). From Claim 4.5,

the total cost of all vertices in)8 is bounded by∑
E∈+()8)

cost(E) ≤ $(#(E′8) log(#(E′8))) ≤ $(#(E
′
8) log log log#)

Therefore, we can assume from now on that E8−1 and E
′
8
both belong to the same class, that we

denote by & 9 . Notice that, if a vertex E belongs to class & 9 , then at most one of its children may

belong to class & 9 ; the other child must belong to some class & 9′ for 9
′ < 9, and it must be an

important vertex in its class.

We now construct a path %8 in tree)8 iteratively, as follows. The first vertex on the path is E′
8
.

We then iteratively add vertices at to the end of path %8 one-by-one, so that every added vertex

belongs to class & 9 . In order to do so, let E be the last vertex on the current path %8 . If some

child D of E also lies in class &8 , then we add D to the end of %8 and continue to the next iteration.

Otherwise, we terminate the construction of the path %8 .

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 33

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

Denote the sequence of vertices on the final path %8 by (E′8 = D1 , D2 , . . . , DI); recall that every
vertex on %8 belongs to class & 9 , and that path %8 is a sub-path of some path connecting E′

8
to a leaf of)8 . Let / be a set of vertices containing, for all 1 < I′ ≤ I a sibling of the vertex

DI′, and additionally the two children of DI (if they exist). Note that every vertex G ∈ / is

an important vertex in its class, and, since we have assumed that Event ℰ did not happen,

#(G) ≤ $(log log#). For every vertex G ∈ /, we denote by)′G the subtree of) rooted at G. From

Claim 4.5, cost()′G) ≤ $(#(G) log(#(G))) = $(#(G) log log log#).
Notice that all strips in {((G) | G ∈ /} are disjoint from each other, except for possibly sharing a

boundary. It is then easy to see that

∑
G∈/ #(G) ≤ #(E′8). Therefore, altogether

∑
G∈/ cost()′G) ≤

$(#(E′
8
) log log log#)).

Lastly, notice that every vertex of +()8) either lies on %8 , or belongs to one of the trees)′G for
G ∈ /. Since, from Claim 4.5, the total cost of all vertices on %8 is bounded by #(E′

8
), altogether,

the total cost of all vertices in)8 is bounded by $(#(E′
8
) log log log#)). �

�

To summarize, if the shift B is chosen such that Event ℰ does not happen, ,��(-B) ≤
$(log# log log log#). Assume now that the shift B is chosen such that Event ℰ happens.

From Corollary 4.14, the probability of this is at most Pr [ℰ] ≤ 32

log
99 #

. Since |-B | = log# ,

from Corollary 4.4, WB�(-B) ≤ |-B | log(|-B |) ≤ log# log log# . Therefore, altogether, we

get that �(�) ≤ $(log# log log log#), and cost1(�) = # · �(�) = $(# log# log log log#) =
$(# ∗ log log log# ∗), as # ∗ = # log# .

4.4 Bounding type-2 crossings

This subsection is dedicated to the proof of Theorem 4.10. We fix a vertex E ∈ +()), and we

denote (= ((E). We also let ! = !(E) be the vertical line that E owns. Our goal is to show that

the number of type-2 crossings of ! is bounded by $(cost1(E)) + $(log#).
Recall that instances -1 , . . . , -# are stacked on top of each other, so that the first log# rows

with integral coordinates belong to -1, the next log# rows belong to -2, and so on. If we have

a crossing (?, ?′), where ? ∈ -B and ?′ ∈ -B′, then we say that the instances -B and -B′ are

responsible for this crossings. Recall that ?, ?′ may only define a crossing if they lie on opposite

sides of the line !, and if no point of -̂ lies in the strip (between the row of ? and the row of ?′.
It is then clear that every instance -B may be responsible for at most two type-2 crossings of !:

one in which the second instance -B′ responsible for the crossing has B′ < B, and one in which

B′ > B.

We further partition the type-2 crossings into two sub-types. Consider a crossing (?, ?′), and let

-B , -B′ be the two instances that are responsible for it. If either of -B , -B′ contributes a type-1

crossing to the cost of !, then we say that (?, ?′) is a type-(2a) crossing; otherwise it is a type-(2b)

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 34

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

crossing. Clearly, the total number of type-(2a) crossings is bounded by $(cost1(E)). It is now
sufficient to show that the total number of all type-(2b) crossings is bounded by $(log#).
Consider now some type-(2b) crossing (?, ?′), and let -B and -B′ be the two instances that are

responsible for it, with ? ∈ -B . We assume that B < B′. Since neither instance contributes a

crossing to cost1(E), it must be the case that all points of -B ∩ (lie to the left of ! and all points

of -B′ ∩ (lie to the right of ! or vice versa. Moreover, if B′ > B + 1, then for all B < B′′ < B′,
-B′′ ∩ (= ∅.
It would be convenient for us to collapse each of the instances -1 , . . . , -# into a single row. In

order to do so, for each 1 ≤ B ≤ # , we replace all rows on which the points of -B lie with a single

row 'B . If some point of -B lies on some column �, then we add a point at the intersection of 'B
and �.

We say that a row 'B is empty if there are no input points in 'B ∩ (. We say that it is a neutral
row, if there are points in 'B ∩ (both to the left of ! and to the right of !. We say that it is a left
row if 'B ∩ (only contains points lying to the left of !, and we say that it is a right row if 'B ∩ (
only contains points lying to the right of !.

If we now consider any type-(2b) crossing (?, ?′), and the instances -B , -B′ that are responsible

for it, with B < B′, then it must be the case that exactly one of the rows 'B , 'B′ is a left row, and

the other is a right row. Moreover, if B′ > B + 1, then every row lying between 'B and 'B′ is an

empty row.

Let us denote the points in -1 by ?1 , . . . , ?log# , where for each 1 ≤ 8 ≤ log# , point ?8 lies in

column �
2
8 . In each subsequent instance -2 , -3 , . . ., the point is shifted by one unit to the right,

so that in instance -B it lies in column �
2
8+B−1

; every column in C must contain exactly one copy

of point ?8 .

Consider now all copies of the point ?8 that lie in the strip (. Let ℛ8 be the set of rows containing

these copies. Then two cases are possible: either (i) ℛ8 is a contiguous set of rows, and the

copies of ?8 appear on ℛ8 diagonally as an increasing sequence (the 9th row of ℛ8 contains a
copy of ?8 that lies in the 9th column of C in the strip (); or ℛ8 consists of two consecutive sets of

rows; the first set, that we denote by ℛ′
8
, contains '1, and the second set, that we denote by ℛ′′

8
,

contains the last row '# . The copies of the point ?8 also appear diagonally in ℛ′
8
and in ℛ′′

8
; in

ℛ′′
8
the first copy lies on the first column of C in (; in ℛ′

8
the last copy lies on the last column of

C in ((see Figure 6).

We show that for each 1 ≤ 8 ≤ log# , there are at most four type-(2b) crossings of the line ! in

which a copy of ?8 participates. Indeed, consider any type-(2b) crossing (?, ?′) in which a copy

of ?8 participates. We assume that the row of ? lies below the row of ?′. Assume first that both

? and ?′ lie on rows of ℛ8 , and let ', '′ be these two rows, with ? ∈ ', ?′ ∈ '′. Recall that, in
order for (?, ?′) to define a crossing, all input points that lie on ' ∩ (must lie to the left of !,

and all point points that lie on '′ ∩ (must lie to the right of !, or the other way around. It is

easy to verify (see Figure 6) that one of two cases must happen: either ' contains a copy of ?8
lying closest to ! on its left, and '′ contains a copy of ?8 lying closest to ! on its right; or ' is the

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 35

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

L

(a) The consecutive set of rows on which

the copies of ?8 appear is denoted by ℛ8 .

L

(b) The two consecutive sets of rows on

which the copies of ?8 appear are ℛ′8 (on
the bottom) and ℛ′′

8
(on the top).

Figure 6: Two patterns in which copies of ?8 may appear on strip (.

last row of ℛ′
8
, and '′ is the first row of ℛ′′

8
. Therefore, only two such crossing, with ', '′ ∈ ℛ8

are possible.

Assume now that ' ∈ ℛ8 and '′ ∉ ℛ8 ; recall that we assume that '′ lies above '. Then all rows

that lie between ' and '′ must be empty, so it is easy to verify that ' must be the last row of ℛ8
(or it must be the last row of ℛ′

8
). In either case, at most one such crossing is possible.

Lastly, we assume that ' ∉ ℛ8 and '′ ∈ ℛ8 . The analysis is symmetric; it is easy to see that at

most one such crossing is possible.

We conclude that for each 1 ≤ 8 ≤ log# , at most four type-(2b) crossings of the line ! may

involve copies of ?8 , and so the total number of type-(2b) crossings of ! is bounded by $(log#).
To summarize, we have shown that for every ordering � of the auxiliary columns in ℒ,
cost1(�), cost2(�) ≤ $(# ∗ log log log# ∗), and soWB�(-̂) = $(# ∗ log log log# ∗). SinceOPT(-̂) =
Ω(# ∗ log log# ∗), we obtain a gap of Ω(log log# ∗/log log log# ∗) between OPT(-̂) and WB(-̂).

4.5 Separating WB(2) and WB

In this section, we extend ourΩ(log log =

log log log =
)-factor separation betweenWB andOPT to a separation

between WB and the second Wilber bound (denoted by WB(2)), which is defined below.4

4Wilber originally defined this bound based on the tree view. We use an equivalent geometric definition as

discussed in [11, 18].

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 36

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

Let - be a set of < points that is a semi-permutation. Consider any point ? ∈ -. The funnel of

?, denoted by funnel(-, ?) is the set of all points @ ∈ -, such that @, H < ?.H, and �?,@ contains
no point of - \ {?, @}. Denote funnel(-, ?) = {01 , 02 , . . . , 0A}, where the points are indexed in

the increasing order of their H-coordinates. Let alt(-, ?) be the number of indices 1 ≤ 8 < A,

such that 08 lies strictly to the left of ? and 08+1 lies strictly to the right of ?, or the other way

around. The second Wilber bound is:

WB(2)(-) = < +
∑
?∈-

alt(-, ?).

The goal of this section is to prove the following:

Theorem 4.17. For infinitely many integer =, there exists a point set - that is a permutation with
|- | = =, such that WB(2)(-) ≥ Ω(= log log =) but WB(-) ≤ $(= log log log =).

As it is known that OPT(-) ≥ WB(2)(-) for any point set - [29], Theorem 4.17 is a stronger

statement than Theorem 1.1. To prove Theorem 4.17, we use exactly the same permutation

sequence -∗ of size # ∗ that is constructed in Section 4.2. Since we already showed that

WB(-∗) ≤ $(# ∗ log log log# ∗), it remains to show that WB(2)(-∗) ≥ Ω(# ∗ log log# ∗).
We use the following claim of Wilber [29].

Claim 4.18 ([29]). WB(2)(BRS(=)) = Ω(= log =) for any =.

We extend this bound to the cyclically shifted BRS in the following lemma.

Lemma 4.19. For integers = > 0, B with 0 ≤ B < =, let - be the sequence obtained by performing a
cyclic shift to BRS(=) by B units. Then WB(2)(-) = Ω(= log =).

Proof. Observe that, for any choice of B, there must exists a subsequence -′ of - such that -′ is
a copy of BRS(= − 1). It is shown in Lemma 6.2 of [22] that for any pair of sequences /, /′ with

/′ ⊆ /, WB(2)(/′) ≤ WB(2)(/) holds. Therefore, we conclude that

WB(2)(-) ≥ WB(2)(BRS(= − 1)) ≥ Ω(= log =).

�

Now, we are ready to bound WB(2)(-∗).

Lemma 4.20. WB(2)(-∗) = Ω(# ∗ log log# ∗).

Proof. Recall that -̂ is the union of the sets-0 , -1 , . . . , -#−1
of points, where for all 0 ≤ B ≤ #−1,

set - B
is an exponentially-spaced BRS instance that is shifted by B units. From the definition

of WB(2), it is easy to see that WB(2)(-̂) ≥ ∑#−1

B=0
WB(2)(- B). This is since, for all 0 ≤ B ≤ # − 1,

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 37

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

for ever point ? ∈ - B
, funnel(- B , ?) ⊆ funnel(-̂ , ?), and moreover alt(-̂ , ?) ≥ alt(- B , ?). From

Lemma 4.19, we get that WB(2)(- B) = Ω(= log =), where = = |- B | = log# . Therefore,

WB(2)(-̂) ≥ # ·Ω(= log =) = Ω(# ∗ log log# ∗).

Finally, recall that the sequence -∗ is obtained from -̂ by replacing each column � of -̂ with

a block ℬ(�) of columns, and placing all points of -̂ lying in � on the columns of ℬ(�) so
that they form a monotonically increasing sequence of length =. It is not hard to see that

WB(2)(-∗) ≥ WB(2)(-̂)which concludes the proof. �

5 Guillotine bounds

In this section we define two extensions of the strong Wilber bound and extend our negative

results to one of these bounds. In subSection 5.1, we provide formal definitions of these bounds,

and we present our negative result in subsequent subsections.

5.1 Definitions

Assume that we are given an input set - of = points, that is a permutation. Let ℒ+ be the set of

all vertical lines with half-integral G-coordinates between 1/2 and = − 1/2, and let ℒ� be the

set of all horizontal lines with half-integral H-coordinates between 1/2 and = − 1/2. Recall that
for every permutation � of ℒ+ , we have defined a bound WB�(-). We can similarly define a

bound WB′�′(-) for every permutation �′ of ℒ� . We also let WB′(-) be the maximum, over

all permutations �′ of ℒ� , of WB′�′(-). Equivalently, let -′ be an instance obtained from - by

rotating it by 90 degrees clockwise. Then WB′(-) = WB(-′). We denote by � a bounding box

that contains all points of -.

5.1.1 Consistent Guillotine Bound

In this section we define the consistent Guillotine Bound, cGB(-). Let � be any permutations of

all lines in ℒ+ ∪ ℒ� . We start from a bounding box � containing all points of - and maintain a

partition P of the plane into rectangular regions, where initially P = {�}. We process the lines

in ℒ+ ∪ ℒ� according to their ordering in �. Consider an iteration when a line ! is processed.

Let %1 , . . . , %: be all rectangular regions in P that intersect the line !. For each such region %9 ,

let %′
9
and %′′

9
be the two rectangular regions into which the line ! splits %9 . We update P by

replacing each region %9 , for 1 ≤ 9 ≤ :, with the regions %′
9
and %′′

9
. Once all lines in ℒ+ ∪ ℒ�

are processed, we terminate the process.

This recursive partitioning procedure can be naturally associated with a partitioning tree) =)�
that is defined as follows:

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 38

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

• Each vertex E ∈ +()) is associated with a rectangular region ((E) of the plane. If A is the
root of), then ((A) = �.

• Each non-leaf vertex E is associated with a line !(E) ∈ ℒ� ∪ ℒ+ that was used to partition

((E) into two sub-regions, (′ and (′′. Vertex E has two children E1 , E2 in), with ((E1) = (′
and ((E2) = (′′.

• For each leaf node E, the region ((E) contains at most one point of -.

We now define the cost cost(E) of each node E ∈ +()). If the region ((E) contains no points

of -, or it contains a single point of -, then cost(E) = 0. Otherwise, we define cost(E) in the

same manner as before. Assume first that the line !(E) is vertical. Let ?1 , . . . , ?: be all points in

- ∩ ((E), indexed in the increasing order of their H-coordinates. A pair (? 9 , ? 9+1) of consecutive
points forms a crossing of !(E) for ((E), if they lie on the opposite sides of !(E). We then let

cost(E) be the number of such crossings.

When !(E) is a horizontal line, cost(E) is defined analogously: we index the points of - ∩ ((E) in
the increasing order of their G-coordinates. We then say that a consecutive pair of such points is

a crossing iff they lie on opposite sides of !(E). We let cost(E) be the number of such crossings.

For a fixed ordering � of the lines in ℒ+ ∪ ℒ� , and the corresponding partition tree) =)(�),
we define cGB�(-) =

∑
E∈+()) cost(E).

Lastly, we define the consistent Guillotine Bound for a point set - that is a permutation to be

the maximum, over all orderings � of the lines in ℒ+ ∪ ℒ� , of cGB�(-).
In the following subsection we define an even stronger bound, that we call the Guillotine bound,
and we show that for every point set - that is a permutation, cGB(-) ≤ GB(-), and moreover

that GB(-) ≤ $(OPT(-)). It then follows that for every point set - that is a permutation,

cGB(-) ≤ $(OPT(-)).

Theorem 5.1. For every integer =′, there is an integer = ≥ =′, and a set - of points that is a permutation
with |- | = =, such that OPT(-) ≥ Ω(= log log =) but cGB(-) ≤ $(= log log log =).

The following lemma will be helpful in the proof of Theorem 5.1; recall that WB′(-) is the basic
Wilber Bound, where we cut via horizontal lines only.

Lemma 5.2. For every instance - that is a permutation, cGB(-) ≤ WB(-) +WB′(-).

Proof. Let � be a permutation of ℒ+ ∪ ℒ� , such that cGB(-) = cGB�(-). Notice that �
naturally induces a permutation �′ of ℒ+ and a permutation �′′ of ℒ� . We show that

cGB�(-) ≤ WB�′(-) +WB′�′′(-). In order to do so, it is enough to show that for every vertical

line ! ∈ ℒ+ , the cost that is charged to ! in the bound cGB�(-) is less than or equal to the cost

that is charged to ! in the bound WB�′(-), and similarly, for every horizontal line !′ ∈ ℒ� , the
cost that is charged to !′ in the bound cGB�(-) is less than or equal to the cost that is charged to

!′ in the bound WB′�′′(-). We show the former; the proof of the latter is similar.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 39

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

Consider any line ! ∈ ℒ+ . We let) be the partitioning tree associated with cGB�(-), just before
line ! is processed, and we let)′ be defined similarly for WB�′(-). Let E ∈ +()′) be the leaf

vertex with ! ⊆ ((E), and let * be the set of all leaf vertices D of the tree) with ((D) ∩ ! ≠ ∅.
Observe that the set of vertical lines that appear before ! in � and �′ is identical. Therefore,
((E) = ⋃

D∈* ((D). It is easy to verify that, for every vertex D ∈ * , every crossing that contributes

to cost(D) is also a crossing that is charged to the line ! in the strip ((E). Therefore, the total

number of crossings of line ! in tree)′ that contribute to WB�′(-) is greater than or equal to the

number of crossings of the line ! that contribute to cGB�(-).
To conclude, we get that cGB(-) = cGB�(-) ≤ WB�′(-) +WB′�′′(-) ≤ WB(-) +WB′(-). �

5.1.2 The Guillotine Bound

In this section, we define a second extension of Wilber Bound, that we call Guillotine Bound,

and denote by GB. The bound is more convenient to define using a partitioning tree instead of a

sequence of lines. Let - be a point set which is a permutation.

We define a guillotine partition of a point set -, together with the corresponding partitioning

tree). As before, every node E ∈ +()) of the partitioning tree) is associated with a rectangular

region ((E) of the plane. At the beginning, we add the root vertex A to the tree), and we let

((A) = �, where � is the bounding box containing all points of -. We then iterate, as long as

some leaf vertex E of) has ((E) ∩ - containing more than one point. In each iteration, we

select any such leaf vertex E, and we select an arbitrary vertical or horizontal line !(E), that is
contained in ((E), and partitions ((E) into two rectangular regions, that we denote by (′ and (′′,
such that - ∩ (′, - ∩ (′′ ≠ ∅. We then add two child vertices E1 , E2 to E, and set ((E1) = (′ and
((E2) = (′′. Once every leaf vertex E has |((E) ∩ - | = 1, we terminate the process and obtain the

final partitioning tree).

The cost cost(E) of every vertex E ∈ +()) is calculated exactly as before. We then let GB)(-) =∑
E∈+()) cost(E), and we let GB(-) be the maximum, over all partitioning trees), of GB)(-).

We note that the main difference between cGB(-) and GB(-) is that in cGB bound, the

partitioning lines must be chosen consistently across all regions: that is, we choose a vertical or

a horizontal line ! that crosses the entire bounding box �, and then we partition every region

that intersects ! by this line !. In contrast, in the GB bound, we can partition each region ((E)
individually, and choose different partitioning lines for different regions. It is then easy to see

that GB is more general than cGB, and, in particular, for every point set - that is a permutation,

cGB(-) ≤ GB(-).
Lastly, we show that GB is a lower bound on the optimal solution cost, in the following lemma.

Lemma 5.3. For any point set - that is a permutation, GB(-) ≤ 2OPT(-).

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 40

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

5.2 Negative results for the Consistent Guillotine Bound

In this section we prove Theorem 5.1.

We use three main parameters. Let ℓ ≥ 1 be an integer, and let = = 2
ℓ
and # = 2

=
. As before, we

will first construct point set -̂ that is not a permutation (in fact, it is not even a semi-permutation),

and then we will turn it into our final instance -∗ which is a permutation.

5.2.1 2D exponentially spaced bit reversal

We define the instance 2D-ES-BRS(ℓ) to be a bit-reversal sequence BRS(ℓ ,ℛ , C), where the sets

ℛ and C of active rows and columns are defined as follows. Set C contains all columns with

G-coordinates in
{
2
9 | 1 ≤ 9 ≤ =

}
, and similarly set ℛ contains all rows with H-coordinates in{

2
9 | 1 ≤ 9 ≤ =

}
. Note that set - contains = points, whose G- and H-coordinates are integers

between 1 and # .

5.2.2 2D cyclic shifts

Next, we define the shifted and exponentially spaced instance, but this time we shift both

vertically and horizontally. We assume that we are given a horizontal shift 0 ≤ B < # and a

vertical shift 0 ≤ B′ < # . In order to construct the instance - B,B′
, we start with the instance

- = 2D-ES-BRS(ℓ), and then perform the following two operations. First, we perform a

horizontal shift by B units as before, by moving the last B columns with integral G-coordinates to

the beginning of the instance. Next, we perform a vertical shift, by moving the last B′ rows with

integral H-coordinates to the bottom of the instance. We let - B,B′
denote the resulting instance.

By applying Claim 4.3 twice, once for the horizontal shift, and once for the vertical shift, we get

that OPT(- B,B′) ≥ OPT(-) − 2|- | ≥ Ω(log# log log#), since |- | = log# .

5.2.3 Instance -̂

Next, we construct an instance -̂, by combining the instances - B,B′
for 0 ≤ B, B′ < # . In order

to do so, let Ĉ be a set of #2
columns, with integral G-coordinates 1, . . . , #2

. We partition Ĉ
into subsets C1 , C2 , . . . , C# , each of which contains # consecutive columns, they appear in this

left-to-right order. We call each such set C8 a super-column. We denote by (+
8
the smallest vertical

strip containing all columns of C8 .

Similarly, we let ℛ̂ be a set of #2
rows, with integral H-coordinates 1, . . . , #2

. We partition

ℛ̂ into subsets ℛ1 , . . . ,ℛ# , each of which contains # consecutive rows, such that ℛ1 , . . . ,ℛ#
appear in this bottom-to-top order. We call each such set ℛ8 a super-row. We denote by (�

8
the

smallest horizontal strip containing all rows of ℛ8 . For all 1 ≤ 8 , 9 ≤ # , we let �(8 , 9) be the

intersection of the horizontal strip (�
8
and the vertical strip (+

8
. We plant the instance -(8−1),(9−1)

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 41

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

into the box �(8 , 9). This completes the construction of instance -̂. Let # ∗ = |-̂ | = #2
log#

(recall that each instance - B,B′
contains log# points.)

Observe that, for each vertical strip (+
8
, all instances planted into (+

8
have the same vertical

shift - (8 − 1); the horizontal shift B′ of each instance increases from 0 to # − 1 as we traverse

(+
8
from bottom to top. In particular, the instance planted into (+

1
is precisely the instance -̂

from Section 4.2 (if we ignore inactive rows). For each 8 > 1, the instance planted into (+
8
is very

similar to the instance -̂ from Section 4.2, except that each of its corresponding sub-instances is

shifted vertically by exactly (8 − 1) rows.

Similarly, for each horizontal strip (�
9
, all instances planted into (�

9
have the same horizontal

shift - (9 − 1); the vertical shift B′ of each instance increases from 0 to # − 1 as we traverse (�
9

from left to right.

Since, for every instance - B,B′
, OPT(- B,B′) = Ω(log# log log#), we obtain the following bound.

Observation 5.4. OPT(-̂) = Ω(#2
log# log log#) = Ω(# ∗ log log# ∗).

Since instance -̂ is symmetric, and every point lies on one of the #2
rows of ℛ̂ and on one of

the #2
rows of Ĉ, we obtain the following.

Observation 5.5. Every row in ℛ̂ contains exactly log# points of -̂. Similarly, every column of

Ĉ contains exactly log# points of -̂.

5.2.4 Final instance

Lastly, in order to turn -̂ into a permutation -∗, we perform a similar transformation to that in

Section 4.2: for every column � ∈ C, we replace � with a collection ℬ(�) of log# consecutive

columns, and we place all points that lie on � on the columns of ℬ(�), so that they form an

increasing sequence, while preserving their H-coordinates. We replace every row ' ∈ ℛ by a

collection ℬ(') of log# rows similarly. The resulting final instance -∗ is now guaranteed to be

a permutation, and it contains # ∗ = #2
log# points. Using the same reasoning as in Section 4.2,

it is easy to verify that OPT(-∗) ≥ OPT(-̂) ≥ Ω(# ∗ log log# ∗). In the remainder of this section,

we will show that cGB(-∗) = $(# ∗ log log log# ∗).
Abusing the notation, for all 1 ≤ 8 ≤ #2

, we denote by (+
8
the vertical strip obtained by

taking the union of all blocks ℬ(�) of columns, where � belonged to the original strip (+
8
. We

define the horizontal strips (�
8
similarly. Note that, from Lemma 5.2, it is enough to prove

that WB(-∗) = $(# ∗ log log log# ∗) and that WB′(-∗) = $(# ∗ log log log# ∗). We do so in the

following two subsections.

5.3 Handling vertical cuts

The goal of this section is to prove the following theorem:

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 42

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

Theorem 5.6. WB(-∗) ≤ $(# ∗ log log log# ∗).

For all 1 ≤ 8 ≤ # , we denote by ℬ8 the set of active columns that lie in the vertical strip (+
8
,

so that ℬ1 , . . . ,ℬ# partition the set of active columns of -∗. Let ℒ′ be a collection of lines at

half-integral coordinates that partitions the bounding box � into # strips where each strip

contains exactly the block ℬ8 of columns. We consider the split of -∗ by the lines ℒ′: This is a
collection of # strip instances (that we will denote by -∗

1
, . . . , -∗

#
) and a compressed instance,

that we denote by -̃. In order to prove Theorem 5.6, we bound WB(-∗
8
) for every strip instance

-∗
8
, and WB(-̃) for the compressed instance -̃, and then combine them using Theorem 3.6 in

order to obtain the final bound on WB(-∗).

5.3.1 Bounding Wilber bound for strip instances

In this subsection, we prove the following lemma.

Lemma 5.7. For all 1 ≤ 8 ≤ # , WB(-∗
8
) ≤ $(# log# log log log#).

From now on we fix an index 8, and consider the instance -∗
8
. Recall that in order to construct

instance -∗
8
, we started with the instances -0,8 , -1,8 , . . . , -#−1,8

, each of which has the same

vertical shift (shift 8), and horizontal shifts ranging from 0 to # − 1. Let -̂8 be the instance

obtained by stacking these instances one on top of the other, similarly to the construction of

instance -̂ in Section 4.2. As before, instance -̂8 is a semi-permutation, so every row contains at

most one point. Every column of -̂8 contains exactly log# points of -̂8 . Let C denote the set

of all active columns of instance -̂8 . For every column � ∈ C, we replace � with a block ℬ(�)
of log# columns, and place all points of -̂8 ∩ � on the columns of ℬ(�), so that they form an

increasing sequence, while preserving their H-coordinates. The resulting instance is equivalent

to -∗
8
(to obtain instance -∗

8
we also need to replace every active row ' with a block ℬ(') of

log# rows; but since every row contains at most one point of -̂8 , this amounts to inserting

empty rows into the instance).

The analysis of WB(-∗
8
) is very similar to the analysis of WB(-∗) for instance -∗ constructed in

Section 4.2. Notice that, as before, it is sufficient to show thatWB(-̂8) ≤ $(# log# log log log#).
Indeed, consider the partition {ℬ(�)}�∈C of the columns of -∗

8
. Then -̂8 can be viewed as the

compressed instance for -∗
8
with the respect to this partition. Each resulting strip instance

(defined by the block ℬ(�) of columns) is an increasing sequence of log# points, so the Wilber

Bound value for such an instance is $(log#). Altogether, the total Wilber Bound of all such

strip instances is $(# log#). Therefore, from Theorem 3.6, in order to prove Lemma 5.7, it is

now sufficient to show that WB(-̂8) ≤ $(# log# log log log#).

Let ℒ be the set of all vertical lines with half-integral coordinates for the instance -̂8 , and let � be

any permutation of these lines. Our goal is to prove that WB�(-̂8) ≤ $(# log# log log log#).
Let) =)(�) be the partitioning tree associated with �. Consider some vertex E ∈ +()) and the

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 43

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

line ! that E owns. As before, we classify crossings that are charged to ! into several types. A

crossing (?, ?′) is a type-1 crossing, if ? and ?′ both lie in the same instance - 9 ,8
. We say that

instance - 9 ,8
is bad for !, if it contributes at least one type-1 crossing to the cost of !. If ? ∈ - 9 ,8

and ?′ ∈ - 9′,8
for 9 ≠ 9′, then we say that (?, ?′) is a type-2 crossing. If either instance - 9 ,8

or

- 9′,8
is a bad instance for !, then the crossing is of type (2a); otherwise it is of type (2b).

We now bound the total number of crossings of each of these types separately.

• Type-1 Crossings. We bound the total number of all type-1 crossings exactly like in

Section 4.3. We note that the proof does not use the vertical locations of the points in the

sub-instances - 9 ,8
, and only relies on two properties of instance -̂: (i) the points in the

first instance -0 (corresponding to instance -0,8
) are exponentially spaced horizontally,

so the G-coordinates of the points are integral powers of 2, and they are all distinct; and

(ii) each subsequent instance -B (corresponding to instance - B,8
) is a copy of -0 that is

shifted horizontally by B units. Therefore, the same analysis applies, and the total number

of type-1 crossings in -̂8 can be bounded by $(# log# log log log#) as before.

• Type-(2a) Crossings. As before, we charge each type-(2a) crossing to one of the correspond-

ing bad instances, to conclude that the total number of type-(2a) crossings is bounded by

the total number of type-1 crossings, which is in turn bounded by$(# log# log log log#).

• Type-(2b) Crossings. Recall that in order to bound the number of type-(2b) crossings,

we have collapsed, for every instance -B , all rows of -B into a single row. If we similarly

collapse, for every instance - B,8
, all rows of this instance into a single row, we will obtain

an identical set of points. This is because the only difference between instances -B and

- B,8
is vertical position of their points. Therefore, the total number of type-(2b) crossings

in -̂8 is bounded by $(# log#) as before.
This finishes the proof of Lemma 5.7. We conclude that

#∑
8=1

WB(-∗8) ≤ $(#
2

log# log log log#) = $(# ∗ log log log# ∗) . (5.1)

5.3.2 Bounding Wilber bound for the compressed instance

In this subsection, we prove the following lemma.

Lemma 5.8. WB(-̃) ≤ $(# ∗).

We denote the active columns of -̃ by �1 , . . . , �# . Recall that each column �8 contains exactly

log# input points. Let ℛ be the set of all rows with integral coordinates, so |ℛ| = #2
log# .

Letℬ1 ,ℬ2 , . . . ,ℬ#2 be a partition of the rows in ℛ into blocks containing log# consecutive rows

each, where the blocks are indexed in their natural bottom-to-top order. Recall that each such

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 44

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

block ℬ8 represents some active row of instance -̂, and the points of -̃ that lie on the rows of ℬ8
form an increasing sequence. We also partition the rows of ℛ into super-blocks, ℬ̂1 , . . . , ℬ̂# ,
where each superblock is the union of exactly # consecutive blocks. For each subinstance - B,B′

,

the points of the subinstance lie on rows that belong to a single super-block.

Let ℒ be the set of all columns with half-integral coordinates for -̃, so |ℒ| ≤ # . We fix any

permutation � of ℒ, and prove that WB�(-̃) ≤ $(# ∗). Let) be the partitioning tree associated

with the permutation �.

Consider any vertex E ∈ +()), its corresponding vertical strip (= ((E), and the vertical line

! = !(E) that E owns. Let (?, ?′) be a crossing of !, so ? and ?′ both lie in (on opposite sides of

!, and no point of -̃ ∩ (lies between the row of ? and the row of ?′. Assume that the row of ?

is below the row of ?′. We say that the crossing is left-to-right if ? is to the left of !, and we say

that it is right-to-left otherwise. In order to bound the number of crossings, we use the following

two claims.

Claim 5.9. Assume that (?, ?′) is a left-to-right crossing, and assume that ? lies on a row of ℬ8 and ?′
lies on a row of ℬ9 , with 8 ≤ 9. Then either 9 ≤ 8 + 1 (so the two blocks are either identical or consecutive),
or block ℬ8 is the last block in its super-block.

Proof. Assume that ? lies on column �B′ and on a row of super-block ℬ̂B , so this point originally

belonged to instance - B,B′
. Recall that instance - B,B′+1

(that lies immediately to the right of - B,B′
)

is obtained by circularly shifting all points in instance - B,B′
by one unit up. In particular, a copy

?2 of ? in - B,B′+1
should lie one row above the copy of ? in - B,B′

, unless ? lies on the last row of

- B,B′
. In the latter case, block ℬ8 must be the last block of its superblock ℬ̂B . In the former case,

since point ?2 does not lie between the row of ? and the row of ?′, and it lies on column �B+1,

the block of rows in which point ?′ lies must be either ℬ8 or ℬ8+1, that is, 9 ≤ 8 + 1. �

Claim 5.10. Assume that (?, ?′) is a right-to-left crossing, and assume that ? lies on a row of ℬ8 and ?′
lies on a row of ℬ9 , with 8 ≤ 9. Then either (i) 9 ≤ 8 + 1 (so the two blocks are identical or consecutive); or
(ii) block ℬ8 is the last block in its super-block; or (iii) block ℬ9 is the first block it its super-block; or (iv) ?
lies on the last active column in strip (, and ?′ lies on the first active column in strip (.

Proof. Assume that ? lies on column �B′ and on a row of superblock ℬ̂B , so this point originally

belonged to instance - B,B′
. Assume for that �B′ is not the last active column of (, so �B′+1 also

lies in (.

Recall that instance - B,B′+1
is obtained by circularly shifting all points in instance - B,B′

by one

unit up. In particular, a copy ?2 of ? in - B,B′+1
should lie one row above the copy of ? in - B,B′

,

unless ? lies on the last row of - B,B′
. In the latter case, block ℬ8 must be the last block of its

superblock. In the former case, since point ?2 does not lie between the row of ? and the row of

?′, the block of rows in which point ?′ lies is either ℬ8 or ℬ8+1, that is, 9 ≤ 8 + 1.

Using a symmetric argument, if ?′ does not lie on the first active column of (, then either

9 ≤ 8 + 1, or ℬ9 is the first block in its super-block. �

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 45

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

We can now categorize all crossings charged to the line ! into types as follows. Let (?, ?′) be a
crossing, and assume that ? lies on a row of ℬ8 , ?′ lies on a row of ℬ9 , and 8 ≤ 9. We say that

(?, ?′) is a crossing of type 1, if 9 ≤ 8 + 1. We say that it is a crossing of type 2 if either ℬ8 or ℬ9
are the first or the last blocks in their superblock. We say that it is of type 3 if ? lies on the last

active column of (and ?′ lies on the first active column of (.

We now bound the total number of all such crossings separately.

• Type-1 crossings Consider any pair ℬ8 ,ℬ8+1 of consecutive blocks, and let -̃′
8
be the set

of all points lying on the rows of these blocks. Recall that all points lying on the rows

of ℬ8 form an increasing sequence of length log# , and the same is true for all points

lying on the rows of ℬ8+1. It is then easy to see that OPT(-̃′
8
) ≤ $(log#), and so the total

contribution of crossings between the points of -̃′
8
to WB�(-̃) is bounded by $(log#).

Since the total number of blocks ℬ8 is bounded by #2
, the total number of type-1 crossings

is at most $(#2
log#).

• Type-2 crossings In order to bound the number of type-2 crossings, observe that |ℒ| ≤ # .

If ! ∈ ℒ is a vertical line, and (is a strip that ! splits, then there are # superblocks of rows

that can contribute type-2 crossings to cost(!), and each such superblock may contribute

at most one crossing. Therefore, the total number of type-2 crossings charged to ! is at

most # , and the total number of all type-2 crossings is $(#2).

• Type-3 crossings In order to bound the number of type-3 crossings, observe that every

column contains # log# points. Therefore, if ! ∈ ℒ is a vertical line, then the number

of type-3 crossings charged to it is at most 2# log# . As |ℒ| ≤ # , we get that the total

number of type-3 crossings is $(#2
log#).

To conclude, we have shown that WB�(-̃) = $(#2
log#) = $(# ∗), proving Lemma 5.8. By

combining Lemmas 5.7 and 5.8, together with Theorem 3.6, we conclude that WB(-∗) =
$(# ∗ log log log# ∗), proving Theorem 5.6.

5.4 Handling horizontal cuts

We show the following analogue of Theorem 5.6.

Theorem 5.11. WB′(-∗) ≤ $(# ∗ log log log# ∗).

The proof of the theorem is virtually identical to the proof of Theorem 5.6. In fact, consider

the instance -∗∗, that is obtained from -∗, by rotating it by 90 degrees clockwise. Consider the

sequence BRS′(ℓ ,ℛ , C) that is obtained by rotating the point set BRS(ℓ ,ℛ , C) by 90 degrees.

Consider now the following process. Our starting point is the rotated Bit Reversal Sequence. We

then follow exactly the same steps as in the construction of the instance -∗. Then the resulting

instance is precisely (a mirror reflection of) instance -∗∗. Notice that the only place where our

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 46

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

proof uses the fact that we start with the Bit Reversal Sequence is in order to show that OPT(-∗)
is sufficiently large. In fact we could replace the Bit Reversal Sequence with any other point

set that is a permutation, and whose optimal solution cost is as large, and in particular the Bit

Reversal Sequence that is rotated by 90 degrees would work just as well. The analysis of the

Wilber Bound works exactly as before, and Theorem 5.11 follows.

6 Algorithmic results

6.1 Overview

We provide the high level intuition for the proof of Theorem 1.2. Both the polynomial time and

the subexponential time algorithms follow the same framework. We start with a high-level

overview of this framework. For simplicity, assume that the number of active columns in the

input instance - is an integral power of 2. The key idea is to decompose the input instance into

smaller sub-instances, using the split instances defined in Section 3.1. We solve the resulting

instances recursively and then combine the resulting solutions.

Suppose we are given an input point set - that is a semi-permutation, with |- | = <, such that

the number of active columns is =. We consider a balanced partitioning tree), where for every

vertex E ∈ +()), the line !(E) that E owns splits the strip ((E) in the middle, with respect to the

active columns that are contained in ((E). Therefore, the height of the partitioning tree is log =.

Consider now the set * of vertices of) that lie in the middle layer of). Let ℒ′ be their strip
boundaries, so we have |ℒ′ | = Θ(

√
=). Consider the split of - by ℒ′, obtaining a new collection

of instances (-̃ , {-8}):8=1
where : = Θ(

√
=). Note that each resulting strip instance -8 contains

Θ(
√
=) active columns, and so does the compressed instance -̃.

We recursively solve each such instance and then combine the resulting solutions. The key to

the algorithm and its analysis is to show that there is a collection / of $(|- |) points, such that,

if we are given any solution .̂ to instance -̃, and, for all 1 ≤ 8 ≤ :, any solution .8 to instance -8 ,

then / ∪ .̂ ∪
(⋃:

8=1
.8

)
is a feasible solution to instance -. We also show that the total number of

input points that appear in all instances that participate in the same recursive level is bounded

by $(OPT(-)). This ensures that in every recursive level we add at most $(OPT(-)) points to
the solution, and the total solution cost is at most $(OPT(-)) times the number of the recursive

levels, which is bounded by $(log log =).
In order to obtain the subexponential time algorithm, we restrict the recursion to � levels, and

then solve each resulting instance -′ directly in time A(-′)2(-′)$(2(-′)). This approach gives

an $(�)-approximation algorithm with running time at most poly(<) · exp

(
=1/2Ω(�)

log =
)
as

desired.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 47

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

(a) Canonical Solution (b) Special Solution

Figure 7: Canonical and)-special solutions of -. The input points are shown as circles; the

points that belong to the solution . are shown as squares.

6.2 Special solutions and reduced sets

Our algorithm will produce feasible solutions of a special form, that we call special solutions.
Recall that, given a semi-permutation point set -, the auxiliary columns for - are a set ℒ of

vertical lines with half-integral coordinates. We say that a solution . for - is special iff every

point of . lies on an row that is active for -, and on a column of ℒ. In particular, special

solutions are by definition non-canonical (see Figure 7 for an illustration).

If �′ is any ordering of the auxiliary columns in ℒ′ ⊆ ℒ, and)′ =)(�′) is the corresponding
partitioning tree, then any point set . that is a special solution for - is also called a)′-special
solution: The solutions use only auxiliary columns in ℒ′ (equivalently, strip boundaries of ((E)
for E ∈ +()′)).
Consider a semi-permutation -, that we think of as a potential input to the Min-Sat problem.

We denote - = {?1 , . . . , ?<}, where the points are indexed in their natural bottom-to-top order,

so (?1).H < (?2).H < . . . < (?<).H. A point ?8 is said to be redundant, if and only if the points

immediately above and below are on its column, that is, for some 8, (?8).G = (?8+1).G = (?8−1).G.
We say that a semi-permutation - is in the reduced form if there are no redundant points in -.

The following lemma relates the optimal solutions of any instance and its reduced form.

Lemma 6.1. Let - be a semi-permutation, and let -′ ⊆ - be any point set, that is obtained from - by
repeatedly removing redundant points. Then OPT(-′) ≤ OPT(-). Moreover, if . is a feasible solution
for -′ such that every point of . lies on a row that is active for -′, then . is also a feasible solution for -.

Proof. For the first claim, it is sufficient to show that, if -′′ is a set of points obtained from - by

deleting a single redundant point ?8 , then OPT(-′′) ≤ OPT(-). Let ' denote the row on which

point ?8 lies, and let '′ be the row containing ?8−1. Let . be the optimal solution to instance

-. We assume w.l.o.g. that . is a canonical solution. Consider the set / = - ∪ . of point, and

let /′ be obtained from / by collapsing the rows ', '′ into the row '′ (since . is a canonical

solution for -, no points of - ∪ . lie strictly between the rows ', '′). From Observation 2.4, /′

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 48

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

remains a satisfied point set. Setting .′ = /′ \-′′, it is easy to verify that .′ is a feasible solution
to instance -′′, and moreover, |.′ | ≤ |. |. Therefore, OPT(-′′) ≤ |.′ | ≤ |. | ≤ OPT(-).
As for the second claim, it is sufficient to show that, if -′′ is a set of points obtained from - by

deleting a single redundant point ?8 , and . is any canonical solution for -′′, then . is also a

feasible solution for -. We can then apply this argument iteratively, until we obtain a set of

points that is in a reduced form.

Consider any feasible canonical solution . to instance -′′. We claim that - ∪ . is a feasible set

of points. Indeed, consider any two points ?, @ ∈ - ∪ . that are not aligned. If both points are

distinct from the point ?8 , then they must be satisfied in - ∪ ., since both these points lie in

-′′∪.. Therefore, we can assume that ? = ?8 . Notice that @ ≠ ?8−1 and @ ≠ ?8+1, since otherwise

? and @ must be aligned. Moreover, @ cannot lie strictly between the row of ?8−1 and the row of

?8+1, as we have assumed that every point of . lies on a row that is active for -′ -′′. But then
it is easy to verify that either point ?8−1 lies in �?,@ (if @ is below ?), or point ?8+1 lies in �?,@
(otherwise). In either case, the pair (?, @) is satisfied in - ∪ .. �

From Lemma 6.1, whenever we need to solve theMin-Sat problem on an instance-, it is sufficient

to solve it on a sub-instance, obtained by iteratively removing redundant points from -. We

obtain the following immediate corollary of Lemma 6.1.

Corollary 6.2. Let - be a semi-permutation, and let -′ ⊆ - be any point set, that is obtained from -

by repeatedly removing redundant points. Let . be any special feasible solution for -′. Then . is also a
special feasible solution for -.

Lastly, we need the following lemma, which is a simple application of the Wilber bound.

Lemma 6.3. Let - be a point set that is a semi-permutation in reduced form. ThenOPT(-) ≥ |- |/4− 1.

Proof. Since - is a semi-permutation, every point of - lies on a distinct row; we denote |- | = =.
Let - = {?1 , . . . , ?=}, where the points are indexed in the increasing order of their H-coordinates.

Let Π = {(?8 , ?8+1) | 1 ≤ 8 < =} be the collection of all consecutive pairs of points in -. We say

that the pair (?8 , ?8+1) is bad iff both ?8 and ?8+1 lie on the same column. From the definition of

the reduced form, if (?8 , ?8+1) is a bad pair, then both (?8−1 , ?8) and (?8+1 , ?8+2) are good pairs.

Let Π′ ⊆ Π be the subset containing all good pairs. Then |Π′ | ≥ (|Π| − 1)/2 ≥ =/2 − 1. Next, we

select a subsetΠ′′ ⊆ Π′ of pairs, such that |Π′′ | ≥ |Π′ |/2 ≥ =/4− 1, and every point in - belongs

to at most one pair in Π′′. Since every point in - belongs to at most two pairs in Π′, it is easy to

see that such a set exists. Let . be an optimal solution to instance -.

Consider now any pair (?8 , ?8+1) of points in Π′′. Then there must be a point H8 ∈ . that lies in

the rectangle �?8 ,?8+1
. Moreover, since all points of - lie on distinct rows, and each such point

belongs to at most one pair in Π′′, for 8 ≠ 9, H8 ≠ H 9 . Therefore, |. | ≥ |Π′′ | ≥ =/4 − 1. �

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 49

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

6.3 Our algorithm

Suppose we are given an input set - of points that is a semi-permutation. Let) be any

partitioning tree for -. We say that) is a balanced partitioning tree for - iff for every non-leaf

vertex E ∈ +()) and its children E1 , E2, the number of active columns inside ((E1) and ((E2) are
roughly the same, that is, 2(- ∩ ((E8)) ≤ d2(- ∩ ((E))/2e for each 8 = 1, 2.

Given a partitioning tree), we denote by Λ8 the set of all vertices of) that lie in the 8th layer
of) – that is, the vertices whose distance from the root of) is 8 (so the root belongs to Λ0).

The height of the tree), denoted by height()), is the largest index 8 such that Λ8 ≠ ∅. If the

height of the tree) is ℎ, then we call the set Λdℎ/2e of vertices the middle layer of). Notice that,

if) is a balanced partitioning tree for input -, then its height is at most 2 log 2(-). The strips
{((E)}E∈Λdℎ/2e are called the middle-layer strips.

Our algorithm takes as input a set - of points that is a semi-permutation, a balanced partition

tree) for -, and an integral parameter � > 0.

Intuitively, the algorithm uses the splitting operation to partition the instance- into subinstances

that are then solved recursively, until it obtains a collection of instances whose corresponding

partitioning trees have height at most �. We then employ dynamic programming. The algorithm

returns a special feasible solution for the instance. Recall that the height of the tree) is bounded

by 2 log 2(-) ≤ 2 log =. The following theorem (whose proof appears in Section 6.6) is used as

a recursion basis.

Theorem 6.4. There is an algorithm called LeafBST that, given a semi-permutation instance - of
Min-Sat in reduced form, and a partitioning tree) for it, produces a feasible)-special solution for - of
cost at most 2|- | + 2OPT(-), in time |- |$(1) · 2(-)$(2(-)).

We now provide a schematic description of our algorithm.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 50

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

RecursiveBST(-,), �)

1. Keep removing redundant points from - until - is in reduced form.

2. If) has height at most �,

3. return LeafBST(-,))

4. Let ℒ′ ⊆ ℒ be the strip boundaries of the middle-layer strips {(1 , . . . , (:}
of).

5. Compute the split (-̃ , {-9} 9∈[:]) of - by ℒ′.

6. Compute the corresponding split subtrees ()̃ , {)9} 9∈[:]) of) by ℒ′.

7. For 9 ∈ [:], call to RecursiveBST with input (-9 ,)9 , �), and let .9 be the

solution returned by it.

8. Call RecursiveBSTwith input (-̃ ,)̃ , �), and let .̂ be the solution returned

by it.

9. Let / be a point set containing, for each 9 ∈ [:], for each point ? ∈ -9 ,
two copies ?′ and ?′′ of ? with ?′.H = ?′′.H = ?.H, where ?′ lies on the left

boundary of (9 , and ?
′′
lies on the right boundary of (9 .

10. return .∗ = / ∪ .̂ ∪ (⋃9∈[:].9)

The cost and feasibility analyses appear in the next two subsections.

6.4 Cost analysis

In order to analyze the solution cost, consider the final solution .∗ to the input instance -. We

distinguish between two types of points in .∗: a point ? ∈ .∗ is said to be of type 2 if it was

added to the solution by Algorithm LeafBST, and otherwise we say that it is of type 1. We start

by bounding the number of points of type 1 in .∗.

Claim 6.5. The number of points of type 1 in the solution .∗ to the original instance - is at most
$(log(height())/�)) · OPT(-).

Proof. Observe that the number of recursive levels is bounded by � = $(log(height())/�)). This
is since, in every recursive level, the heights of all trees decrease by a constant factor, and we

terminate the algorithm once the tree heights are bounded by �. For each 1 ≤ 8 ≤ �, letX8 be the
collection of all instances in the 8th recursive level, where the instances are in the reduced form.

Notice that the only points that are added to the solution by Algorithm RecursiveBST directly

are the points in the sets /. The number of such points added at recursive level 8 is bounded by

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 51

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK∑
-′∈X8 2|-′ |. It is now sufficient to show that for all 1 ≤ 8 ≤ �,

∑
-′∈X8 |-′ | ≤ $(OPT(-)). We do

so using the following observation.

Observation 6.6. For all 1 ≤ 8 ≤ �,
∑
-′∈X8 OPT(-′) ≤ OPT(-).

Assume first that the observation is correct. From Lemma 6.3, |-′ | ≤ $(OPT(-′)). Therefore,
the number of type-1 points added to the solution at recursive level 8 is bounded by $(OPT(-)).
We now turn to prove Observation 6.6.

Proof of Observation 6.6. The proof is by induction on the recursive level 8. It is easy to see that

the claim holds for 8 = 1, since, from Lemma 6.1, removing redundant points from - to turn it

into reduced form cannot increase OPT(-).
Assume now that the claim holds for level 8 − 1, and consider some level-8 instance -′ ∈ X8 . Let
(-̃ ,

{
-9

}
9∈[:]) be the split of -

′
that we computed. Then, from Theorem 3.3,

∑
9∈[:]OPT(-9) +

OPT(-̃) ≤ OPT(-′). Since, from Lemma 6.1, removing redundant points from an instance does

not increase its optimal solution cost, the observation follows. �

�

In order to obtain an efficient $(log log =)-approximation algorithm, we set � to be a constant (it

can even be set to 1), and we use algorithm LeafBST whenever the algorithm calls to subroutine

LeafBST. Observe that the depth of the recursion is now bounded by $(log log =), and so the

total number of type-1 points in the solution is bounded by $(log log =) · OPT(-). Let ℐ denote

the set of all instances to which Algorithm LeafBST is applied. Using the same arguments as

in Claim 6.5,

∑
-′∈ℐ |-′ | = $(OPT(-)). The number of type-2 points that Algorithm LeafBST

adds to the solution for each instance -′ ∈ ℐ is bounded by $(OPT(-′) + |-′ |) = $(|-′ |).
Therefore, the total number of type-2 points in the solution is bounded by $(OPT(-)). Overall,

we obtain a solution of cost at most $(log log =) ·OPT(-), and the running time of the algorithm

is polynomial in |- |.
Finally, in order to obtain the subexponential time algorithm, we set the parameter � to be such

that the recursion depth is bounded by �. Since the number of active columns in instance

- is 2(-), and the height of the partitioning tree) is bounded by 2 log 2(-), while the depth

of the recursion is at most 2 log(height())/�), it is easy to verify that � = $
(

log 2(-)
2
�/2

)
=

log 2(-)
2
Ω(�) .

As before, let ℐ be the set of all instances to which Algorithm LeafBST is applied. Using

the same arguments as in Claim 6.5,

∑
-′∈ℐ(|-′ | + OPT(-′)) = $(OPT(-)). For each such

instance -′, Algorithm LeafBST produces a solution of cost $(|-′ | + OPT(-′)). Therefore,

the total number of type-2 points in the final solution is bounded by $(OPT(-)). The total

number of type-1 points in the solution is therefore bounded by $(�) · OPT(-) as before.

Therefore, the algorithm produces a factor-$(�)-approximate solution. Finally, in order to

analyze the running time of the algorithm, we first bound the running time of all calls to

procedure LeafBST. The number of such calls is bounded by |- |. Consider now some instance

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 52

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

-′ ∈ ℐ, and its corresponding partitioning tree)′. Since the height of)′ is bounded by �,

we get that 2(-′) ≤ 2
� ≤ 2

log 2(-)/2Ω(�) ≤ (2(-))1/2Ω(�) . Therefore, the running time of LeafBST

on instance -′ is bounded by |-′ |$(1) · (2(-′))$(2(-′)) ≤ |-′ |$(1) · exp

(
$(2(-′) log 2(-′)

)
≤

|-′ |$(1) · exp

(
2(-)1/2Ω(�) · log 2(-)

)
.

The running time of the remainder of the algorithm, excluding the calls to LeafBST, is bounded

by poly(|- |). We conclude that the total running time of the algorithm is bounded by

|- |$(1) · exp

(
2(-)1/2Ω(�) · log 2(-)

)
≤ poly(<) · exp

(
=1/2Ω(�) · log =

)
6.5 Feasibility

We start by showing that the solution that the algorithm returns is)-special.

Observation 6.7. Assuming that LeafBST(-,)) returns a)-special solution, the solution .∗
returned by Algorithm RecursiveBST(-,), �) is a)-special solution.

Proof. The proof is by induction on the recursion depth. The base of the induction is the calls to

Procedure LeafBST(-,)), which return)-special solutions by our assumption. Consider now

some call to Algorithm RecursiveBST(-,), �). From the induction hypothesis, the resulting

solution .̂ for instance -̃ is)̃-special, and, for every strip 9 ∈ [:], the resulting solution .9 for

instance -9 is)9-special. Since both)̃ and every tree

{
)9

}
9∈[:] are subtrees of), and since the

points of / lie on boundaries of strips in

{
(9

}
9∈[:], the final solution .

∗
is)-special. �

We next turn to prove that the solution .∗ computed by Algorithm RecursiveBST(-,), �) is
feasible. In order to do so, we will use the following immediate observation.

Observation 6.8. Let .∗ be the solution returned by Algorithm RecursiveBST(-,), �), and let

9 ∈ [:] be any strip index. Then:

• Any point H ∈ .∗ that lies in the interior of (9 must lie on an active row of instance -9 .

• Any point H ∈ .∗ that lies on the boundary of (9 must belong to in .̂ ∪ /. Moreover, the

points of .̂ ∪ / may not lie in the interior of (9 .

• If ' is an active row for instance -9 , then set / contains two points, lying on the intersection

of ' with the left and the right boundaries of (9 , respectively.

We are now ready to prove that the algorithm returns feasible solutions. In the following proof,

when we say that a row ' is an active row of strip (9 (or equivalently of instance -9), we mean

that some (input) point of instance -9 lies on row '.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 53

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

Theorem 6.9. Assume that the recursive calls to Algorithm RecursiveBST return a feasible special
solution .̂ for instance -̃, and for each 8 ∈ [:], a feasible special solution .9 for the strip instance -9 .
Then the point set .∗ = / ∪ .̂ ∪ (⋃9∈[:].9) is a feasible solution for instance -.

Proof. It would be convenient for us to consider the set of all points in -̃ ∪- ∪.∗ simultaneously.

In order to do so, we start with the set - ∪ .∗ of points. For every 9 ∈ [:], we select an arbitrary

active column � 9 in strip (9 , and we then add a copy of every point ? ∈ -9 to column � 9 . The

resulting set of points, obtained after processing all strips (9 is identical to the set -̃ of points

(except possibly for horizontal spacing between active columns), and we do not distinguish

between them.

Consider any pair of points ?, @ that lie in .∗ ∪ -, which are not aligned. Our goal is to prove

that some point A ≠ ?, @ with A ∈ - ∪ .∗ lies in �?,@ . We assume w.l.o.g. that ? lies to the left of

@. We also assume that ?.H < @.H (that is, point ? is below point @); the other case is symmetric.

Assume first that at least one of the two points (say ?) lies in the interior of a strip (9 , for some

9 ∈ [:]. We then consider two cases. First, if @ also lies in the interior of the same strip, then

?, @ ∈ -9 ∪ .9 , and, since we have assumed that .9 is a feasible solution for instance -9 , the two

points are satisfied in -9 ∪ .9 , and hence in - ∪ .∗. Otherwise, @ does not lie in the interior of

strip (9 . Then, from Observation 6.8, if ' is the row on which point ? lies, then ' is an active row

for instance -9 , and the point that lies on the intersection of the row ' and the right boundary

of strip (9 was added to /. This point satisfies the pair (?, @).
Therefore, we can now assume that both ? and @ lie on boundaries of strips

{
(9 | 9 ∈ [:]

}
. Since

every pair of consecutive strips share a boundary, and since, from the above assumptions, ? lies

to the left of @, we can choose the strips (9 and (; , such that ? lies on the left boundary of (9 ,

and @ lies on the right boundary of (; . Notice that it is possible that (9 = (; .

Notice that, if ? lies on a row that is active for strip (9 , then a point that lies on the same row

and belongs to the right boundary of the strip (9 has been added to /; this point satisfies the

pair (?, @). Similarly, if @ lies on a row that is active for strip (; , the pair (?, @) is satisfied by a

point of / that lies on the same row and belongs to the left boundary of (; .

Therefore, it remains to consider the case where point ? lies on a row that is inactive for (9 , and

point @ lies on a row that is inactive for (; . From Observation 6.8, both ? and @ belong to .̂ ∪ /.

The following observation will be useful for us. Recall that the points of -̃ are not included in

- ∪ .∗.

Observation 6.10. Assume that there is some point A ≠ ?, @, such that A ∈ �?,@ , and A ∈ -̃. Then

the pair (?, @) is satisfied in set - ∪ .∗.

Proof. Since A ∈ -̃, and A ∈ �?,@ , there must be some strip (8 , that lies between strips (9 and (;
(where 9 ≤ 8 ≤ ;), such that point A lies on the column �8 (recall that this is the unique active

column of (8 that may contain points of -̃). But then the row ' to which point A belongs is

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 54

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

an active row for strip (8 . Therefore, two points, lying on the intersection of ' with the two

boundaries of strip (8 were added to /, and at least one of these points must lie in �?,@ . Since
/ ⊆ .∗, the observation follows. �

From the above observation, it is sufficient to show that some point A ∈ .̂ ∪ / ∪ -̃ that is distinct

from ? and @, lies in �?,@ . We distinguish between three cases.

The first case happens when ?, @ ∈ .̂. Since set .̂ is a feasible solution for instance -̃, there is

some point A ∈ �?,@ that is distinct from ? and @, and lies in .̂ ∪ -̃.

The second case happens when neither ? nor @ lie in .̂, so both ?, @ ∈ /. Consider strip (9−1

lying immediately to the left of strip (9 . Since ? lies on a row that is inactive for strip (9 , but

? ∈ /, such a strip must exist, and moreover, the row ' to which ? belongs must be active for

strip (9−1. Therefore, the point lying on the intersection of the column � 9−1 (the unique active

column of (9−1 containing points of -̃) and ' belongs to -̃; we denote this point by ?′.

Similarly, consider strip (;+1 lying immediately to the right of (; . Since @ lies on a row that is

inactive for strip (; , but @ ∈ /, such a strip must exist, and moreover, the row '′ to which @

belongs must be active for strip (;+1. Therefore, the point lying on the intersection of �;+1 and

'′ belongs to -̃; we denote this point by @′.

Since the set -̃ ∪ .̂ of points is satisfied, some point A ∈ -̃ ∪ .̂ that is distinct from ?′ and @′,
lies in �?′,@′. Moreover, from Observation 2.3, we can choose this point so that it lies on the

boundary of the rectangle �?′,@′. Assume first that A lies on the left boundary of this rectangle.

Then, since .̂ is a special solution for instance -̃, A ∈ -̃ must hold. If '′′ denotes the row on

which A lies, then '′′ is an active row for strip (9−1, and so a point that lies on the intersection of

row '′′ and the right boundary of (9−1 belongs to /. That point satisfies �?,@ . The case where A

lies on the right boundary of �?′,@′ is treated similarly.

Assume now that A lies on the top or the bottom boundary of �?′,@′ , but not on one of its corners.

Then, since solution .̂ is special for -̃, point A must lie in the rectangle �?,@ . Moreover, since we

have assumed that neither ? nor @ lie in .̂, A ≠ ?, @. But then A ∈ -̃ ∪ .̂ lies in �?,@ \ {?, @} and
by Observation 6.10, pair (?, @) is satisfied in - ∪ .∗.

The third case happens when exactly one of the two points (say ?) lies in .̂, and the other point

does not lie in .̂, so @ ∈ / must hold. We define the point @′ ∈ -̃ exactly as in the second

case. Since ?, @′ ∈ -̃ ∪ .̂, there must be a point A ∈ �?,@′ \ {?, @′} that lies in -̃ ∪ .̂. From

Observation 6.8, we can choose the point A, so that it lies on the left or on the bottom boundary

of �?,@′ (that is, its G- or its H-coordinate is aligned with the point ?). If A lies on the left boundary

of �?,@′ , then it also lies in �?,@ , and from Observation 6.10, pair (?, @) is satisfied in - ∪ .∗. If it
lies on the bottom boundary of �?,@′ , but it is not the bottom right corner of the rectangle, then,

using the same reasoning as in Case 2, it must lie in �?,@ , and it is easy to see that A ≠ @. Lastly,

if A is the bottom right corner of �?,@′ , then A ∈ -̃. As before, there is a copy of A, that lies on the

left boundary of strip (;+1 and belongs to /, that satisfies the pair (?, @). �

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 55

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

6.6 Leaf instances (proof of Theorem 6.4)

The goal of this subsection is to prove Theorem 6.4. For convenience, given an input instance

- of Min-Sat, we denote A(-) = < and 2(-) = =. Our goal is to compute an optimal canonical

solution . for - in time poly(<) · =$(=). The solution can then be turned into a special one using

the following observation.

Observation 6.11. There is an algorithm, that, given a set - of points that is a semi-permutation,

and a canonical solution. for-, computes a special solution.′ for-, such that |.′ | ≤ 2|- |+2|. |.

Proof. We construct .′ as follows: For each point ? ∈ - ∪ ., we add two points, ?′ and ?′′ to .′,
whose H-coordinate is the same as that of ?, such that ?′ and ?′′ lie on the lines of ℒ appearing

immediately to the left and immediately to the right of ?, respectively. It is easy to verify that

|.′ | = 2|- | + 2|. | and that .′ is a special solution.

We now verify that -∪.′ is a satisfied set of points. Consider two points ?, @ in -∪.′, such that

?.G < @.G. Notice that ? is either an original point in - or it is a copy of some point ?̂ ∈ - ∪ ..
If ? ∈ - or ? = ?̂′ for ?̂ ∈ - ∪ ., then the point ?̂′′ lies in the rectangle �?,@ . Therefore, we can

assume that ? = ?̂′′ for some point ?̂ ∈ - ∪.. By a similar reasoning, we can assume that @ = @̂′

for some point @̂ ∈ - ∪ .. Since - ∪ . is a satisfied point set, there must be a point A ∈ - ∪ .
that lies in the rectangle �?̂ ,@̂ . From Observation 2.3, we can choose A such that either A.G = ?̂.G

or A.H = ?̂.H. In either case, point A′′ also lies in �?̂′′,@̂′ = �?,@ , so (?, @) is satisfied by - ∪ .′.
Therefore, - ∪ .′ is a satisfied set of points. �

This observation allows us to turn the optimal canonical solution into a special solution of cost at

most 2|- | + 2|. | ≤ 2|- | + 2OPT(-), in time poly(|- |). We start by providing several definitions

and structural observations that will be helpful in designing the algorithm.

6.6.1 Conflicting sets

Our algorithm uses the notion of conflicting point sets, defined as follows.

Definition 6.12 (Conflicting Sets). Let / and /′ be sets of points. We say that / and /′ are
conflicting if / ∪ /′ is not satisfied.

The following definition is central to our algorithm.

Definition 6.13 (Top representation). Let / be any set of points. A top representation of /, that

we denote by top(/), is a subset /′ ⊆ / of points, obtained as follows: for every column � that

contains points from /, we add the topmost point of / that lies on � to /′.

Observation 6.14. Let top(/) ⊆ / be the top representation of /, and let ' be a row lying strictly

above all points in /. Let . be any set of points lying on row '. Then C>?(/) is conflicting with

. if and only if / is conflicting with ..

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 56

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

Proof. Assume that . is conflicting with /, and let ? ∈ ., @ ∈ / be a pair of points, such that no

point of . ∪/ lies in �?,@ \ {?, @}. But then @ ∈ top(/)must hold, and no point of top(/) ∪. lies

in �?,@ \ {?, @}, so top(/) and . are conflicting. Assume now that top(/) and . are conflicting,

and let ? ∈ ., @ ∈ top(/) be a pair of points, such that no point of . ∪ top(/) lies in �?,@ \ {?, @}.
But then no point of . ∪ / lies in �?,@ \ {?, @}, and, since top(/) ⊆ /, sets top(/) and . are

conflicting. �

6.6.2 The setup

Let - be the input point set, that is a semi-permutation. We denote by ℛ = {'1 , . . . , '<} the set
of all active rows for -, and we assume that they are indexed in their natural bottom-to-top

order. We denote by C = {�1 , . . . , �=} the set of all active columns of -, and we assume that

they are indexed in their natural left-to-right order. We also denote - = {?1 , . . . , ?<}, where for

all 1 ≤ 8 ≤ <, ?8 is the unique point of - lying on row '8 . For an index 1 ≤ C ≤ <, we denote by

ℛ≤C = {'1 , . . . , 'C}, and we denote by -≤C = {?1 , . . . , ?C}.
Note that, if . is a feasible solution to instance -, then for all 1 ≤ C ≤ <, the set -≤C ∪ .≤C
of points must be satisfied (here .≤C is the set of all points of . lying on rows of ℛ≤C .) Our

dynamic programming-based algorithm constructs the optimal solution row-by-row, using this

observation. We use height profiles, that we define next, as the “states” of the dynamic program.

A height profile � assigns, to every column �8 ∈ C, a value �(�8) ∈ {1, . . . , =,∞}. LetΠ be the set

of all possible height profiles, so |Π| ≤ =$(=). For a profile � ∈ Π, we denote by"(�) the largest
value of �(�8) for any column �8 ∈ C that is not∞. Given a height profile �, let C(�) ⊆ C be the

set of columns �8 with �(�8) < ∞, and let C′(�) = C \ C(�). We can then naturally associate an

ordering �� of the columns in C(�) with � as follows: for columns �8 , � 9 ∈ C(�), �8 appears
before � 9 in � iff either (i) �(�8) < �(� 9); or (ii) �(�8) = �(� 9) and 8 < 9.

Consider now any point set /, where every point lies on a column of C. Let /′ = top(/), and
let �(/) denote the ordering of the points in /′, such that ? appears before ?′ in � iff either (i)

?.H < ?′.H; or (ii) ?.H = ?′.H and ?.G < ?′.G. Consider now any profile � ∈ Π. We say that point

set / is consistent with profile � (see Figure 8 for an illustration) iff the following hold:

• For every column �8 ∈ C, if �(�8) = ∞, then no point of / lies on �8 ; and

• For all 1 ≤ 8 ≤ |/′ |, the 8th point in �(/) lies on the 8th column of ��.

6.6.3 Our DP

Consider some integer C : 1 ≤ C ≤ < (viewed as a row index) and some height profile �; we

define "(�) as the largest value of �(� 9) for � 9 ∈ C that is not∞. We say that � is a legal profile
for time C iff"(�) ≤ C, and, if �8 is the column containing the input point ?C , then �(�8) = "(�)

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 57

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

Figure 8: An illustration of height profile that is consistent with a set / of points. The set

top(/) is shown by dark points. The height profile is �(�1) = 1,�(�2) = �(�5) = 2 and

�(�3) = ℎ/(�4) = 3.

(that is, column �8 has the largest value �(�8) that is not∞; we note that it is possible that other

columns � 9 ≠ �8 also have �(� 9) = "(�)).
For every integer 1 ≤ C ≤ <, and every height profile � that is legal for C, there is an entry)[C ,�]
in the dynamic programming table. The entry is supposed to store the minimum-cardinality set

/ of points with the following properties:

• -≤C ⊆ /;

• all points of / lie on rows '1 , . . . , 'C ;

• / is a satisfied point set; and

• / is consistent with �.

Clearly, there number of entries in the dynamic programming table is bounded by <=$(=). We

fill out the entries in the increasing order of the index C.

We start with C = 1. Consider any profile � that is legal for time C. Recall that for every column

� 9 ∈ C, �(� 9) ∈ {1,∞} must hold, and moreover, if �8 is the unique column containing the

point ?1 ∈ -, then �(�8) = 1 must hold. We let)[1,�] contain the following set of points: for

every column � 9 ∈ C with �(� 9) = 1, we add the point lying in the intersection of column � 9
and row '1 to the point set stored in)[C ,�]. It is immediate to verify that the resulting point set

is consistent with �, it is satisfied, it contains -≤1 = {?1}, and it is the smallest-cardinality point

set with these properties.

We now assume that for some C ≥ 1, we have computed correctly all entries)[C′,�′] for all
1 ≤ C′ ≤ C, and for all profiles �′ legal for C′. We now fix some profile � that is legal for C + 1, and

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 58

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

show how to compute entry)[C + 1,�].
Let A = "(�) (recall that this is the largest value of �(� 9) that is not∞), and let C1 ⊆ C be the

set of all columns � 9 with �(� 9) = A. Recall that, if � 9 is the column containing the input point

?C+1, then � 9 ∈ C1 must hold. Let % be the set of |C1 | points that lie on the intersection of the

row 'C+1 and the columns in C1.

Consider now any profile �′ that is legal for C, and let /̂ =)[C ,�′]. Denote /̂′ = top(/̂). We say

that profile �′ is a candidate profile if (i) �′ is legal for C; (ii) the point sets %, /̂′ do not conflict;

(iii) C′(�′) ⊆ C′(�) ∪ C1; and (iv) if we discard from �� and from ��′ the columns of C1, then

the two orderings are defined over the same set of columns and they are identical. We select a

candidate profile �′ that minimizes |)[C ,�′]|, and let / = /̂ ∪ %, where /̂ is the point set stored

in)[C ,�′]. We then set)[C + 1,�] = /.
We now verify that set / has all required properties. If the entry)[C ,�′]was computed correctly,

then point set /̂ is satisfied. Since top(/̂) and % are not conflicting, from Observation 6.14

neither are /̂ and %. Therefore, set / is satisfied. If the entry)[C ,�′]was computed correctly,

then -≤C ⊆ /̂. Since ?C+1 ∈ %, we get that -≤(C+1) ⊆ /.
Next, we show that / is consistent with the profile �. Let /′ = top(/), and consider the ordering

�(/) of the points in /′. It is easy to verify that the last |% | points in this ordering are precisely

the points of %. The remaining points in this ordering can be obtained from the point set /̂′, by

first ordering them according to ordering �(/̂), and then deleting all points lying on columns of

C1. From the definition of candidate profiles, it is easy to verify that for all 1 ≤ 8 ≤ |/′ |, the 8th
point in �(/) lies on the 8th column of ��. Therefore, / is consistent with profile �.

Lastly, it remains to show that the cardinality of / is minimized among all sets with the above

properties. Let /∗ be the point set that contains -≤C+1, is satisfied, is consistent with profile �,
with every point of /∗ lying on rows '1 , . . . , 'C+1, such that |/∗ | is minimized among all such

sets. It is easy to verify that the set of points of /∗ lying on row 'C+1 must be precisely %. This

is since point ?C+1 must belong to /∗, and so every column �8 with �(�8) = "(�)must have a

point lying on the intersection of �8 and 'C+1 in /
∗
. Let /̂ = /∗ \ %. Clearly, /̂ is satisfied, all

points of /̂ lie on rows '1 , . . . , 'C , and -≤C ⊆ /̂. Moreover, there is no conflict between top(/̂)
and %.

We define a new height profile �′ as follows: for every column �8 ∈ C, if no point of /̂ lies on

�8 , then �′(�8) = ∞. Otherwise, let ? be the unique point in /̂′ that lies on �8 , and assume that

it lies on row 'C′. Then we set �′(�8) = C′. Notice that C′(�′) ⊆ C′(�) ∪ C1, and, if we discard

from �� and from ��′ the columns of C1, then the two orderings are defined over the same set of

columns and they are identical.

It is easy to verify that the resulting profile �′ must be legal for C. Therefore, profile �′ was

considered by the algorithm. Since /̂′ and % are not conflicting, it is easy to verify that for any

other set /̃ of points that lie on rows '1 , . . . , 'C and are consistent with profile �′, set top(/̃)
does not conflict with %. Therefore, �′ must be a candidate profile for �. We conclude that

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 59

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

|)[C ,�′]| ≤ |/̂ |, and |)[C ,�]| ≤ |)[C ,�′]| + |% | = |/∗ |, so |/ | ≤ |/∗ | must hold.

The output of the algorithm is a set)[<,�] \ - of smallest cardinality among all profiles � ∈ Π
that are consistent with <. It is immediate to verify that this is a feasible and optimal solution

for -.

As observed before, the number of entries in the dynamic programming table is < · =$(=), and
computing each entry takes time =$(=). Therefore, the total running time of the algorithm is

bounded by < · =$(=).

7 An $(log log =)-competitive online algorithm

In this section we extend the $(log log =)-approximation algorithm from the previous section

to the online setting, completing the proof of Theorem 1.2. To this end, the recursive algorithm

is not quite convenient to work with. In Subsection 7.1, we present an equivalent iterative

description of our algorithm. In Subsection 7.2, we slightly modify the solution . that the

algorithm returns to obtain another solution .̂ that is more friendly for the online setting, before

presenting the final online algorithm in Subsection 7.3.

7.1 Unfolding the recursion

Let - be an input set of points that is semi-permutation, with |- | = <, and 2(A) = =. Let) be a

balanced partitioning tree of height � = $(log =) for -.

We now construct another tree ', that is called a recursion tree, and which is unrelated to the

tree). Every vertex @ of the tree ' is associated with an instance ℐ(@) of Min-Sat that arose
during the recursive execution of Algorithm RecursiveBST(-,), �), with � = 1. Specifically,

for the root A of the tree ', we let ℐ(A) = -. For every vertex @ of the tree ', if Algorithm

RecursiveBST(-,), �), when called for instance ℐ(@), constructed instances ℐ1 , . . . ,ℐI (recall
that one of these instances is a compressed instance, and the remaining instances are strip

instances), then vertex @ has I children in tree ', each of which is associated with one of these

instances.

For a vertex @ ∈ +('), let =(@) be the number active columns in the instance ℐ(@). Recall that
instance ℐ(@) corresponds to some subtree of the partitioning tree), that we denote by)@ . For

all 8 ≥ 0, let Λ′
8
be the set of all vertices of the tree ' that lie at distance exactly 8 from the root of

'. We say that the vertices of Λ′
8
belong to the 8th layer of '. Notice that, if vertex @ lies in the

8th layer of ', then the height of the corresponding tree)@ is bounded by � · (2/3)8 (the constant
2/3 is somewhat arbitrary and is used because, when a tree)′ is split in its middle layer, each of

the resulting subtrees has height at most

⌊
height()′)/2

⌋
+ 1 ≤ 2�/3). Recall that the recursion

terminates once we obtain instances whose corresponding partitioning trees have height 1. It is

then easy to verify that the height of the recursion tree ' is bounded by $(log log =).

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 60

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

Figure 9: An illustration of the families T8 . Notice that T1 contains 5 trees, each having height 2.

Consider now some layer Λ8 of the recursion tree '. We let T8 be the collection of all subtrees of

the partitioning tree) corresponding to the vertices of Λ8 , so T8 =
{
)@ | @ ∈ Λ8

}
. Recall that all

trees in T8 have height at most � · (2/3)8 .
Notice that T0 = {)}. Let* = {E1 , . . . , E:} be the middle layer of). Then T1 =

{
)E1
, . . . ,)E: ,)A

}
.

Set T2 is similarly obtained by subdividing every tree in T1, and so on. (See Figure 9 for an

illustration.) The construction of the tree sets T8 can be described using the following process:

• Start from T0 = {)}.

• For 8 = 1, . . . , �, if some tree in T8−1 has height greater than 1, then construct the set T8 of
trees as follows: For every tree)′ ∈ T8 whose height is greater than 1, consider the split

partitioning trees

{
{)9},)̃

}
by the (boundaries of) middle-layer strips. Notice that)̃ is

rooted at the root of)′ and each)9 at a leaf of)̃. These subtrees are added into T8 .

The following observation is immediate.

Observation 7.1. For each 1 ≤ 8 ≤ �,

⋃
)′∈T8 +()′) = +()), and for each pair)′,)′′ ∈ T8 of trees,

either +()′) ∩+()′′) = ∅ or the root of one of these trees is a leaf of the other tree.

7.1.1 Boxes

Fix an index 1 ≤ 8 ≤ �, and consider any tree)′ ∈ T8 . Denote the number of leaves by :,

and let E1 , . . . , E: be the leaves of)
′
. If E is the root vertex of the tree)′, then we can view)′

as defining a hierarchical partitioning scheme of the strip ((E), until we obtain the partition

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 61

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

(((E1), ((E2), . . . , ((E:)) of ((E). We define a collection of)′-boxes as follows. Let -′ = - ∩ ((E)
be the set of all points lying in strip ((E). Assume that -′ = {?1 , ?2 , . . . , ?<′}, where the points

are indexed in the increasing order of their H-coordinates.

We now iteratively partition the point set -′ into boxes, where each box is a consecutive set of

points of -′. Let E8 be the leaf vertex of)′, such that ?1 ∈ ((E8), and let <1 be the largest index,

such that all points ?1 , . . . , ?<1
lie in ((E8). We then then define a box �1 = {?1 , ?2 , . . . , ?<1

}.
We discard the points ?1 , . . . , ?<1

, and continue this process to define �2 (starting from point

?<1
+ 1), and so on, until every point of -′ belongs to some box.

We let ℬ()′) =
{
�1 , �2 , . . . , �I()′)

}
be the resulting partition of the points in -′, where we refer

to each set �8 as a)
′
-box, or just a box. For each box �′ ∈ ℬ()′), the lowest and the highest rows

containing points of �′ are denoted by first(�′) and last(�′) respectively.

7.1.2 Projections of points

Recall that the solution that our recursive algorithm returns is)-special, that is, the points that

participate in the solution lie on the active rows of - and on)-auxiliary columns. Let . be a

feasible solution obtained by our algorithm RecursiveBST(-,), �), where � = 1. Notice the

every point in . is obtained by “projecting” some input point ? ∈ - to the boundary of some

strip ((E) for E ∈ +()), where strip ((E) contains ?. For each point ? ∈ - and node E ∈ +()) of
the partitioning tree, such that ? ∈ ((E), we define the set proj(?, E) to contain two points on

the same row as ?, that lie on the left and right boundaries of ((E), respectively. We denote

by .?,E the set that contain the two points proj(?, E) if our algorithm adds these two points

to the solution. Since all points of - lie on distinct rows, for any two points ? ≠ ?′, for any
pair E, E′ ∈ +()) of vertices, proj(?, E) ∩ proj(?′, E′) = ∅. We can now write the solution . as

. =
⋃
?∈-

⋃
E∈+()).?,E . The following lemma characterizes the points of . in terms of boxes.

Lemma 7.2. For every point ? ∈ - and every node E ∈ +()) of the partitioning tree, |.?,E | = 2 if and
only if there is an index 1 ≤ 8 ≤ �, and a subtree)′ ∈ T8 , such that (i) ? is the first or the last point of its
)′-box; (ii) E lies in the middle layer of)′; and (iii) ((E) contains ?.

Proof. Let 1 ≤ 8 ≤ � be an index, and let)′ ∈ T8 be the corresponding partitioning tree.

We denote the corresponding point set by -′. Let E1 , . . . , E: be the leaf vertices of)′, and
let D1 , . . . , DA be the vertices lying in the middle layer of)′. The only points added to the

solution when instance -′ is processed are the following: for every 1 ≤ 9 ≤ A, for every point

? ∈ -′ ∩ ((D9), we add the two copies of ? to the boundaries of ((D9). In subsequent, or in

previous iterations, we may add points to boundaries of ((D9), but we will never add two copies

of the same input point to both boundaries of ((D9). Therefore, if |.?,E | = 2, then there must

be an index 8, and a tree)′ ∈ T8 , such that E lies in the middle layer of)′, and ((E) contains ?.
Observe that for every)′-box �, instance -′ only contains the first and the last point of �; all

remaining points are redundant for -′, and such points are not projected to the boundaries of

their strips. Therefore, ? must be the first or the last point of its)′-box. �

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 62

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

7.1.3 An equivalent view of our algorithm

We can think of our algorithm as follows. First, we compute all families T0 ,T1 , . . . ,T� of trees,

and for each tree)′ in each family T8 , all)′-boxes. For each point ? ∈ -, for each vertex E ∈ +())
of the partitioning tree), such that ? ∈ ((E), we add the projection points proj(?, E) to the

solution, depending on whether there exists an index 8 ∈ {0, 1, . . . , �} and a tree)′ ∈ T8 , such
that E lies in the middle layer *)′ of)

′
, and whether ? is the first or last point of its)′-box.

Notice that in the online setting, when the point ? arrives, we need to be able to immediately

decide which copies of ? to add to the solution. Since the trees in the families T0 ,T1 , . . . ,T� are

known in advance, and we discover, for every vertex E ∈ +())whether ? ∈ ((E) immediately

when ? arrives, the only missing information, for every relevant tree)′, is whether vertex ? is

the first or the last vertex in its)′-box. In fact it is easy to check whether it is the first vertex

in its)′-box, but we will not discover whether it is the last vertex in its)′-box until the next

iteration, at which point it is too late to add points to the solution that lie in the row of ?.

In order to avoid this difficulty, we slightly modify the instance and the solution.

7.2 Online-friendly solutions

In this section we slightly modify both the input set of points and the solutions produced by our

algorithm, in order to adapt them to the online setting.

7.2.1 Modifying the instance

Let - = {?1 , . . . , ?<} be the input set of points, where for all 1 ≤ 8 ≤ <, the H-coordinate of ?8 is

8. We produce a new instance -′ =
{
?′
8
, ?′′

8
| 1 ≤ 8 ≤ <

}
, as follows: for all 1 ≤ 8 ≤ <, we let ?′

8
and ?′′

8
be points whose H-coordinates are (28 − 1) and 28, respectively, and whose G-coordinate

is the same as that of ?8 . We refer to ?′
8
and to ?′′

8
as copies of ?8 .

Clearly, |-′ | = 2|- |, and it is easy to verify that OPT(-′) ≤ 2OPT(-). Indeed, if we let . be a

solution for -, we can construct a solution .′ for -′, by creating, for every point @ ∈ ., two

copies @′ and @′′, that are added to rows with H-coordinates 2@.H − 1 and 2@.H respectively.

For convenience, we denote T =
⋃�
8=0
T8 . Notice that, for every tree)′ ∈ T , for every point ?8 of

the original input -, copy ?′
8
of ?8 may never serve as the last point of a)′-box, and copy ?′′

8
of

?8 may never serve as the first point of a)′-box.

7.2.2 Modifying the solution

Let . be the solution that our $(log log =)-approximation algorithm produces for the new

instance -′. For convenience, for all 1 ≤ 8 ≤ 2<, we denote by '8 the row with H-coordinate 8.

Notice that all points of . lying on a row '28−1 are projections of the point ?
′
8
. Since this point

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 63

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

may only serve as the first point of a)′-box for every tree)′ ∈ T , when point ?′
8
arrives online,

we can immediately compute all projections of ?′
8
that need to be added to the solution. All

points of . lying on row '28 are projections of the point ?
′′
8
. This point may only serve as the

last point of a)′-box in a tree)′ ∈ T . But we cannot know whether ?′′
8
is the last point in its

)′-box until we see the next input point. Motivated by these observations, we now modify the

solution . as follows.

We perform < iterations. In iteration 8, we consider the row '28 . If no point of . lies on row '28 ,

then we continue to the next iteration. Otherwise, we move every point of . that lies on row '28

to row '28+1 (that is, one row up). Additionally, we add another copy ?′′′
8
of point ?8 to row '28 ,

while preserving its G-coordinate.

In order to show that the resulting solution is a feasible solution to instance -′, it is sufficient to

show that the solution remains feasible after every iteration. Let .8 be the solution . obtained

before the 8th iteration, and let (8 = -
′ ∪ .8 . We can obtain the new solution .8+1 equivalently

as follows. First, we collapse the rows '28+1 and '28 for the set (8 of points into the row '28+1,

obtaining a new set (′
8
of points that is guaranteed to be satisfied. Notice that now both row

'28+1 and row '28−1 contain a point at G-coordinate (?8).G, while row '28 contains no points.

Therefore, if we add to (′
8
a point with G-coordinate (?8).G, that lies at row '28 , then the resulting

set of points, that we denote by (8+1 remains satisfied. But it is easy to verify that (8+1 = -
′∪.8+1,

where .8+1 is the solution obtained after iteration 8. We denote by .′ the final solution obtained

by this transformation of .. It is easy to see that |.′ | ≤ 2|. | ≤ $(log log =)OPT(-).

7.3 The final online algorithm

Let - = {?1 , . . . , ?<} be an input set of points. We will describe the online algorithm that

produces a feasible solution to instance -. This algorithm would mimic the behavior of the

point set .′ as described earlier.

Initially, the algorithm computes the collection T of trees before any input arrives. Now, in

iteration 8, when input ?8 arrives, we compute ��'()(8):

��'()(8) =
⋃

)′∈T :?8 is first of a)
′
-box

©«
⋃

E:E is middle layer of)′, and ((E) contains ?8

proj(?8 , E)ª®¬
We also compute !�()(8 − 1):

!�()(8 − 1) =
⋃

)′∈T :?8−1 is last of a)′-box

©«
⋃

E:E is middle layer of)′and ((E) contains ?8−1

proj(?8−1 , E)ª®¬
We add copies of ��'()(8) and !�()(8 − 1), and a copy of ?8−1 points on row 8. It is easy to

verify that the resulting solution is precisely the solution obtained after collapsing every two

consecutive rows in .′ (as discussed previously). Therefore the solution is feasible and has cost

at most |.′ | ≤ $(log log =)OPT.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 64

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

8 Wilber and Guillotine bounds

In this section, we provide an alternative, geometric proof of the fact that WB(-) ≤ 2OPT(-),
which can be extended to the Guillotine bound. The original proof of Wilber [29] is done in the

tree view.

8.1 Wilber bound

It is sufficient to prove that, if - is a semi-permutation, and) is any partitioning tree for -, then

WB)(-) ≤ 2OPT(-).
We prove this claim by induction on the height of). The base case, when the height of) is 0, is

obvious: there is only one active column, and so WB)(-) = OPT(-) = 0.

We now consider the inductive step. Let - be any point set that is a semi-permutation, and let)

be any partitioning tree for -, such that the height of) is at least 1. Let E be the root vertex of),

! = !(E) the line that E owns, and let E! , E' be the two children of E. We assume w.l.o.g. that

the strip ((E!) lies to the left of ((E'). We denote ((E) = � – the bounding box of the instance,

((E!) = (! , ((E') = (', and we also denote -! = - ∩ (! , -' = - ∩ ('. Lastly, we let)! and)'

be the subtrees of) rooted at E! and E', respectively. We prove the following claim.

Claim 8.1.
OPT(-) ≥ OPT(-!) + OPT(-') + cost(E)/2.

Notice that, if the claim is correct, then we can use the induction hypothesis on -!
and -'

with

the trees)! and)' respectively, to conclude that:

OPT(-) ≥ 1

2

(WB)!(-!) +WB)' (-') + cost(E)) = 1

2

WB)(-).

Therefore, in order to complete the proof of Claim 2.7, it is enough to prove Claim 8.1.

Proof. Claim 8.1 Let . be an optimal solution to instance -. We can assume w.l.o.g. that . is a

canonical solution, so no point of . lies on the line !. Let .! , .' be the subsets of points of .

that lie to the left and to the right of the line !, respectively.

Let ℛ! be the set of all rows ', such that (i) no point of -!
lies on ', and (ii) some point of .!

lies on '. We define a set ℛ' of rows similarly for instance -'
. The crux of the proof is the

following observation.

Observation 8.2.
|ℛ! | + |ℛ' | ≥ cost(E)/2.

Before we prove Observation 8.2, we show that Claim 8.1 follows from it. In order to do so, we

will define a new feasible solution .̂! for instance -!
, containing at most |.! | − |ℛ! | points,

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 65

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

and similarly, we will define a new feasible solution .̂' for instance -'
, containing at most

|.' | − |ℛ' | points. This will prove that OPT(-!) ≤ |.! | − |ℛ! | and OPT(-') ≤ |.' | − |ℛ! |,
so altogether, OPT(-!) + OPT(-') ≤ |. | − |ℛ! | − |ℛ' | ≤ OPT(-) − cost(E)/2, thus proving

Claim 8.1.

We now show how to construct the solution .̂! for instance -!
. The solution .̂' for instance -'

is constructed similarly.

In order to construct the solution .̂!, we start with the solution .!, and then gradually modify

it over the course of |ℛ! | iterations, where in each iteration we reduce the number of points in

the solution .! by at least 1, and we eliminate at most one row from ℛ!. In order to execute an

iteration, we select two rows ', '′, with the following properties:

• Row ' contains a point of -!
;

• Row '′ contains a point of .! and it contains no points of -!
; and

• No point of -! ∪ .! lies strictly between rows ' and '′.

Note that, if ℛ! ≠ ∅, such a pair of rows must exist. We then collapse the row '′ into the row ',

obtaining a new modified solution to instance -!
(we use Observation 2.4). We claim that the

number of points in the new solution decreases by at least 1. In order to show this, it is sufficient

to show that there must be two points ? ∈ ', ?′ ∈ '′ with the same G-coordinates; after the two

rows are collapsed, these two points are mapped to the same point. Assume for contradiction

that no such two points exist. Let ? ∈ ', ?′ ∈ '′ be two points with smallest horizontal distance.

Then it is easy to see that no point of -! ∪ .! lies in the rectangle �?,?′, contradicting the fact

that .! is a feasible solution for -!
.

In order to complete the proof of Claim 8.1, it is now enough to prove Observation 8.2.

Proof. Observation 8.2 We denote - = {?1 , . . . , ?<}, where the points are indexed in the

increasing order of their H-coordinates. Recall that a pair (?8 , ?8+1) of points is a crossing, if the
two points lie on opposite sides of the line !. We say that it is a left-to-right crossing if ?8 lies to

the left of !, and we say that it is a right-to-left crossing otherwise. Clearly, either at least half

the crossings of ! are left-to-right crossings, or at least half the crossings of ! are right-to-left

crossings. We assume w.l.o.g. that it is the former. Let Π denote the set of all left-to-right

crossings of !, so |Π| ≥ cost(E)/2. Notice that every point of - participates in at most one

crossing in Π. We will associate, to each crossing (?8 , ?8+1) ∈ Π, a unique row in ℛ! ∪ ℛ'. This
will prove that |ℛ! | + |ℛ' | ≥ |Π| ≥ cost(E)/2.
Consider now some crossing (?8 , ?8+1). Assume that ?8 lies in row ', and that ?8+1 lies in row

'′. Let ℛ8 be a set of all rows lying between ' and '′, including these two rows. We will show

that at least one row of ℛ8 lies in ℛ! ∪ ℛ'. In order to do so, let � be the closed horizontal strip

whose bottom and top boundaries are ' and '′, respectively. Let �!
be the area of � that lies to

the left of the line !, and that excludes the row ' – the row containing the point ?8 , that also

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 66

http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

lies to the left of !. Similarly, let �'
be the area of � that lies to the right of the line !, and that

excludes the row '′. Notice that, if any point H ∈ .! lies in �!
, that the row containing H must

belong to ℛ!. Similarly, if any point H′ ∈ .' lies in �'
, then the row containing H′ belongs to

ℛ'. Therefore, it is now sufficient to show that either �!
contains a point of .!, or �'

contains

a point of .'. Assume for contradiction that this is false. Let ? ∈ -! ∪ .! be the point lying on

the row ' furthest to the right (such a point must exist because we can choose ? = ?8). Similarly,

let ?′ ∈ -' ∪ .' be the point lying on the row '′ furthest to the left (again, such a point must

exist because we can choose ?′ = ?8+1.) But if �
!
contains no points of .!, and �'

contains no

points of .', then no points of - ∪. lie in the rectangle �?,?′ , and so the pair (?, ?′) of points is
not satisfied in - ∪ ., a contradiction. �

�

8.2 Guillotine bound

In this section we prove Lemma 5.3, by showing that for any point set - that is a permutation,

GB(-) ≤ 2OPT(-). In order to do so, it is enough to prove that, for any point set - that is a

permutation, for any partitioning tree) for -, GB)(-) ≤ 2OPT(-).
The proof is by induction on the height of), and it is almost identical to the proof of Claim 2.7

for the standard Wilber Bound. When the height of the tree) is 1, then |- | = 1, so GB(-) = 0

and OPT(-) = 0.

Consider now a partitioning tree) whose height is greater than 1. Let)1 ,)2 be the two subtrees

of), obtained by deleting the root vertex A from). Let (-1 , -2) be the partition of - into two

subsets given by the line !(A), such that)1 is a partitioning tree for -1 and)2 is a partitioning

tree for -2. Notice that, from the definition of the GB bound:

GB)(-) = GB)1
(-1) + GB)2

(-2) + cost(A).

Moreover, from the induction hypothesis, GB)1
(-1) ≤ 2OPT(-1) and GB)2

(-2) ≤ 2OPT(-2).
Using Claim 8.1 (that can be easily adapted to horizontal partitioning lines), we get that:

OPT(-) ≥ OPT(-1) + OPT(-2) + cost(A)/2.

Therefore, altogether we get that:

GB)(-) ≤ 2OPT(-1) + 2OPT(-2) + cost(A) ≤ 2OPT(-).

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 67

http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

References

[1] Georgii Maksimovich Adel’son-Vel’skii and Evgenii Mikhailovich Landis: An algorithm

for organization of information. Dokl. Akad. Nauk SSSR (Russian), 146(2):263–266, 1962.
Math-Net.ru. 2

[2] Rudolf Bayer: Symmetric binary B-trees: Data structure and maintenance algorithms. Acta
Informatica, 1(4):290–306, 1972. [doi:10.1007/BF00289509] 2

[3] Prosenjit Bose, Karim Douïeb, John Iacono, and Stefan Langerman: The power and

limitations of static binary search trees with lazy finger. Algorithmica, 76:1264–1275, 2016.
Preliminary version in ISAAC’14. [doi:10.1007/s00453-016-0224-x] 3

[4] Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak: Pinning down the

strong Wilber 1 bound for binary search trees. In Proc. 23rd Internat. Conf. on Approximation
Algorithms for Combinat. Opt. Probl. (APPROX’20), pp. 33:1–21. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, 2020. [doi:10.4230/LIPIcs.APPROX/RANDOM.2020.33] 8

[5] Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and

Thatchaphol Saranurak: Greedy is an almost optimal deque. In Proc. 17th Symp. on
Algorithms and Data Structures (WADS’15), pp. 152–165. Springer, 2015. [doi:10.1007/978-3-
319-21840-3_13] 3

[6] Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and

Thatchaphol Saranurak: Pattern-avoiding access in binary search trees. In Proc. 56th
FOCS, pp. 410–423. IEEE Comp. Soc., 2015. [doi:10.1109/FOCS.2015.32, arXiv:1507.06953]

3, 7

[7] Ranjan Chaudhuri and Hartmut F. Höft: Splaying a search tree in preorder takes linear

time. SIGACT News, 24(2):88–93, 1993. [doi:10.1145/156063.156067] 3

[8] Richard Cole: On the Dynamic Finger Conjecture for splay trees. Part II: The proof. SIAM
J. Comput., 30(1):44–85, 2000. [doi:10.1137/S009753979732699X] 3

[9] Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel: On the Dynamic Finger

Conjecture for splay trees. Part I: Splay sorting log =-block sequences. SIAM J. Comput.,
30(1):1–43, 2000. [doi:10.1137/S0097539797326988] 3

[10] ThomasH.Cormen, Charles E. Leiserson, RonaldL. Rivest, andClifford Stein: Introduction
to Algorithms. MIT press, 2022. MIT Press. 2

[11] Erik D. Demaine, Dion Harmon, John Iacono, Daniel M. Kane, and Mihai Pǎtraşcu: The

geometry of binary search trees. In Proc. 20th Ann. ACM–SIAM Symp. on Discrete Algorithms
(SODA’09), pp. 496–505. SIAM, 2009. ACM DL. 3, 4, 5, 9, 12, 36

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 68

https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=26964&option_lang=eng
http://dx.doi.org/10.1007/BF00289509
https://doi.org/10.1007/978-3-319-13075-0_15
http://dx.doi.org/10.1007/s00453-016-0224-x
http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.33
http://dx.doi.org/10.1007/978-3-319-21840-3_13
http://dx.doi.org/10.1007/978-3-319-21840-3_13
http://dx.doi.org/10.1109/FOCS.2015.32
http://arxiv.org/abs/1507.06953
http://dx.doi.org/10.1145/156063.156067
http://dx.doi.org/10.1137/S009753979732699X
http://dx.doi.org/10.1137/S0097539797326988
http://mitpress.mit.edu/9780262046305/introduction-to-algorithms
https://dl.acm.org/doi/10.5555/1496770.1496825
http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

[12] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pǎtraşcu: Dynamic optimality–

almost. SIAM J. Comput., 37(1):240–251, 2007. Preliminary version in FOCS’04.

[doi:10.1137/S0097539705447347] 3, 4, 6, 8, 12

[13] Jonathan C. Derryberry and Daniel Dominic Sleator: Skip-splay: Toward achieving the

unified bound in the BST model. In Proc. 11th Symp. on Algorithms and Data Structures
(WADS’09), pp. 194–205. Springer, 2009. [doi:10.1007/978-3-642-03367-4_18] 3

[14] Jonathan C. Derryberry, Daniel Dominic Sleator, and Chengwen Chris Wang: A lower

bound framework for binary search trees with rotations. Technical report, CMU-CS-05-187,

2005. Available on author’s website. 3

[15] Amr Elmasry: On the sequential access theorem and deque conjecture for splay trees.

Theoret. Comput. Sci., 314(3):459–466, 2004. [doi:10.1016/j.tcs.2004.01.019] 3

[16] George F. Georgakopoulos: Chain-splay trees, or, how to achieve and prove

log log#-competitiveness by splaying. Inform. Process. Lett., 106(1):37–43, 2008.

[doi:10.1016/j.ipl.2007.10.001] 3, 8

[17] Dion Harmon: New Bounds on Optimal Binary Search Trees. Ph.D. thesis, MIT, 2006. MIT. 3

[18] John Iacono: In pursuit of the dynamic optimality conjecture. InA. Brodnik, A. López-Ortiz,

V. Raman, and A. Viola, editors, Space-Efficient Data Structures, Streams, and Algorithms,
volume 8066 of LNCS, pp. 236–250. Springer, 2013. [doi:10.1007/978-3-642-40273-9_16] 4, 6,
12, 26, 36

[19] John Iacono and Stefan Langerman: Weighted dynamic finger in binary search trees. In

Proc. 27th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’16), pp. 672–691. SIAM,

2016. [doi:10.1137/1.9781611974331.ch49] 3

[20] László Kozma: Binary search trees, rectangles and patterns. Ph.D. thesis, Saarland University,

Saarbrücken, Germany, 2016. Saarland U. 4, 6

[21] Victor Lecomte and Omri Weinstein: Settling the relationship between Wilber’s bounds

for dynamic optimality. In Proc. 28th Eur. Symp. Algorithms (ESA’20), pp. 68:1–21.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020. [doi:10.4230/LIPIcs.ESA.2020.68,

arXiv:1912.02858] 4, 5, 7

[22] Caleb C. Levy and Robert E. Tarjan: A new path from splay to dynamic optimality. In

Proc. 30th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’19), pp. 1311–1330. SIAM,

2019. [doi:10.1137/1.9781611975482.80] 37

[23] Joan M. Lucas: On the competitiveness of splay trees: Relations to the union-find problem.

In Lyle A. McGeoch and Daniel D. Sleator, editors, On-line Algorithms, volume 7 of

DIMACS Ser. in Discrete Math. and Theor. Comp. Sci., pp. 95–124. Amer. Math. Soc., 1992.

[doi:10.1090/dimacs/007] 3

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 69

https://doi.org/10.1109/FOCS.2004.23
http://dx.doi.org/10.1137/S0097539705447347
http://dx.doi.org/10.1007/978-3-642-03367-4_18
https://www.cs.cmu.edu/~jonderry/lower-bound.pdf
http://dx.doi.org/10.1016/j.tcs.2004.01.019
http://dx.doi.org/10.1016/j.ipl.2007.10.001
https://dspace.mit.edu/bitstream/handle/1721.1/34268/71014527-MIT.pdf
http://dx.doi.org/10.1007/978-3-642-40273-9_16
http://dx.doi.org/10.1137/1.9781611974331.ch49
http://scidok.sulb.uni-saarland.de/volltexte/2016/6646/
http://dx.doi.org/10.4230/LIPIcs.ESA.2020.68
http://arxiv.org/abs/1912.02858
http://dx.doi.org/10.1137/1.9781611975482.80
http://dx.doi.org/10.1090/dimacs/007
http://dx.doi.org/10.4086/toc

PARINYA CHALERMSOOK, JULIA CHUZHOY, AND THATCHAPHOL SARANURAK

[24] Seth Pettie: Splay trees, Davenport-Schinzel sequences, and the Deque Conjecture. In Proc.
19th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’08), pp. 1115–1124. SIAM, 2008.

[doi:10.5555/1347082.1347204, arXiv:0707.2160] 3

[25] Daniel Dominic Sleator and Robert Endre Tarjan: Self-adjusting binary search trees. J.
ACM, 32(3):652–686, 1985. Preliminary version in STOC’83. [doi:10.1145/3828.3835] 3

[26] Rajamani Sundar: On the Deque Conjecture for the splay algorithm. Combinatorica,
12(1):95–124, 1992. [doi:10.1007/BF01191208] 3

[27] Robert Endre Tarjan: Sequential access in splay trees takes linear time. Combinatorica,
5(4):367–378, 1985. [doi:10.1007/BF02579253] 3

[28] Chengwen C. Wang, Jonathan C. Derryberry, and Daniel Dominic Sleator: O(log log#)-
competitive dynamic binary search trees. In Proc. 17th Ann. ACM–SIAM Symp. on Discrete
Algorithms (SODA’06), pp. 374–383. SIAM, 2006. ACM DL. 3, 4, 6, 8

[29] Robert E. Wilber: Lower bounds for accessing binary search trees with rotations. SIAM J.
Comput., 18(1):56–67, 1989. Preliminary version in FOCS’86. [doi:10.1137/0218004] 3, 6, 12,

25, 26, 37, 65

AUTHORS

Parinya Chalermsook

Associate professor

Department of Computer Science

Aalto University

Espoo, Finland

chalermsook gmail com

https://sites.google.com/site/parinyachalermsook/

Julia Chuzhoy

Professor

Toyota Technological Institute at Chicago

Chicago, IL, USA

cjulia ttic edu

https://home.ttic.edu/~cjulia/

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 70

http://dx.doi.org/10.5555/1347082.1347204
http://arxiv.org/abs/0707.2160
https://doi.org/10.1145/800061.808752
http://dx.doi.org/10.1145/3828.3835
http://dx.doi.org/10.1007/BF01191208
http://dx.doi.org/10.1007/BF02579253
https://dl.acm.org/doi/10.5555/1109557.1109600
https://doi.org/10.1109/SFCS.1986.28
http://dx.doi.org/10.1137/0218004
https://sites.google.com/site/parinyachalermsook/
https://home.ttic.edu/~cjulia/
http://dx.doi.org/10.4086/toc

PINNING DOWN THE STRONG WILBER-1 BOUND FOR BINARY SEARCH TREES

Thatchaphol Saranurak

Assistant professor

University of Michigan

Ann Arbor, MI, USA

thsa umich edu

https://sites.google.com/site/thsaranurak/

ABOUT THE AUTHORS

Parinya Chalermsook is a faculty member at the Department of Computer Science,

Aalto University (Finland). He completed his Ph.D. at The University of Chicago

under the supervision of Julia Chuzhoy and Janos Simon. He was at Max Planck

Institute for Informatics as a postdoc and a senior research scientist from 2013 to

2016. Parinya is broadly interested in algorithms and extremal combinatorics.

When he is not doing mathematics, he enjoys reading about political philosophy.

Julia Chuzhoy is a Professor at the Toyota Technological Institute at Chicago. She

completed her Ph.D. in Technion, Israel, and spent three years as a postdoctoral

scholar at MIT, the University of Pennsylvania and the Institute for Advanced

Study in Princeton. She mainly works on algorithms for graph problems. In her

spare time she likes to read books, learns to play piano and studies French.

Thatchaphol Saranurak is a faculty member of the Electrical Engineering and

Computer Science Department at the University of Michigan. Prior to this, he

spent two years as a research assistant professor at the Toyota Technological

Institute at Chicago. Thatchaphol received his Ph.D. from KTH Royal Institute

of Technology, Stockholm, in 2018 under the supervision of Danupon Nanongkai.

Hismain research interest is in graph algorithmswith a current focus on dynamic,

local, and distributed algorithms. He likes sushi and Japanese manga.

THEORY OF COMPUTING, Volume 19 (8), 2023, pp. 1–71 71

https://sites.google.com/site/thsaranurak/
https://ttic.edu/
https://www.technion.ac.il/
http://dx.doi.org/10.4086/toc

	Introduction
	Binary search trees
	The Dynamic Optimality Conjecture
	The Wilber bounds
	Our results

	Independent work
	Statements of our results
	Geometric representation
	Negative results for WB-1
	Extension of WB-1
	Separating the two Wilber bounds
	Algorithmic results
	Erratum

	Preliminaries
	The Min-Sat problem
	Basic geometric properties
	Collapsing sets of columns or rows
	Canonical solutions

	Partitioning trees
	The WB-1 bound

	Geometric decomposition theorems
	Split instances
	Decomposition theorem for the optimal solution
	Decomposition theorem for the strong WB-1 bound.
	Forbidden points
	Proof overview and notation
	Defining the set of forbidden points
	Transforming into '
	Transforming ' into

	Separation results for the strong Wilber bound
	Basic tools
	Monotonically increasing sequence
	Bit reversal sequence (BRS)
	Exponentially spaced columns
	Cyclic shift of columns
	Partial costs of WB-1 bound

	Construction of the bad instance
	First instance
	Second instance
	Upper bounding WB(X*)

	Bounding type-1 crossings
	Bounding type-2 crossings
	Separating WB(2) and WB

	Guillotine bounds
	Definitions
	Consistent Guillotine Bound
	The Guillotine Bound

	Negative results for the Consistent Guillotine Bound
	2D exponentially spaced bit reversal
	2D cyclic shifts
	Instance
	Final instance

	Handling vertical cuts
	Bounding Wilber bound for strip instances
	Bounding Wilber bound for the compressed instance

	Handling horizontal cuts

	Algorithmic results
	Overview
	Special solutions and reduced sets
	Our algorithm
	Cost analysis
	Feasibility
	Leaf instances (proof of Theorem 6.4)
	Conflicting sets
	The setup
	Our DP

	An O(loglogn)-competitive online algorithm
	Unfolding the recursion
	Boxes
	Projections of points
	An equivalent view of our algorithm

	Online-friendly solutions
	Modifying the instance
	Modifying the solution

	The final online algorithm

	Wilber and Guillotine bounds
	Wilber bound
	Guillotine bound

	References

