
THEORY OF COMPUTING, Volume 19 (11), 2023, pp. 1–14
www.theoryofcomputing.org

A Strong XOR Lemma for Randomized

Query Complexity

Joshua Brody Jae Tak Kim Peem Lerdputtipongporn

Hariharan Srinivasulu

Received August 3, 2020; Revised December 30, 2023; Published December 31, 2023

Abstract. We give a strong direct sum theorem for computing XOR: ◦ ,, the XOR

of : instances of the partial Boolean function ,. Specifically, we show that for every

, and every : ≥ 2, the randomized query complexity of computing the XOR of :

instances of , satisfies R�(XOR: ◦,) = Θ(: R �
:
(,)), where R�( 5 ) denotes the expected

number of queries made by the most efficient randomized algorithm computing 5

with � error. This matches the naive success amplification upper bound and answers

a conjecture of Blais and Brody (CCC’19).

As a consequence of our strong direct sum theorem, we give a total function

, for which R(XOR: ◦ ,) = Θ(: log(:) · R(,)), where R( 5 ) is the number of queries

made by the most efficient randomized algorithm computing 5 with 1/3 error. This

answers a question from Ben-David et al. (RANDOM’20).

1 Introduction

We show that XOR admits a strong direct sum theorem for randomized query complexity.

Generally, the direct sum problem asks how the cost of computing a partial function , scales

with the number : of instances of the function that we need to compute simultaneously
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(in parallel) . This is a foundational computational problem that has received considerable

attention [9, 2, 13, 14, 10, 6, 8, 7, 3, 4, 5], including recent a recent paper by Blais and Brody [7],

which showed that expected query complexity obeys a direct sum theorem in a strong sense—

computing : copies of a partial function , with overall error � requires : times the cost of

computing , on one inputwith very low (�/:) error. Thismatches the naive success amplification

algorithm which runs an
�
:
-error algorithm for , once on each of : inputs and applies a union

bound to get an overall error guarantee of �.
What happens if we do not need to compute , on all instances, but only on a function 5 ◦ , of

those instances? Clearly the same success amplification trick (compute , on each input with low

error, then apply 5 to the answers) works for computing 5 ◦ ,; however, in principle, computing

5 ◦ , can be easier than computing each instance of , individually. When a function 5 ◦ ,
requires success amplification for all ,, we say that 5 admits a strong direct sum theorem. Our main

result shows that XOR admits a strong direct sum theorem.

1.1 Query complexity

A query algorithm, also known as a decision tree, computing 5 , is an algorithmA that takes an

input G to 5 , examines (or queries) bits of G, and outputs an answer for 5 (G). A leaf ofA is a bit

string @ ∈ {0, 1}∗ representing the answers to the queries made byA on input G. Let leaf(A , G)
denote the leaf ofA reached on input G. Naturally, our general goal is to minimize the length of

@, i. e., minimize the number of queries needed to compute 5 .

A randomized algorithm A computes a function 5 : {0, 1}= → {0, 1} with error & ≥ 0 if for

every input G ∈ {0, 1}= , the algorithm outputs the value 5 (G)with probability at least 1 − &. The
query cost ofA is the maximum number of bits of G that it queries, with the maximum taken

over both the choice of input G and the internal randomness ofA. The &-error randomized query
complexity of 5 (also known as the randomized decision tree complexity of 5 ) is the minimum query

cost of an algorithm A that computes 5 with error at most &. We denote this complexity by

R&( 5 ), and we write R( 5 ) := R 1

3

( 5 ) to denote the
1

3
-error randomized query complexity of 5 .

Another natural measure for the query cost of a randomized algorithm A is the expected
number of coordinates of an input G that it queries. Taking the maximum expected number

of coordinates queried byA over all inputs yields the expected query cost ofA. The minimum

expected query cost of an algorithmA that computes a function 5 with error at most & is the
&-error expected query complexity of 5 , which we denote by R&( 5 ). We again write R( 5 ) := R 1

3

( 5 ).
Note that R0( 5 ) corresponds to the standard notion of zero-error randomized query complexity of 5 .

1.2 Our results

Our main result is a strong direct sum theorem for XOR.

Theorem 1.1. For every partial function , : {0, 1}= → {0, 1} and all � > 0, we have R�(XOR: ◦ ,) =
Ω(: · R�/:(,)).

This answers Conjecture 1 of Blais and Brody [7] in the affirmative. We prove Theorem 1.1 by

proving an analogous result in distributional query complexity. We also allow our algorithms to
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abortwith a given probability. Let � be a distribution on valid inputs for 5 . Let D

�
�,�( 5 ) denote

the minimal query cost of a deterministic query algorithm that aborts with probability at most �
and errs with probability at most �, where the probability is taken over inputs - ∼ �. Similarly,

let R�,�( 5 ) denote the minimal query cost of a randomized algorithm that computes 5 with abort

probability at most � and error probability at most � for each valid input. (Here the probabilities

are taken over the internal randomness of the algorithm.)

Our main technical result is the following strong direct sum result for XOR: ◦ , for

distributional algorithms.

Lemma 1.2 (Main Technical Lemma, informally stated.). For every partial function , : {0, 1}= →
{0, 1}, every distribution � on the set of valid inputs and every sufficiently small �, � > 0, we have

D

�:

�,�(XOR: ◦ ,) = Ω(:D

�
�′,�′(,)) ,

for �′ = Θ(1) and �′ = Θ(�/:).

In [7], Blais and Brody also gave a total function , : {0, 1}= → {0, 1} whose �-error expected
query complexity satisfies R�(,) = Ω(R(,) · log

1

� ). We use our strong XOR Lemma together

with this function to show the following.

Corollary 1.3. There exists a total function , : {0, 1}= → {0, 1} such that

R�(XOR: ◦ ,) = Ω(: log(:) · R�(,)) .

Proof. Let , : {0, 1}= → {0, 1} be a function guaranteed by [7]. Then, we have

R(XOR: ◦ ,) ≥ R(XOR: ◦ ,) ≥ Ω(: · R1/3:(,)) ≥ Ω(: · R(,) · log(3:)) = Ω(: log(:) · R(,)) ,

where the second inequality is by Theorem 1.1 and the third inequality is from the query

complexity guarantee of ,. �

This answers Open Question 1 from a recent paper by Ben-David et al. [5].

1.3 Previous and related work

Jain et al. [10] gave direct sum theorems for deterministic and randomized query complexity.

In particular, Jain et al. show R�( 5 :) ≥ � · : · R�+�( 5 ). While their direct sum result holds

for randomized query complexity, the lower bound is in terms of the query complexity of

computing 5 with an increased error of �+ �. This weakens the right-hand side of their inequality.

Shaltiel [14] gave a function 5 such that D

�:

0,�( 5 :) � :D

�
0,�( 5 ), thus showing that a similar direct

sum theorem fails to hold for distributional complexity.

Drucker [8] gave a direct product theorem for randomized query complexity, showing that

any algorithm computing ,: using : R(,) queries for a constant  < 1 has success probability

exponentially small in :. Drucker also gave the following XOR Lemma, showing that any

algorithm for XOR: ◦ , that makes� :'(,) queries has success probability exponentially close

to 1/2 [8, Theorem 1.3].
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Theorem 1.4 (Drucker). Suppose any randomized )-query algorithm has success probability ≤ 1− �′ in
computing the Boolean function , on input G ∼ � for some input distribution �. Then, for all 0 <  < 1,
any randomized algorithm making �′): queries to compute XOR: ◦ , on input distribution �: (:
inputs drawn independently from �) has success probability at most 1

2

(
1 + [1 − 2�′ + 6 ln(2/)�′]:

)
.

Drucker’s XOR Lemma applies to randomized query complexity R(XOR: ◦ ,), while ours

applies to expected randomized query complexity R(XOR: ◦ ,).
Note the �′ factor in the query complexity in Drucker’s theorem. When �′ is a constant close

to 1/2, Drucker’s lower bound is stronger than ours by a large constant factor. However, when

�′ = >(1), his bound degrades significantly. Couched in our notation, Drucker’s XOR Lemma

yields R�(XOR: ◦ ,) = Ω(�′: R�′(,)), for some �′ = $(�/:). This simplifies to R�(XOR: ◦ ,) =
Ω(�'�/:(,)), a loss of a factor of :.

As far as we know, it remains open whether this �′ factor is needed in the query complexity

lower bound of Drucker’s XOR Lemma. However, Shaltiel’s counterexample [14] shows that the

�′ factor is required for distributional query complexity. This rules out the most direct approach

for proving a tighter XOR Lemma for R(XOR: ◦ ,).
Our paper is most closely related to that of Blais and Brody [7], who give a strong direct sum

theorem for the expected query complexity of computing : copies of 5 in parallel, for any partial

function 5 , and explicitly conjecture that XOR admits a strong direct sum theorem. Both [7] and

our paper use techniques similar to work of Molinaro et al. [11, 12] who give strong direct sum

theorems for communication complexity.

Our strong direct sum theorem forXOR is an example of a composition theorem—a lower bound

on the query complexity of functions of the form 5 ◦ ,. Several recent articles study composition

theorems in query complexity. Bassilakis et al. [1] show that R( 5 ◦ ,) = Ω(fbs( 5 )R(,)), where

fbs( 5 ) is the fractional block sensitivity of 5 . Ben-David and Blais [3, 4] give a tight lower bound

on R( 5 ◦ ,) as a product of R(,) and a new measure they define called noisyR( 5 ), which

measures the complexity of computing 5 on noisy inputs. They also characterize noisyR( 5 ) in
terms of the gap-majority function. Ben-David et al [5] explicitly consider strong direct sum

theorems for composed functions in randomized query complexity, asking whether the naive

success amplification algorithm is necessary to compute 5 ◦ ,. They give a partial strong direct

sum theorem, showing that there exists a partial function , such that computing XOR: ◦ ,
requires success amplification, even in a model where the abort probability may be arbitrarily

close to 1.1 Ben-David et al. explicitly ask whether there exists a total function , such that

R(XOR: ◦ ,) = Ω(: log(:)R(,)).

1.4 Our technique

Our technique most closely follows the strong direct sum theorem of Blais and Brody. We start

with a query algorithm that computes XOR: ◦, and use it to build a query algorithm for comput-

ing , with low error. To do this, wewill take an input for , and embed it into an input for XOR: ◦,.
Given G ∈ {0, 1}= , 8 ∈ [:], and H ∈ {0, 1}=×: , let H(8←G)

:= (H(1) , . . . , H(8−1) , G, H(8+1) , . . . H(:)) denote

1In this query complexity model, called PostBPP, the query algorithm is allowed to abort with any probability

strictly less than 1. When it does not abort, it must output 5 with probability at least 1 − �.
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the input obtained from H by replacing the 8-th coordinate H(8) with G. Note that if G ∼ � and

H ∼ �: ,2 then H(8←G) ∼ �: for all 8 ∈ [:].
We require the following observation [8, Lemma 3.2].

Lemma 1.5 (Drucker). Let H ∼ �: be an input for a query algorithmA, and consider any execution of
queries by A. The distribution of coordinates of H, conditioned on the queries made by A, remains a
product distribution.

In particular, the answers to ,(H(8)) remain independent bits conditioned on any set of queries

made by the query algorithm. Our first observation is that in order to compute XOR: ◦ ,(H)
with high probability, we must be able to compute ,(H(8))with very high probability for many

8’s. The intuition behind this observation is captured by the following simple fact about the

XOR of independent random bits.

Define the bias of a random bit - ∈ {0, 1} as A(-) := max1∈{0,1} Pr[- = 1]. Define the

advantage of - as adv(-) := 2A(-) − 1. Note that when adv(-) = �, then A(-) = 1

2
(1 + �).

Fact 1.6. Let -1 , . . . , -: be independent random bits, and let 08 be the advantage of -8 . Then,

adv(-1 ⊕ · · · ⊕ -:) =
:∏
8=1

adv(-8) .

Proof. For each 8, let 18 := argmax1∈{0,1} Pr[-8 = 1] and �8 := adv(-8). Then Pr[-8 = 18] =
1

2
(1 + �8). We prove Fact 1.6 by induction on :. When : = 1, there is nothing to prove. For : = 2,

note that

Pr[-1 ⊕ -2 = 11 ⊕ 12] =
1

2

(1 + �1)
1

2

(1 + �2) +
1

2

(1 − �1)
1

2

(1 − �2)

=
1

4

(1 + �1 + �2 + �1�2) +
1

4

(1 − �1 − �2 + �1�2)

=
1

2

(1 + �1�2) .

Hence -1 ⊕ -2 has advantage �1�2 and the claim holds for : = 2. For an induction hypothesis,

suppose that the claim holds for -1 ⊕ · · · ⊕ -:−1. Then, setting . := -1 ⊕ · · · ⊕ -:−1, by the

induction hypothesis, we have adv(.) = ∏:−1

8=1
adv(-8). Moreover, -1 ⊕ · · · ⊕ -: = . ⊕ -: , and

adv(-1 ⊕ · · · ⊕ -:) = adv(. ⊕ -:) = adv(.) adv(-:) =
:∏
8=1

adv(-8) . �

Given an algorithm for XOR: ◦ , that has error �, it follows that for typical leaves the

advantage of computing XOR: ◦ , is & 1− 2�. Fact 1.6 shows that for such leaves, the advantage

of computing ,(H(8)) for most coordinates 8 is & (1 − 2�)1/: = 1 − Θ(�/:). Thus, conditioned on

2We use �: to denote the distribution obtained on :-tuples of {0, 1}= obtained by sampling each coordinate

independently according to �.
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reaching this leaf of the query algorithm, we could compute ,(H(8))with very high probability.

We would like to fix a coordinate 8∗ such that for most leaves, our advantage in computing ,
on coordinate 8∗ is 1 − $(�/:). There are other complications, namely that (i) our construction

needs to handle aborts gracefully and (ii) our construction must ensure that the algorithm for

XOR: ◦ , does not query the 8∗-th coordinate too many times. Our construction identifies a

coordinate 8∗ and a string I ∈ {0, 1}=×: , and on input G ∈ {0, 1}= it emulates a query algorithm

for XOR: ◦ , on input I(8
∗←G)

and outputs our best guess for ,(G) (which is now , evaluated on

coordinate 8∗ of I(8
∗←G)

), aborting when needed e. g., when the algorithm for XOR: ◦ , aborts or

when it queries too many bits of G. We defer full details of the proof to Section 2.

1.5 Preliminaries and notation

A partial Boolean function on the domain {0, 1}= is a function 5 : (→ {0, 1} for some subset

( ⊆ {0, 1}= . Call ( the set of valid inputs for 5 . Let 5 be a partial Boolean function on {0, 1}=
and � a distribution whose support is a subset of the valid inputs. We use [=] to denote the

set {1, . . . , =} and - ∈' ( to denote an element - sampled uniformly from a set (. Let �:

denote the distribution obtained on :-tuples of {0, 1}= obtained by sampling each coordinate

independently according to �.
An algorithmA is a [@, �, �, �]-distributional query algorithm for 5 ifA is a deterministic

algorithm with query cost @ that computes 5 with error probability at most � and abort

probability at most � when the input G is drawn from �.3
Our main theorem is a direct sum result for XOR: ◦ , for expected randomized query

complexity; however, Lemma 1.2 uses distributional query complexity with aborts. To translate

between the two,weneed two results fromBlais andBrody [7] that connect the query complexities

in the randomized, expected randomized, and distributional query models.

Fact 1.7 ([7], Proposition 14). For every partial function 5 : {0, 1}= → {0, 1}, every 0 ≤ & < 1

2
and

every 0 < � < 1,
� · R�,�( 5 ) ≤ R&( 5 ) ≤ 1

1−� · R�,(1−�)&( 5 ).

Fact 1.7 shows that when � = 1−Ω(1), to achieve a lower bound for R�( 5 ), it suffices to lower

bound R�,�( 5 ). Next, we need the following generalization of Yao’s minimax lemma, which

connects randomized and distributional query complexity in the presence of aborts.

Fact 1.8 ([7], Lemma 15). For any , � > 0 such that  + � ≤ 1, we have

max

�
D

�
�/,�/�( 5 ) ≤ R�,�( 5 ) ≤ max

�
D

�
�,��( 5 ).

For simplicity, it might be helpful to consider the simplest case where  = � = 1

2
. In this case,

we recover max� D

�
2�,2�( 5 ) ≤ R�,�( 5 ) ≤ max� D

�
�/2,�/2( 5 ). Fact 1.8 shows that to prove a lower

3Note: in the literature, the error probability is sometimes defined as being conditioned on not aborting (e. g.,[5]).

We define the error probabilty without conditioning to match article [7] most closely related to our work.
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bound on R�,&( 5 ), it suffices to prove a lower bound on distributional complexity (albeit with a

constant factor increase in abort and error probabilities).

We will also use the following convenient facts about expected value.

Fact 1.9 (Law of Conditional Expectations). Let - and . be random variables. Then, we have

E[-] = E[E[- |.]] .

Fact 1.10 (Markov Inequality for Bounded Variables). Let - be a real-valued random variable with
0 ≤ - ≤ 1. Suppose that E[-] ≥ 1 − �. Then, for any ) > 1 it holds that

Pr[- < 1 − )�] < 1

)
.

Proof. Let . := 1 − -. Then, E[.] ≤ �. By Markov’s Inequality we have

Pr[- < 1 − )�] = Pr[. > )�] ≤ 1

)
. �

2 Strong XOR lemma

In this section, we prove our main result.

Lemma 2.1 (Formal Restatement of Lemma 1.2). For every partial function , : {0, 1}= → {0, 1},
every distribution � on {0, 1}= , every 0 ≤ � ≤ 1

5
, and every 0 < � ≤ 1

200
, we have

D

�:

�,�(XOR: ◦ ,) ≥
:

25

D

�
�′,�′(,) ,

�′ = 0.36 + 3� and �′ = 15000�
:

.

Proof. Let @ := D

�:

�,�(XOR:◦,), and suppose thatA is a [@, �, �, �:]-distributional query algorithm
for XOR: ◦ ,. Our goal is to construct an [$(@/:), �′, �′, �]-distributional query algorithm for ,.
Towards that end, for each leaf ℓ ofA define

1ℓ := argmax

1∈{0,1}
Pr

G∼�:
[XOR: ◦ ,(G) = 1 | leaf(A , G) = ℓ ]

Aℓ := Pr

G∼�:
[XOR: ◦ ,(G) = 1ℓ | leaf(A , G) = ℓ ]

0ℓ := 2Aℓ − 1 .

Call 0ℓ the advantage ofA on leaf ℓ .

The purpose ofA is to compute XOR: ◦ ,; however, we will show thatA must additionally

be able to compute , reasonably well on many coordinates of G. For any 8 ∈ [:] and any leaf ℓ ,
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define

18 ,ℓ := argmax

1∈{0,1}
Pr

G∼�:
[1 = ,(G(8))| leaf(A , G) = ℓ ]

A8 ,ℓ := Pr

G∼�:
[18 ,ℓ = ,(G(8))| leaf(A , G) = ℓ ]

08 ,ℓ := 2A8 ,ℓ − 1 .

IfA reaches leaf ℓ on input H, then writeA(H)8 := 18 ,ℓ . A(H)8 representsA’s best guess for

,(H(8)).
Next, we define some structural characteristics of leaves that we will need to complete the

proof.

Definition 2.2 (Good leaves, good coordinates).

• Call a leaf ℓ good if Aℓ ≥ 1 − 50�. Otherwise, call ℓ bad.

• Call a leaf ℓ good for 8 if 08 ,ℓ ≥ 1 − 5000�/:. Otherwise, call a leaf ℓ bad for 8.

When a leaf is good for 8, thenA, conditioned on reaching this leaf, computes ,(G(8))with

very high probability. Before presenting the main reduction, we give a few simple claims to

help our proof. Our first claim shows that we reach a good leaf with high probability.

Claim 2.3. PrG∼�: [leaf(A , G) is bad |A(G) doesn’t abort] ≤ 1

25
.

Proof. Conditioned onA not aborting, it outputs the correct value of XOR: ◦ , with probability

at least 1 − �
1−� ≥ 1 − 2�. We analyze this error probability by conditioning on which leaf is

reached. Let � be the distribution on leaf(A , G)when G ∼ �: , conditioned onA not aborting.

Let ! ∼ �. Then, we have:

1 − 2� ≤ Pr

G∼�:
[A(G) = XOR: ◦ ,(G)|A doesn’t abort]

=
∑
leaf ℓ

Pr

!∼�
[! = ℓ ] · Pr[A(G) = XOR: ◦ ,(G)|! = ℓ ]

=
∑
ℓ

Pr[! = ℓ ] · Aℓ

= E

!
[A!] .

Thus, E[A!] ≥ 1 − 2�. Recalling that ℓ is good if Aℓ ≥ 1 − 50� and using Fact 1.10, ! is bad

with probability at most
1

25
. �

Next, we claim that each good leaf is good for many 8.

Claim 2.4. Let ℓ be any good leaf, and let � be uniform on [:]. Then, we have:

Pr

�
[ℓ is bad for �] ≤ 1

25

.

THEORY OF COMPUTING, Volume 19 (11), 2023, pp. 1–14 8

http://dx.doi.org/10.4086/toc


A STRONG XOR LEMMA FOR RANDOMIZED QUERY COMPLEXITY

Proof. Fix a good leaf ℓ , and let �ℓ := Pr�[ℓ is bad for �]. Recall that if ℓ is good, then Aℓ ≥ 1− 50�.
Therefore, 0ℓ ≥ 1 − 100�. Using 1 + G ≤ 4G and 4−2G ≤ 1 − G (which holds for all 0 ≤ G ≤ 1/2),
we have for any good leaf ℓ

1 − 100� ≤ 0ℓ =
:∏
8=1

08 ,ℓ ≤
(
1 − 5000�

:

) :�ℓ
≤ 4−5000�·�ℓ ≤ 1 − 2500��ℓ .

Rearranging terms, we see that �ℓ ≤ 1

25
. �

Next, we describe a randomized algorithm A′ for , whose expected query cost, abort

probability, and error probability match the guarantees we want to provide when the input

G ∼ �. We will complete the proof of Lemma 2.1 by fixing the randomness used in A′. Our

algorithm works by independently I ∼ �: and 8 uniformly from [:], embedding G in the 8-th

coordinate of I, and emulatingA on the resulting string.

Algorithm 1A′(G)
1: Independently sample � uniformly from [:] and I ∼ �: .
2: H ← I(�←G)

3: Emulate algorithmA on input H.

4: Abort

(i) ifA aborts,

(ii) ifA reaches a bad leaf, or

(iii) ifA reaches a leaf that is bad for �.

(iv) ifA queries more than
25@

:
bits of G,

5: Otherwise, outputA(H).

Note that the emulation is possible since whenever A queries the 9-th bit of H(�), we can

query G 9 , and we can emulateA querying a bit of H(8) for 8 ≠ � directly since I is fixed. We claim

that (i)A′ makes at most
25@

:
queries, (ii)A′ aborts with probability at most � + 0.12, and (iii)

A′ errs with probability at most
5000�
:

.

First, note thatA′ makes at most
25@

:
queries, since it aborts instead of making more queries.

Second, consider the abort probability ofA′. Our algorithm aborts ifA aborts, if we reach

a bad leaf, if the leaf we reach is bad for �, of if A makes more than
25@

:
bits of H(�). Let ℰ1

be the event that A aborts on input H. Similarly, let ℰ2 , ℰ3 , ℰ4 be the events that A reaches a

bad leaf,A reaches a leaf that is bad for 8, andA queries more than
25@

:
bits of G respectively.

Since G ∼ �, I ∼ �: , and � is uniform on [:], it follows that H ∼ �: . By the abort guarantees

of A, we have Pr[ℰ1] ≤ �. By Claim 2.3 we have Pr[ℰ2 |ℰ1] ≤ 1/25, and by Claim 2.4 we have

Pr[ℰ3 |ℰ1 , ℰ2] ≤ 1/25. Thus, we have Pr[ℰ1 ∨ ℰ2 ∨ ℰ3] ≤ � + 2

25
.

Next, for each 8 ∈ [:], let @8(H) denote the number of queries that A makes to H(8) on
input H. The query cost of A guarantees that for each input H,

∑
1≤8≤: @8(H) ≤ @. Therefore,
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for any H, at most
:
25

indices 8 ∈ [:] satisfy @8(H) ≥ 25@

:
. Hence, for � ∈' [:], G ∼ �, and

I ∼ �: , and recalling that H = I(�←G)
, we have: Pr[ℰ4] ≤ 1

25
. By a union bound, we have

Pr� ,I,G[A′ aborts on input H] = Pr[ℰ1 ∨ ℰ2 ∨ ℰ3 ∨ ℰ4] ≤ � + 3

25
= � + 0.12.

Third, we analyze the error probability ofA′. This algorithm errs only when it reaches a leaf

that is good for �. By Claim 2.4, we are correct with probability at least A� ,ℓ =
1+0� ,ℓ

2
≥ 1 − 5000�

:
.

Thus, we have Pr[A′ errs] ≤ 5000�
:

.

Letting - be the indicator variable for the event thatA′ aborts and . = (� , I), Fact 1.9 gives

Pr[A′ aborts ] = E[A′ aborts ] = E

� ,I
[E[A′ aborts |� , I]] = E

� ,I
[Pr[A′ aborts ]] .

Thus algortihmA′ is a randomized algorithm that, when given an input G ∼ �, makes at most

25@

:
queries and has the following guarantees:

E

� ,I
[Pr

G
[A′ aborts]] = Pr

� ,G,I
[A′ aborts] ≤ � + 0.12, and

E

� ,I
[Pr

G
[A′(H)(�) ≠ ,(G)]] = Pr

� ,G,I
[A′(H)(�) ≠ ,(G)] ≤ 5000�

:
.

By Markov’s inequality and a union bound, there must be a setting of (8∗ , I∗) such that

PrG[A′ aborts ] ≤ 3� + 0.36 and PrG[A′(H)(8∗) ≠ ,(G)] ≤ 15000�
:

. Let A′′ be a deterministic
algorithm that takes an input G ∼ � and emulates algorithmA′ with 8∗ and I∗ in place of the

randomly sampled � , I. This algorithm queries at most
25@

:
, aborts with probability at most

3� + 0.36, and errs with probability at most
15000�
:

. Thus, it is a [$(@/:), 3� + 0.36, 15000�
:

, �]-
distributional algorithm for ,, as required. �

2.1 Proof of Theorem 1.1

Proof of Theorem 1.1. Define �′ := 30000�. Let � be the input distribution for , achieving

max� D

�
1

2
, �
′
:

(,), and let �: be the :-fold product distribution of �. By the first inequality of

Fact 1.7 and the first inequality of Fact 1.8, we have

R�(XOR: ◦ ,) ≥
1

50

R 1

50
,�(XOR: ◦ ,) ≥

1

50

D

�:

1

25
,2�
(XOR: ◦ ,) .

Additionally, by Lemma 2.1 and the second inequalities of Fact 1.7 and Fact 1.8, we have

D

�:

1

25
,2�
(XOR: ◦ ,) ≥

:

120

D

�
1

2
, �
′
:

(,) ≥ :

120

R 2

3
, 4�
′
:
(,) ≥ :

360

R 12�′
:
(,) .

Thus, we have R�(XOR: ◦ ,) = Ω
(
D

�:

1

25
,2�
(XOR: ◦ ,)

)
and D

�:

1

25
,2�
(XOR: ◦ ,) = Ω

(
: R 12�′

:
(,)

)
. By

standard success amplification R 12�′
:
(,) = Θ(R �

:
(,)). Putting these together yields

R�(XOR: ◦ ,) = Ω
(
D

�:

1

25
,2�
(XOR: ◦ ,)

)
= Ω

(
: R 12�′

:
(,)

)
= Ω

(
R �

:
(,)

)
,
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hence R�(XOR: ◦ ,) = Ω
(
: R �

:
(,)

)
completing the proof. �
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