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Abstract. We show how to distinguish circuits with log : negations (a.k.a. :-

monotone functions) from uniformly random functions in exp

(
$̃

(
=1/3:2/3) )

time

using random samples. The previous best distinguisher, due to the learning

algorithm by Blais, Canonne, Oliveira, Servedio, and Tan (RANDOM’15), requires

exp

(
$̃(=1/2:)

)
time.

Our distinguishers are based on Fourier analysis on slices of the Boolean cube. We

show that some “middle” slices of negation-limited circuits have strong low-degree

Fourier concentration and then we apply a variation of the classic Linial, Mansour,

and Nisan “Low-Degree algorithm” (JACM’93) on slices. Our techniques also lead

to a slightly improved weak learner for negation-limited circuits under the uniform

distribution.
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1 Introduction

One significant goal in the area of cryptography is to understand how simple cryptography can

be. This motivates the study of low complexity cryptography which explores the possibility

of implementing cryptographic primitives in low complexity classes. This line of research

inherently lies at the intersection of computational complexity and cryptography. It links core

problems in both areas and has become an essential source of new perspectives for both areas.

In this work, we continue this line of research and focus on pseudorandom functions (PRFs) in
negation-limited computation. We start by introducing pseudorandom functions and negation-

limited computation before connecting them to explain the main motivation of our work.

Pseudorandom functions. Pseudorandom functions (PRFs) [12] are fundamental primitives

in symmetric cryptography. In particular, they yield direct solutions to most central goals of

symmetric cryptography, such as encryption, authentication and identification. They are well

studied in the theoretical community and widely used in practice.

As lightweight (computationally limited) devices become popular, the efficiency of cryp-

tographic implementations also becomes increasingly significant. To obtain a better tradeoff

between efficiency and security, a weaker notion of PRFs called weak pseudorandom functions
(See Definition 1.1) has been considered. A distinguisher for a family of weak PRFs aims to

distinguish a random member of the family from a truly random function after observing

a number of random samples (G1 , 5B(G1)), . . . , (G< , 5B(G<)) where G1 , . . . , G< are independent

uniformly random strings from {0, 1}= and 5B : {0, 1}= → {0, 1} is the function in question.

Weak PRFs suffice formany key applications such as encryption and authentication in symmetric

cryptography. More importantly, weak PRFs may allow for significant gains in efficiency. Akavia

et al. [1] pointed out weak PRFs have the potential to bypass the limitations of PRFs in low

depth circuits. In particular, they provided candidate weak PRFs in a class of low depth circuits

where PRFs provably cannot exist. This raises the following natural questions.

Can weak PRFs bypass the limitations of PRFs in other low complexity classes?

Besides cryptography, another important motivation for the study of low complexity PRFs

comes from explaining the difficulties of obtaining circuit lower bounds and learning algorithms.

We refer interested readers to the survey by Bogdanov and Rosen [7].

Negation-limited computation. The power of negations is a mystery in complexity theory. One

of the main difficulties in proving lower bounds on circuit size using AND, OR, NOT gates

is the presence of negation gates: the best such lower bound is linear, whereas if no negation

gates are allowed, exponential lower bounds are known [23, 3, 2, 26, 4, 16]. In 1958, Markov [20]

observed that every Boolean (even multiple-output) function of = variables can be computed by

a circuit with only log = negation gates. In other words, the exponential gap between monotone

computation and non-monotone computation exists due to as few as log = negations.

Besides circuit complexity, the divide between monotone and non-monotone computation

exists in general: while we usually have a fairly good understanding of the monotone case,

many things may fail to hold when negation gates are allowed. Aiming at bridging the gap
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between monotone and non-monotone computation, a body of recent work studies negation-

limited computation from multiple angles including learning [5], cryptography [15], Boolean

formulas [14, 24], property testing [8, 13], Boolean function conjectures [18]. Although the

above works extend many results in monotone cases to as many as $(log =) negations, they
also leave open several surprisingly basic questions about a single negation ranging from weak

learning algorithms to the structure of their Fourier spectrum. More surprisingly, in the context

of property testing, a single negation can be exponentially harder than the monotone case [8, 13].

Our understanding of a single negation remains largely a mystery.

When the circuit size is not of interest, the classes of circuits with log : negations are captured

by the class of so-called :-monotone functions where each function in the family can be written

as the parity of : monotone functions (see Section 2.2). To simplify the presentation, we will use

:-monotone functions instead of circuits with log : negations in some of our discussions.

PRFs in negation-limited computation. Can pseudorandom functions be computed by a few

negations? For pseudorandom functions, we have a fairly good understanding. Guo et al. [15]

showed that PRFs are inherently highly non-monotone and require log =−$(1) negations, which

is optimal up to an additive constant. However, the answer to weak PRFs is unsatisfying. Guo

et al. [15] observed that weak PRFs cannot be monotone due to the weak learner for monotone

functions by Blum et al. [6]. For general :, the best distinguisher, due to Blais et al. [5], runs in

time =$(:
√
=)
. Therefore even for a single negation (i. e., : = 2), the best distinguisher runs in

time =$(
√
=)
.

The above results demonstrate two strong separations. In negation-limited computation,

weak PRFs have the potential to be much simpler than PRFs: for all we know, even a single

negation may have =Ω(
√
=)
hardness whereas PRFs cannot exist. From the angle of weak PRFs,

the hardness gap between even a single negation and monotone could be as large as =Ω(
√
=)
.

These separations are our main motivation to connect them together to study negation-limited

weak PRFs.

1.1 Our results

Before presenting our main results, we define weak pseudorandom functions and weak learning
under uniform distribution.

Definition 1.1 (Weak pseudorandom functions). Let ( be a distribution over {0, 1}< and

{�B : {0, 1}= → {0, 1}} be a family of functions indexed by string B in the support of (. We say

that {�B} is a family of (2, &)-secure weak pseudorandom functions (wPRFs) if for every Boolean

circuit � of size at most 2, ����Pr

B
[��B

accepts] − Pr

'
[�'

accepts]
���� ≤ �, (1.1)

where B is distributed according to (, ' is a function sampled uniformly at random from the set

of all functions from {0, 1}= to {0, 1}, and �ℎ
denotes the execution of � with random oracle

access to a Boolean function ℎ : {0, 1}= → {0, 1}. In other words, the distinguisher �ℎ
only has
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access to random examples of the form (G, ℎ(G))where G is uniformly distributed over {0, 1}= .
The two probabilities in Equation (1.1) are both also over the random samples G.

Definition 1.2 (Weak learning under the uniform distribution). We say that an algorithm �

weakly learns a family ℱ of Boolean functions under the uniform distribution, if given any

5 ∈ ℱ it accesses pairs (G, 5 (G))where G is picked from {0, 1}= uniformly at random, and then

outputs a hypothesis ℎ such that with high probability (over the random samples and the

randomness of �)

Pr

G∼*{0,1}=

[
5 (G) ≠ ℎ(G)

]
≤ 1

2

− 1

poly(=) (1.2)

where*{0,1}= is the uniform distribution over {0, 1}= .

A weak learner works slightly better than random guessing. But from this small advantage, if

it is non-negligible, one can naturally derive an efficient distinguisher against a random function.

Any weak learner explicitly gives an attack on candidate families of weak pseudorandom

functions. Conversely, families of weak pseudorandom functions are hard to learn. Our main

result is new distinguishers for negation-limited families of weak pseudorandom functions.

Our results hold for inefficient circuits and are stated in terms of :-monotone functions.

Theorem 1.3. Any family of :-monotone functions can be distinguished from uniformly random
functions in exp

(
$(=1/3(: log =)2/3)

)
time. In other words, any family of :-monotone functions is not

a
(
exp

(
$(=1/3(: log =)2/3)

)
, 1/3

)
-secure weak pseudorandom family.

The previous best distinguisher for :-monotone weak PRFs is the learning algorithm by

Blais et al. [5] which runs in exp

(
$(=1/2: log =)

)
time. Our result improves this bound by an

Ω
(
=1/6(: log =)1/3

)
factor in the exponent.

Theorem 1.3 implies that exponentially secure weak PRFs require log = − $(log log =)
negations, which is optimal up to an additive $(log log =) term. Therefore, weak PRFs cannot

bypass the limitations of PRFs in terms of achieving exponential security.

Theorem 1.3 also implies that 1-negation functions can be distinguished in

exp

(
$(=1/3

log
2/3 =)

)
time. Therefore, unlike testing 1 negation (using 1-sided non-adaptive

tester) [13] and learning 1 negation to high accuracy [5], distinguishing 1 negation does not

suffer from the exp(
√
=) barrier.

It is natural to ask if we can leverage the distinguisher to a learning algorithm. Our second

result gives weak learning algorithms for :-monotone functions under the uniform distribution.

Theorem 1.4. :-monotone functions are weakly learnable in time exp

(
$

(
:
√
= log =

) )
.

Our result slightly improves the previous best weak learner due to Blais et al. [5], by a

Ω
(√

log =
)
factor in the exponent.

We conjecture that both Theorem 1.3 and Theorem 1.4 are not tight. However, we believe

that any further improvement of our results, even for a single negation, requires completely
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new techniques or proving rather hard conjectures which seem out of reach. See Section 6 for

more details.

Our techniques. Blais et al. [5] showed a Fourier concentration of :-monotone functions on

low degree monomials, by bounding the total influence of :-monotone functions. Then they

apply the “Low-Degree Algorithm” established by Linial, Mansour, and Nisan [19] to learn

:-monotone functions. One natural idea to improve their learning algorithm is to show Fourier

concentration on lower levels. However, their influence bound is tight and even for monotone

functions, we cannot show concentration bound on fewer than Ω(
√
=) levels [9], which will

require at least =Ω(
√
=)
time by applying the “Low-Degree Algorithm”.

Our main technique is using Fourier analysis on slices [10, 25]. Although the Fourier

concentration on the Boolean cube cannot be improved, we show some “middle” slices of

:-monotone functions can have much stronger Fourier concentration. Then by adapting the

“Low-Degree Algorithm” to the slices, we obtain a distinguisher with significantly improved

running time. Our weak learner is a simple variant of the “Low-Degree Algorithm” on slices.

Fourier analysis on slices has a notion of total influence which allows us to show Fourier

concentration on a slice in a similar way. We give an upper bound on the sum of total influences

for all “middle” slices of any :-monotone function. It implies the existence of a “middle” slice

function with small total influence, and therefore good concentration. Then we optimize the

number of “middle” slices to be analyzed to get an efficient algorithm.

Organization of the paper. We begin with basic notation in Section 2, then present the structural

results for :-monotone functions in Section 3. In Sections 4 and 5, we present the distinguisher

and the weak learner, respectively.

2 Preliminaries

2.1 Notation, terminology: sets, strings, slices

In this paper, all the logarithms are base 2.

As usual, for = ∈ ℕ we write [=] = {1, 2, . . . , =}. The set of :-subsets (subsets of size :) of
[=] is denoted

([=]
:

)
.

We refer to the set {0, 1}= as the =-dimensional Boolean hypercube; its elements are the

(0, 1)-strings of length =. For 0 ≤ A ≤ =, the A-slice of the =-cube is the set

{(G1 , . . . , G=) ∈ {0, 1}= :

∑
8

G8 = A} . (2.1)

We identify subsets � ⊆ [=]with their indicator strings G� = (G1 , . . . , G=) defined by

G8 =

{
1 if 8 ∈ �
0 if 8 ∉ � .

(2.2)

With this identification, the A-slice of the =-dimensional Boolean hypercube becomes identical

with the set

([=]
A

)
.
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2.2 Alternating number, negation complexity, :-monotone functions

For any two strings G, H ∈ {0, 1}= , we say G ≺ H (or H � G) if G ≠ H and G8 ≤ H8 for all 8 ∈ [=].
A chain - = (G1 , G2 , . . . , Gℓ ) of length ℓ is an increasing sequence of strings in {0, 1}= where

G 8 ≺ G 8+1
for 8 ∈ [ℓ − 1]. For a Boolean function 5 : {0, 1}= → {0, 1}, we define the alternating

number of 5 on chain - to be the number of value flips on this chain:

0( 5 , -) =
���{8 ∈ [ℓ − 1] : 5 (G 8) ≠ 5 (G 8+1)}

��� . (2.3)

Let C be the set of all chains on {0, 1}= , the alternating number of 5 is

0( 5 ) = max

-∈C
0( 5 , -). (2.4)

Note that the alternating number of a monotone function is no more than 1.

A celebrated result of Markov connects the alternating number of a Boolean function 5 to

the negation complexity N( 5 ) – the minimum number of negation gates required in any Boolean

AND − OR circuits to compute 5 .

Theorem 2.1 (Markov’s Theorem [20]). Let 5 : {0, 1}= → {0, 1} be a function which is not identically
0 with 5 (0=) = 0, then N( 5 ) = dlog(0( 5 ) + 1)e − 1.

Blais et al. [5] showed decomposition for functions with low alternating number [5].

Theorem 2.2 (Theorem 1.1 in [5]). Let 5 be a :-alternating function, then 5 (G) = ℎ(<1(G), . . . , <:(G))
where <8(G) is monotone and h is the parity function or its negation. Conversely, any function of this
form is :-alternating.

The above characterization shows a simple structure for functions with a low alternating

number, which are computable by few negation gates. To simplify notation, we will focus on

the parity of few monotone functions.

Definition 2.3 (:-monotone function). A function 5 : {0, 1}= → {0, 1} is said to be :-monotone,

if there exist : monotone functions ,1 , ,2 , . . . , ,: such that 5 = ,1 ⊕ ,2 ⊕ · · · ⊕ ,: .

2.3 Orthogonal basis for functions over a slice

Given a subset of the A-slice, � ⊆
([=]
A

)
, denote its density in this slice by �(�), i. e., �(�) = |�|/

(=
A

)
.

Define its upper shadow as

%+� :=

{
G ∈

(
[=]
A + 1

)
: G � H for some H ∈ �

}
(2.5)

and its lower shadow as

%−� :=

{
G ∈

(
[=]
A − 1

)
: G ≺ H for some H ∈ �

}
. (2.6)
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Filmus [10] and Srinivasan [25] independently introduced an orthogonal basis for functions

over a slice

([=]
A

)
of the Boolean hypercube, which plays a central role in our proofs. Now we

describe the explicit formula provided by Filmus [10] (see also Section 9.2 in [11]).

Definition 2.4. For 3 ≤ =/2, define a ℬ=,3-sequence to be a sequence � = 11 , 12 , · · · , 13 where (i)

all 11 , · · · , 13 belong to [=], (ii) 11 < 12 < · · · < 13, and (iii) 18 ≥ 28 for any 1 ≤ 8 ≤ 3. We will

also use ℬ=,3 to denote the set of all ℬ=,3-sequences.
Given � ∈ ℬ=,3, define T (�) to be the set consisting of all sequences � = 01 , 02 , · · · , 03 of 3

distinct elements of [=] satisfying that (i) {01 , · · · , 03} ∩ {11 , · · · , 13} = ∅ and (ii) 08 < 18 for all 8.

Furthermore, we define

"� =
∑

�∈T (�)

3∏
8=1

(G08 − G18 ). (2.7)

Theorem 2.5 (Theorem 15 in [10]). Let A ≤ =/2 be an integer, the set {"� : � ∈ ℬ=,3 for some 3 ≤ A}
is an orthogonal basis for the vector space of functions over the slice

([=]
A

)
. The Young-Fourier expansion

of 5 :

([=]
A

)
→ ℝ is the unique representation

5 =
∑

�∈ℬ=,3 , 3≤A
5̂ (�)"� , (2.8)

where 5̂ (�) = 〈 5 ,"�〉‖"� ‖2
2

. Here 〈 5 , ,〉 := EG∼*[ 5 (G),(G)]. In addition for � ∈ ℬ=,3,

1. ‖"�‖2
2
=

∏3
8=1

(18−2(8−1))(18−2(8−1)−1)
2

· 23 A
3(=−A)3
=23 = =$(3). In particular, if A ≥ =

4
and 3 = >(=),

then ‖"�‖2
2
= 2
−$(3). Here, A3 =

∏3−1

8=0
(A − 8).

2. ‖"�‖∞ ≤
∑
�∈T (�) ‖"�,�‖∞ = =$(3).

By Boolean duality, we can extend the above Young-Fourier expansion to where A > =/2
naturally. This can be done by replacing the basis {"�(G)} by {"�̄(G) := "�(Ḡ)} where Ḡ is

obtained by flipping all bits of G.

Corollary 2.6. Let A > =/2 be an integer, the set {"�̄(G) : � ∈ ℬ=,3 for some 3 ≤ =− A} is an orthogonal
basis for the vector space of functions over the slice

([=]
A

)
. The Young-Fourier expansion of 5 :

([=]
A

)
→ ℝ

is the unique representation
5 =

∑
�∈ℬ=,3 , 3≤=−A

5̂ (�)"�̄ , (2.9)

where 5̂ (�) = 〈 5 ,"�̄〉‖"�̄ ‖22
. In addition, we have ‖"�̄‖22 = ‖"�‖22 and ‖"�̄‖∞ = ‖"�‖∞.

Like for functions over the Boolean hypercube, we can define the total weight on level 3:
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Definition 2.7. Let 5 :

([=]
A

)
→ ℝ, for any A ≤ =, define

W3( 5 ) =
∑
�∈ℬ=,3

5̂ (�)2‖"�‖2
2
, (2.10)

and denote W>3( 5 ) = ∑
3′>3 W3

and W≤3( 5 ) = ∑
3′≤3 W3

.

Definition 2.8. Let 5 :

([=]
A

)
→ {±1}. For 8 , 9 ∈ [=], define the influence of 5 on the pair (8 , 9) as

I8 9[ 5 ] = 2 Pr[ 5 (G(8 , 9)) ≠ 5 (G)]. (2.11)

Here G(8 , 9) is obtained by switching G8 and G 9 . The total influence of 5 is

I[ 5 ] = 1

=

∑
1≤8< 9≤=

I8 9[ 5 ]. (2.12)

Lemma 2.9 (Proposition 3.1 in [22]). Let 5 :

([=]
A

)
→ {±1} and � = {G ∈

([=]
A

)
: 5 (G) = −1}, then

min{�(%+�), �(%−�)} ≥ �(�) + =

4A(= − A) · I[ 5 ] ≥ �(�) + 1

=
I[ 5 ]. (2.13)

Theorem 2.10 (Lemma 24 in [10]). Let 5 :

([=]
A

)
→ {±1}. Then

I[ 5 ] =
∑

3≤min(A,=−A)

3(= + 1 − 3)
=

·W3 =
∑

�∈ℬ=,3 ,3≤min(A,=−A)

3(= + 1 − 3)
=

· 5̂ (�)2‖"�‖2
2
. (2.14)

In addition, according to Parseval’s identity,∑
3

W3 =
∑

�∈ℬ=,3 ,3≤min(A,=−A)
5̂ (�)2‖"�‖2

2
= ‖ 5 ‖2

2
= 1. (2.15)

2.4 Basic inequalities

Finally, we will make use of the Hoeffding bound.

Theorem 2.11 (Hoeffding Bound, Theorem 2 in [17]). Let - =
∑=
8=1
-8 , where -8 ∈ [08 , 18] are

independent random variables. Then for any � > 0,

Pr(|- − E(-)| ≥ �) ≤ 2 exp

(
− 2�2

Σ8(18 − 08)2

)
. (2.16)

Corollary 2.12. Let - be a random variable with distributionD whose range is [; , D]. Let -1 , . . . , -<
be its independent samples. Then w.p. ≥ 1 − �, for any & > 0,������ 1

<

<∑
8=1

-8 − E(-)

������ ≤ & (2.17)

as long as < ≥ (D − ;)2 log(2/�)/(2&2).
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The following fact will also be used.

Proposition 2.13. For C = >(=) we have
( =
=/2−C/2

)
/2= = 1√

=
· 2−Θ(C2/=).

Proof. By Stirling’s approximation,

log

(
=

=/2 − C/2

)
= log(1 + >(1)) + log

√
=

2�(=/2 − C/2)(=/2 + C/2) + = · �
(
=/2 − C/2

=

)
, (2.18)

where �(?) = −? log ? − (1 − ?) log(1 − ?) is the binary entropy function. As C/2= = >(1), by the

Taylor expansion of the entropy function around 1/2, we have

�

(
1

2

− C

2=

)
= 1 − 1 + >(1)

2 ln 2

(
C

=

)
2

. (2.19)

The conclusion follows immediately. �

3 Concentration property of :-monotone functions

In the rest of this paper, for a function 5 : {0, 1}= → {0, 1}, we convert the range to {±1}. The
mapping from {0, 1} to {−1, 1} is given by 1 − 21, sending 0 to 1 and 1 to −1. So a function

5 : {0, 1}= → {±1} is said to be :-monotone if (1 − 5 )/2 is :-monotone.

In this section, we show that some “middle” slice of a :-monotone function has Fourier

concentration. For functions 5 : {0, 1}= → {±1}, let 5 |A be the subfunction of 5 restricted to

([=]
A

)
and �( 5 |A) := �( 5 |−1

A (−1)).

Definition 3.1 ((C , 3, &)-concentration). We say 5 : {0, 1}= → {±1} is (C , 3, &)-concentrated if the

following holds: for some A such that =/2 − C/2 ≤ A ≤ =/2 + C/2,

W>3( 5 |A) =
∑

�∈ℬ=,3′ :3′>3
5̂ |A(�)2‖"�‖2

2
< &. (3.1)

Intuitively, 5 has low-degree Fourier concentration on at least one of the middle slices.

Lemma 3.2. Let 5 : {0, 1}= → {±1} be a :-monotone function. For any 1 < C ≤ = and any 3, & such
that 3& ≥ 2:=/C, we have that 5 is (C , 3, &)-concentrated.

Lemma 3.2 follows from an upper bound on the sum of total influences on slices.

Proposition 3.3. Let 5 : {0, 1}= → {±1} be a :-monotone function. Then
∑=−1

A=0
I[ 5 |A] ≤ :=.

We first prove Lemma 3.2 using Proposition 3.3.
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Proof of Lemma 3.2. By contradiction, we assume that W>3( 5 |A) > & ≥ 2:=
3C

for any =/2 − C/2 ≤
A ≤ =/2 + C/2. According to Proposition 3.3, we have

∑b=/2+C/2c
A=d=/2−C/2e I[ 5 |A] ≤ :=. By averaging, let

=/2 − C/2 ≤ A ≤ =/2 + C/2 be such that I[ 5 |A] ≤ :=/C. By Theorem 2.10, we can deduce that,

:=

C
≥ I[ 5 |A] =

∑
3′≤min(A,=−A)

3′(= + 1 − 3′)
=

·W3′( 5 |A) (3.2)

≥
∑

3<3′≤min(A,=−A)

3′(= + 1 − 3′)
=

·W3′( 5 |A) (3.3)

≥ 3(= + 1 − 3)
=

·
∑

3<3′≤min(A,=−A)
W3′( 5 |A) (3.4)

>
3

2

· & ≥ 3

2

· 2:=
3C
≥ :=

C
, (3.5)

a contradiction. �

Now we prove Proposition 3.3.

Proof of Proposition 3.3. Suppose 5 is the parity of ℎ1 , · · · , ℎ: where each ℎ8 is monotone. For any

A, when we switch G8 and G 9 , 5 |A(G) changes only if at least one ℎ8 |A(G) changes for 8 = 1, 2, . . . , :.

Thus, combining with the union bound, we have

I[ 5 |A] ≤
:∑
8=1

I[ℎ8 |A]. (3.6)

Since ℎ8 is monotone, the upper shadow of ℎ8 |−1

A (−1) is a subset of ℎ8 |−1

A+1
(−1). Then according

to Lemma 2.9, we have

�(ℎ8 |A+1) ≥ �(ℎ8 |A) +
1

=
�(ℎ8 |A), (3.7)

which implies

1

=

=−1∑
A=0

I[ℎ8 |A] ≤ �(ℎ8 |=) − �(ℎ8 |0) ≤ 1. (3.8)

Equation (3.6) and Equation (3.8) imply the desired conclusion. �

4 Distinguishers for :-monotone functions

In this section, we prove the following theorem.

Theorem 1.3. Any family of :-monotone functions can be distinguished from uniformly random
functions in exp

(
$(=1/3(: log =)2/3)

)
time. In other words, any family of :-monotone functions is not

a
(
exp

(
$(=1/3(: log =)2/3)

)
, 1/3

)
-secure weak pseudorandom family.
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Algorithm 1: A Distinguisher for (C , 3, 1/2)-Concentrated Functions

1 Let � be a large enough constant;

2 for A ← d =
2
− C

2
e to b =

2
+ C

2
c do

3 (← 0;

4 for � ∈ ℬ=,3′ with 3′ ≤ 3 do
5 if A ≤ =/2 then
6 Estimate 〈 5 |A , "�〉 with accuracy =−�·3;

7 (← ( + 5̂ |A(�)2‖"�‖2
2
;

// 5̂ |A(�)2‖"�‖2
2
= 〈 5 |A , "�〉2/‖"�‖2

2

8 else
9 Estimate 〈 5 |A , "�̄〉 with accuracy =−�·3;

10 (← ( + 5̂ |A(�̄)2‖"�̄‖22;
// 5̂ |A(�)2‖"�̄‖22 = 〈 5 |A , "�̄〉2/‖"�̄‖22

11 if ( ≥ 3/8 then
12 Return True;

13 Return False;

We prove this theorem by giving a distinguisher for (C , 3, 1/2)-concentrated functions.

Proposition 4.1. For C ≤ =/4 and 3 = >(=/log =), any family of (C , 3, 1/2)-concentrated functions can
be distinguished from uniform random functions in 2

$(3 log =+C2/=) time.

By Lemma 3.2, every :-monotone function is

(
(:=2

log =)1/3 , 4
(
:2=

log =

)
1/3
, 1/2

)
-concentrated,

then Theorem 1.3 follows. Now we prove the proposition.

Proof. The distinguisher is given in Algorithm 1. We will show that

• (Soundness) It accepts a uniform random function w.p. >(1);

• (Completeness) It accepts any (C , 3, 1/2)-concentrated function w.p. 1 − >(1);

• (Complexity) Its sample/time complexity is 2
$(3 log =+C2/=)

.

Soundness. Let 5 be a uniform random function. We claim that for each
=
2
− C

2
≤ A ≤ =

2
+ C

2
,

the variable ( in Line 11 is at most 1/4 w.p. 1 − >( 1= ), which concludes the soundness by the

union bound.

Fix such an A. W.l.o.g., we assume that A ≤ =/2. For any � ∈ ℬ=,3′ where 3′ ≤ 3, it is easily
seen that E 5

[
〈 5 |A , "�〉

]
= 0, then by the Hoeffding bound,

Pr

5

[��〈 5 |A , "�〉�� ≥ �
]
≤ 2 exp

(
−2�2

(
=

A

)/
‖"�‖2

2

)
≤ 2 exp

(
−�2

(
4

3

)=/4−>(=))
, (4.1)
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where the last inequality is due to that

(=
A

)
≥ ( =A )A ≥ ( 43 )=/4 and ‖"�‖22 = 2

$(3 log =) = (4
3
)>(=). In

particular, by letting � =
(

3

4

)=/10

and using the union bound, we have that with probability at

least 1− =$(3) · exp

(
−�2

(
4

3

)=/4−>(=))
= 1− >( 1= ),

��〈 5 |A , "�〉�� < � for every � ∈ ℬ=,3′ where 3′ ≤ 3.

Thus, w.p. 1 − >( 1= ),

W≤3[ 5 |A] =
∑

�∈ℬ=,3′ ,3′≤3
5̂ |A(�)2‖"�‖2

2
=

∑
�∈ℬ=,3′ ,3′≤3

〈 5 |A , "�〉2

‖"�‖2
2

≤
∑

�∈ℬ=,3′ ,3′≤3

�2

‖"�‖2
2

≤ 1

8

, (4.2)

where the last inequality holds for sufficiently large =. Finally, ( is an estimate of W≤3[ 5 |A] with

additive error =−Ω(3).

Completeness. Let 5 be a (C , 3, 1/2)-concentrated function. By definition, there is some A

such that =/2 − C/2 ≤ A ≤ =/2 + C/2 and,≤3[ 5 |A] > 1/2. As ( is an estimate of W≤3[ 5 |A]with

additive error =−Ω(3), we conclude that Algorithm 1 accepts 5 with high probability.

Complexity. The loop in Line 2 is repeated at most C times. In Line 4, the number of strings

� ∈ ℬ=,3′ with 3′ ≤ 3 we enumerated is at most =$(3). Furthermore, for each =/2 − C/2 ≤ A ≤
=/2 + C/2 and each � ∈ ℬ=,3′ with 3′ ≤ 3, according to the Hoeffding bound, =$(3) uniform

random samples on the slice

([=]
A

)
are sufficient to estimate 〈 5 |A , "�〉 with accuracy =−�·3. In

addition, a random uniform sample is from the slice

([=]
A

)
with probability

(=
A

)
/2= , which is

1√
=
· 2−$(C2/=) according to Proposition 2.13. Thus, the total number of random samples used is

at most C · =$(3) · =$(3) · 2$(C2/=) = 2
$(3 log =+C2/=)

.

Besides, the function "� =
∑
�∈T (�) "�,� can be computed by enumerating all =$(3) strings �

in T (�). Thus, the time complexity is also 2
$(3 log =+C2/=)

. �

5 Weak learners for :-monotone functions

In this section, we prove the following theorem.

Theorem 1.4. :-monotone functions are weakly learnable in time exp

(
$

(
:
√
= log =

) )
.

We prove Theorem 1.4 by giving a weak learner for (C , 3, 1/2)-concentrated functions. By

Lemma 3.2, :-monotone functions are

(√
= log =, 4:

√
=

log =
, 1/2

)
-concentrated, then Theorem 1.4

follows.

Proposition 5.1. For C = $(
√
= log =) and 3 = >(=/log =), Algorithm 2 weakly learns (C , 3, 1/2)-

concentrated functions in 2
$(3 log =+C2/=) time.
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Algorithm 2: A weak learner for (C , 3, 1/2)-concentrated functions

1 Let � be a large enough constant;

2 for A ← =
2
− C

2
to =

2
+ C

2
do

3 (← 0;

4 ? ← 1;

5 for � ∈ ℬ=,3′ with 3′ ≤ 3 do
6 if A ≤ =/2 then
7 Estimate 〈 5 |A , "�〉 with accuracy =−�·3;

8 (← ( + 5̂ |A(�)2‖"�‖2
2
;

9 else
10 Estimate 〈 5 |A , "�̄〉 with accuracy =−�·3;

11 (← ( + 5̂ |A(�)2‖"�̄‖22;

12 if ( ≥ 3/8 then
13 if A ≤ =/2 then
14 ,(G) ← ∑

�∈ℬ=,3′ :3′≤3 5̂ |A(�)"�(G);
15 else
16 ,(G) ← ∑

�∈ℬ=,3′ :3′≤3 5̂ |A(�)"�̄(G);

17 while ? >
√

3/4 do
18 Pick � ∈ [−1, 1] uniformly at random;

19 Estimate ? ← Pr[ 5 |A ≠ sign(, − �)];
20 Estimate �≠A ← EG[ 5 (G) | |G | ≠ A];

21 Return ℎ(G) =
{

sign(,(G) − �) if |G | = A;
sign(�≠A) if |G | ≠ A.

22 Return ℎ(G) ≡ 0.

To learn (C , 3, 1/2)-concentrated functions 5 , Algorithm 2 tries to find out the slice

([=]
A

)
on which 5 |A is concentrated, and then figures out a function , :

([=]
A

)
→ ℝ which is very

close to 5 |A . To convert the approximated function , to a Boolean-valued function, we can

utilize Claim 5.2 similar to Exercise 3.34 in [21]. For the rest of the slices, the learner just

outputs the most frequent value. Since C = $(
√
= log =), each slice in [=/2 − C/2, =/2 + C/2]

is at least a
1√
=
· 2−$(C2/=) = 1/poly(=) fraction according to Proposition 2.13. Hence we get a

(1/2 − 1/poly(=))-close function ℎ.

Proof of Proposition 5.1. We first show that Algorithm 2 weakly learns (C , 3, 1/2)-concentrated
functions. Let 5 be a (C , 3, 1/2)-concentrated function. For each =/2 − C/2 ≤ A ≤ =/2 + C/2, the
variable ( in Line 12 is an estimate of W≤3[ 5 |A] with additive error =−Ω(3). Then for some A, the
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condition ( ≥ 3/8 in Line 12 holds, and Algorithm 2 executes Lines 13-21. For the function ,
obtained in Line 14 or Line 16, and sufficiently large =,

| | 5 |A − , | |1 ≤ || 5 |A − , | |2 =
√ ∑
�∈ℬ=,3′ ,3′≤3

( 5̂ |A(�) − ,̂(�))2‖"�‖2
2
+,>3[ 5 |A] ≤

√
>(1) + 5/8 ≤

√
3/2.

To convert , to a Boolean-valued function, we utilize the following claim.

Claim 5.2. Suppose 5 :

([=]
A

)
→ {−1, 1} and , :

([=]
A

)
→ ℝ. Pick � ∈ [−1, 1] uniformly at random and

define ,′ = sign

(
,(G) − �

)
, we have E�

[
PrG

(
5 (G) ≠ ,′(G)

) ]
≤ ‖ 5 − ,‖1/2.

Proof. By rewriting the last formula and swapping the expectation operators, we have

E
�

[
Pr

G

(
5 (G) ≠ ,′(G)

) ]
= E

�
E
G

[
1 5 (G)≠,′(G)

]
= E

G
E
�

[
1 5 (G)≠,′(G)

]
= E

G

[
Pr

�

(
5 (G) ≠ sign(,(G) − �)

) ]
≤ E

G

[ | 5 (G) − ,(G)|
2

]
=
‖ 5 − ,‖1

2

. �

Thus, for a random � ∈ [−1, 1], Pr

[
5 |A(G) ≠ sign(,(G) − �)

]
≤
√

3/4 holds with a constant

probability. That is, with high probability, the loop of Lines 17-19 is repeated a constant number

of times, and we will get a �★ such that Pr

[
5 |A(G) ≠ sign(,(G) − �★)

]
≤
√

3/4. Finally, we have

Pr[ℎ(G) ≠ 5 (G)] (5.1)

=Pr[|G | ≠ A]Pr[ 5 (G) ≠ sign(�≠A) | |G | ≠ A] + Pr[|G | = A]Pr

[
5 |A(G) ≠ sign(,(G) − �★)

]
(5.2)

≤
(
1 −

(=
A

)
2
=

)
· 1

2

+
(=
A

)
2
=
·
√

3

4

=
1

2

+
(=
A

)
2
=
·
(√

3

4

− 1

2

)
(5.3)

=
1

2

−
(
1

2

−
√

3

4

)
· 1√

=
· 2−$(C2/=) = 1

2

− 1

poly(=) , (5.4)

where the penultimate equality is according to Proposition 2.13 and the last equality is due to

the assumption that C = $(
√
= log =).

What remains is to show that Algorithm 2 terminates in 2
$(3 log =+C2/=)

time. First, as shown

in the analysis of Algorithm 1, for each =/2 − C/2 ≤ A ≤ =/2 + C/2, it costs 2
$(3 log =+C2/=)

time

to execute Lines 5-11. For some A, Algorithm 2 would execute Lines 13-21. As shown above,

the loop of Lines 17-19 is repeated a constant of times. So, it costs 2
$(3 log =+C2/=)

time to execute

Lines 13-21. Therefore the total time complexity is C · 2$(3 log =+C2/=) = 2
$(3 log =+C2/=)

. �

6 Discussion and open problems

Fourier analysis on slices. It is surprising to us that a simple variant of the “Low-Degree

Algorithm” on slices can outperform the classic “Low-Degree Algorithm” in terms of attacking
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negation-limitedweak PRFs. To the best of our knowledge, unlike Fourier analysis on the Boolean

cube, Fourier analysis on slices has not been explored in cryptography. It is a very interesting

direction to use this technique to attack more cryptographic constructions, particularly ones

which are secure against attacks based on standard Fourier analysis.

The hardness of 1-negation weak PRFs. One of the most intriguing open problems is how

hard can 1-negation weak PRFs be? Our bound suggests that, unlike testing 1 negation (using a

1-sided non-adaptive tester) [13] and learning 1 negation to high accuracy [5], distinguishing 1

negation is significantly more efficient than 2
$(
√
=)
. Can we have polynomial time distinguishers?

We believe that new structural results of 2-monotone functions are required for polynomial time

distinguishers.

Fourier spectrum of :-monotone functions on low levels. It is a basic fact [21] that every

monotone function 5 : {0, 1}= → {−1, 1} has a large Fourier coefficient on the first two levels.

Does a similar statement hold for :-monotone functions? We are particularly interested in

and focus on the case when : = >(=). On one hand, there exist :-monotone functions 5 (e.g.,

5 = G1 ⊕ · · · ⊕ G:) such that max|( |≤:−1
| 5̂ (()| = 0. Second, the minimum max|( |≤: | 5̂ (()| among

all :-monotone functions that we are aware of so far is about

(
ln(=/:)
=/:

) :
=

(
:
=

)$(:)
, which is

achieved by the parity of : Tribes=/: functions on disjoint variables. So we are curious about the

following conjectures.

Conjecture 6.1 (Rocco Servedio, 2014). For : = >(=) and any :-monotone function 5 : {0, 1}= →
{−1, 1}, there exists a set ( ⊆ [=] of size at most : such that | 5̂ (()| =

(
:
=

)$(:)
.

If Conjecture 6.1 is true, then applying “Low-Degree Algorithm” on the Boolean cube [19],

we can distinguish :-monotone functions from uniformly random functions in (=/:)$(:) time.

When : is constant, it also leads to a polynomial timeweak learner. We conjecture (=/:)Θ(:) is the
correct bound of distinguishers, specifically, there exists a

(
(=/:)Θ(:) , 1/3

)
-secure :-monotone

weak pseudorandom family.

In fact, our first attempt to distinguish :-monotone functions is to prove Conjecture 6.1. So

far, even the following much weaker conjecture remains open.

Conjecture 6.2 (Rocco Servedio, 2014). Let 5 : {0, 1}= → {−1, 1} be a 2-monotone function. There
exists a set ( ⊆ [=] of size >(

√
=) such that | 5̂ (()| > 0.

We note that it is easy to derive that there exists a set ( ⊆ [=] of size $(
√
=) such that

| 5̂ (()| > 0 by the $(
√
=) total influence upper bound of 2-monotone function shown by Blais et

al [5]. We are not aware of other relevant results or implications.
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