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Abstract. The problem of reliably certifying the outcome of a computation

performed by a quantum device is rapidly gaining relevance. We present two

protocols for a classical verifier to verifiably delegate a quantum computation to two

non-communicating but entangled quantum provers, with statistical soundness. Our

protocols have near-optimal complexity in terms of the total resources employed by

the verifier and the honest provers, with the total number of operations of each party,

including the number of entangled pairs of qubits required of the honest provers,

scaling as $(, log ,) for delegating a circuit of size ,. This is in contrast to previous

protocols, whose overhead in terms of resources employed, while polynomial, is far
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beyond what is feasible in practice. Our first protocol requires a number of rounds

that is linear in the depth of the circuit being delegated, and is blind, meaning

neither prover can learn the circuit or its input. The second protocol is not blind, but

requires only a constant number of rounds of interaction.

Ourmain technical innovation is an efficient rigidity theorem that allows a verifier

to test that two entangled provers perform measurements specified by an arbitrary

<-qubit tensor product of single-qubit Clifford observables on their respective

halves of < shared EPR pairs, with a robustness that is independent of <. Our two-

prover classical-verifier delegation protocols are obtained by combining this rigidity

theorem with a single-prover quantum-verifier protocol for the verifiable delegation

of a quantum computation, introduced by Broadbent (Theory of Computing, 2018).

ACM Classification: F.1.3, G.3

AMS Classification: 68Q15, 81P68

Key words and phrases: quantum computing, quantum interactive proofs, delegated computa-

tion, nonlocal games

1 Introduction

Quantum computers hold the potential to speed up a wide range of computational tasks (see,

for example, [31]). Recent progress towards implementing limited quantum devices has added

urgency to the already important question of how a classical verifier can test a quantum device.

This verifier could be an experimentalist running a new experimental setup; a consumer who

has purchased a purported quantum device; or a client who wishes to delegate some task

to a quantum server. In all cases, the user would like to exert some form of control over the

quantum device. For example, the experimentalist may think that she is testing that a particular

experiment prepares a certain quantum state by performing a series of measurements, i. e., by

state tomography, but this assumes some level of trust in the measurement apparatus being

used. For a classical party to truly test a quantum system, that system should be modeled in

a device-independent way, having classical inputs (e. g., measurement settings) and classical

outputs (e. g., measurement results).

Tests of quantum mechanical properties of a system first appeared in the form of Bell tests

[4, 10]. In a Bell test, a verifier asks classical questions to a quantum-device and receives

classical answers. These tests make one crucial assumption on the system to be tested: that it

consists of two spatially isolated components that are unable to communicate throughout the

experiment. One can then upper bound the value of some statistical quantity of interest subject

to the constraint that the two devices do not share any entanglement. Such a bound is referred

to as a Bell inequality. While the violation of a Bell inequality can be seen as a certificate of

entanglement, the area of self-testing, first introduced in [27], allows for the certification of much

stronger statements, including which measurements are being performed, and on which state.

Informally, a robust rigidity theorem is a statement about which kind of apparatus, quantum state

and measurements, must be used by a pair of isolated devices in order to succeed in a given
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statistical test. Following a well-established tradition, we will refer to such tests as games, call

the devices players (or provers), and the quantum state and measurements that they implement

the strategy of the players. A rigidity theorem is a statement about the necessary structure of

near-optimal strategies for a game.

In 2012, Reichardt, Unger and Vazirani proved a robust rigidity theorem for playing a

sequence of = CHSH games [37]. Aside from its intrinsic interest, this rigidity theorem had

two important consequences. One was the first device-independent protocol for quantum

key distribution. The second was a protocol whereby a completely classical verifier can test

a universal quantum computer consisting of two non-communicating devices. The resulting

protocol for delegating quantum computations has received a lot of attention as the first classical-

verifier delegation protocol. The task is well-motivated: for the foreseeable future, making use

of a quantum computer will likely require delegating the computation to a potentially untrusted

cloud service, such as that provided by IBM [8].

Unfortunately, the complexity overhead of the delegation protocol from [37], in terms of both

the number of EPR pairs needed for the provers and the overall time complexity of the provers

as well as the (classical) verifier, while polynomial, is prohibitively large. Although the authors

of [37] do not provide an explicit value for the exponent, in [20] it is estimated that their protocol

requires resources that scale likeΩ(,8192), where , is the number of gates in the delegated circuit

(notwithstanding the implicit constant, this already makes the approach thoroughly impractical

for even a 2-gate circuit!). The large overhead is in part due to a very small (although still inverse

polynomial) gap between the completeness and soundness parameters of the rigidity theorem;

this requires the verifier to perform many more Bell tests than the actual number of EPR pairs

needed to implement the computation, which would scale linearly with the circuit size.

Subsequent work has presented significantly more efficient protocols for achieving the same,

or similar, functionality [28, 17, 20]. We refer to Table 1 for a summary of estimated lower

bounds on the complexity of each of these results (these estimates were computed in [20]). Prior

to our work, the best two-prover delegation protocol required resources scaling like ,2048
for

delegating a ,-gate circuit. Things improve significantly if we allow for more than two provers,

however, the most efficient multi-prover delegation protocols still required resources that scale

as at least Ω(,4
log ,) for delegating a ,-gate circuit on = qubits. Since we expect that in the

foreseeable future most quantum computations will be delegated to a third-party server, even

such small polynomial overhead is unacceptable, as it already negates the quantum advantage

for a number of problems, such as quantum search.

The most efficient classical-verifier delegation protocols known [13, 14, 35], with poly(=)
and 7 provers, respectively, require resources that scale as $(,3), but this efficiency comes at

the cost of a technique of “post-hoc” verification. In this technique, the provers must learn

the verifier’s input even before they are separated, so that they can prepare the history state

for the computation.1 As a result, these protocols are not blind2. Other articles such as [21],

1Using results of Ji [24], this allows the protocol to be single-round. Alternatively, the state can be created by a

single prover and teleported to the others with the help of the verifier, resulting in a two-round protocol.

2Blindness is a property of delegation protocols, which informally states that the prover learns nothing about the

verifier’s private circuit.
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Provers Rounds Total Resources Blind

RUV 2012 [37] 2 poly(=) ≥ ,8192
yes

McKague 2013 [28] poly(=) poly(=) ≥ 2
153,22

yes

GKW 2015 [17] 2 poly(=) ≥ ,2048
yes

HPDF 2015 [20] poly(=) poly(=) Θ(,4
log ,) yes

Verifier-on-a-Leash Protocol (Section 4) 2 $(depth) Θ(, log ,) yes

Dog-Walker Protocol (Section 5) 2 $(1) Θ(, log ,) no

Table 1: Resource requirements of various delegation protocols in the multi-prover model. We

use = to denote the number of qubits and , the number of gates in the delegated circuit. “depth”

refers to the depth of the delegated circuit. “Total Resources” refers to the gate complexity

of the provers, the number of EPR pairs of entanglement needed, and the number of bits of

communication in the protocol. To ensure fair comparison, each protocol is required to produce

the correct answer with probability 99%. For all protocols except our two new protocols, this

requires a polynomial number of sequential repetitions, which is taken into account when

computing the total resources.

achieve two-prover verifiable delegation with complexity that scales like $(,4
log ,), but in

much weaker models; for example, in [21] the provers’ private system is assumed a priori to be

in tensor product form, with well-defined registers. General techniques are available to remove

the strong assumption, but they would lead to similar large overhead as previous results.

In contrast, in the setting where the verifier is allowed to have some limited quantum power,

such as the ability to generate single-qubit states andmeasure themwith observables froma small

finite set, efficient schemes for blind verifiable delegation do exist [2, 15, 32, 7, 22, 33, 14, 16, 34]

(see also [12] for a recent survey). In this case, only a single prover is needed, and the most

efficient single-prover quantum-verifier protocols can evaluate a quantum circuit with , gates with

resources scaling as $(,) (e. g., [7]). The main reason these protocols are much more efficient

than the classical-verifier multi-prover protocols is that they avoid the need for directly testing

any of the qubits used by the prover, instead requiring the trusted verifier to directly either

prepare or measure the qubits used for the computation.

Recently, another model has been considered where the classical verifier delegates her

quantum computation to a single quantum prover [25, 18]. The protocols proposed in this

setting are computationally secure, i. e., the security of the protocol rests on the assumption that

the prover cannot solve an (expected to be) hard problem for quantum computers (specifically,

the Learning with Errors problem).

Newdelegationprotocols. In this article, weproposeverifiable two-proverdelegationprotocols

that overcome the prohibitively large resource requirements of all previous multi-prover

protocols. We describe two new two-prover classical-verifier protocols in which the complexity

(in terms of number or EPR pairs used and time) of verifiably delegating a ,-gate quantum
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circuit solving a BQP problem scales as $(, log ,).3
We achieve our protocols by adapting the efficient single-prover quantum-verifier delegation

protocol introduced by Broadbent [7] (we refer to this as the “EPR protocol”), which has the

advantage of offering a direct implementation of the delegated circuit, in the circuit model

of computation and with very little modification needed to ensure verifiability, as well as an

elegantly simple and intuitive analysis.

Our first protocol is blind, and requires a number of rounds of interaction that scales linearly

with the depth of the circuit being delegated. The second protocol is not blind, but only requires

a constant number of rounds of interaction with the provers. Our result is the first multi-prover

delegation protocol to require only a quasilinear amount of resources, in terms of number of

EPR pairs and time. However, notwithstanding our improvements, a physical implementation

of verifiable delegation protocols remains a challenging task for the available technology.

The idea at the heart of our protocols is that they provide methods to delegate the quantum

computation performed by the quantum verifier in Broadbent’s EPR protocol [7] to one of the

two provers (call him PV for Prover +). This is achieved via new robust rigidity tests which are

used to certify that the two provers share many EPR pairs, and indeed PV performs the same

actions as the honest verifier on her half EPR pairs. These actions are sequences of single-qubit

measurements of Clifford observables from the set Σ = {-,., /, �, �} (where � and � are

defined in (2.2)). The other prover (which we call PP for Prover %) is then asked to play the role

of Broadbent’s prover. Soundness of our two-prover protocols is then the result of soundness of

Broadbent’s EPR protocol, together with our rigidity results. 4

New rigidity results. We overcome existing efficiency limitations by introducing a new robust

rigidity theorem. Our theorem allows a classical verifier to certify that two non-communicating

provers apply ameasurement associatedwith an arbitrary<-qubit tensor product of single-qubit

Clifford observables on their respective halves of < shared EPR pairs. This is the first result to

achieve self-testing for such a large class of measurements. The majority of previous articles

in self-testing have been primarily concerned with certifying the state and were limited to

simple single-qubit measurements in the --/ plane. Prior self-testing results for multi-qubit

measurements only allow one to test for tensor products of �- and �/ observables. While this is

sufficient for verification in the post-hoc model of [13, 14], testing for �- and �/ observables does

not directly allow for the verification of a general computation (unless one relies on techniques

such as process tomography [37], which introduce substantial additional overhead).

Our first contribution is to extend the “Pauli braiding test” of [35] (which allows one to test

tensor products of �- and �/ observables with constant robustness) to allow for �. observables

as well. This is somewhat subtle due to an ambiguity in the complex phase that cannot be

3The log , overhead is due to the complexity of sampling from the right distribution in rigidity tests, which are

discussed next. We leave the possibility of removing this by derandomization for future work. Another source of

overhead is in achieving blindness: in order to hide the circuit, we encode it as part of the input to a universal circuit,

introducing a factor of $(log ,) overhead.
4This idea can be understood more directly as employing rigidity tests to delegate to PV the preparation of the

random eigenstates required in Broadbent’s basic prepare-and-measure protocol in [7], thus enabling the classical

part of that protocol to be executed between PP and the classical verifier.
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detected by any classical two-player test; we formalize the ambiguity and show how it can

be effectively accounted for. Our second contribution is to substantially increase the set of

elementary gates that can be tested, to include arbitrary <-qubit tensor products of single-qubit

Clifford observables. This is achieved by introducing a new “conjugation test”, which tests how

an observable applied by the provers acts on the Pauli group. The test is inspired by general

results of Slofstra [39] which provide an approach to test that a set of observables satisfy some

algebraic relations (when acting on EPR pairs), but is substantially more direct.

A key feature of our rigidity results is that their robustness scales independently of the

number of EPR pairs tested, as in [35]. This is crucial for the efficiency of our delegation

protocols. The robustness for previous results in parallel self-testing, other than [35], had a

polynomial dependence on the number of EPR pairs tested. We give an informal statement of

our robust rigidity theorem.

Theorem 1.1 (Informal). Let < ∈ ℤ>0. Let G be a fixed, finite set of single-qubit Clifford observables.

Then there exists an efficient two-prover test rigid(G , <) with $(<)-bit questions (a constant fraction of

which are of the form, ∈ G<) and answers such that the following properties hold:
• (Completeness) There is a strategy for the provers that uses < + 1 EPR pairs and succeeds with

probability at least 1 − e
−Ω(<)

in the test.

• (Soundness) For any � > 0, any strategy for the provers that succeeds with probability 1 − � in the

test must be poly(�)-close, up to local isometries, to a strategy in which the provers begin with

(< + 1) EPR pairs and is such that upon receipt of a question of the form, ∈ G< the prover

measures the “correct” observable, .

Although we do not strive to obtain the best dependence on �, we believe it should be

possible to obtain a scaling of the form �
√
� for a reasonable constant �. We discuss the test in

Section 3. Next, we describe the two delegation protocols in a little more detail.

Verifier-on-a-Leash protocol. The first protocol, which we call Verifier-on-a-Leash Protocol, or

“Leash Protocol” for short, is divided into two subgames; which game is played is chosen by the

verifier by flipping a biased coin with appropriately chosen probabilities.

• The first game is a sequential version of the rigidity game rigid(Σ, <), from Theorem 1.1

(this is described in detail in Figure 11). This aims to enforce that PV performs precisely

the right measurements;

• The second game is the delegation game (this is described in detail in Figures 12, 13, and 14,

and its structure is summarized in Figure 9). Here the verifier guides PP through the

computation in a similar way as in Broadbent’s EPR Protocol [7].

In the delegation game, the questions to PV are of all of the form , ∈ Σ< , where Σ =

{-,., /, �, �}. The latter is the set of measurements performed by the verifier in Broadbent’s

EPR protocol. On the other hand, PP is asked to perform the same measurements as a prover in

Broadbent’s EPR protocol.

In the rigidity game, instead, the questions for PV come from a slightly larger set (which also

includes Bell basis measurements). However, crucially, a subset of these questions are of the form

, ∈ Σ< , with the same distribution as in the delegation game. This ensures that, upon receiving
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a question of the form, ∈ Σ< , PV is not able to tell which of the two games is being played.

Hence, we can apply the rigidity result of Theorem 1.1 to guarantee the honest behavior of PV

in the delegation game. With the latter guarantee in hand, we can deduce that in the delegation

game, PP is constrained to behaving like an honest prover in Broadbent’s EPR protocol.

Overall, PV (who plays the role of the verifier in Broadbent’s EPR protocol) only needs to

perform products of single-qubit Clifford observables and Bell-basis measurements (universal

quantum computational power is not needed for this prover), while PP needs to behave like the

honest prover in Broadbent’s EPR protocol (this requires universal quantum computation).

The protocol requires 23 + 1 rounds of interaction, where 3 is the T-depth of the circuit being

delegated (this is the number of layers of T gates in the circuit - see Section 4.1 for a precise

definition). The protocol requires $(= + ,) EPR pairs to delegate a ,-gate circuit on = qubits,

and the overall time complexity of the protocol is $(, log ,). The input to the circuit is hidden

from the provers, meaning that the protocol can be made blind by encoding the circuit in the

input, and delegating a universal circuit. However, blindness holds only as long as PV and PP

stay separated after the execution of the protocol. We note that using universal circuits incurs a

log = factor increase in the depth of the circuit [5].

The completeness of the protocol follows directly from the completeness of Broadbent’s EPR

protocol and of the rigidity game rigid(Σ, <). Once we ensure the correct behavior of PV using

our rigidity test, soundness follows from soundness of Broadbent’s protocol as well, since the

combined behavior of our verifier and an honest PV in the delegation game is nearly identical to

that of the verifier in Broadbent’s protocol.

Dog-Walker protocol. The second protocol, which we refer to as the Dog-Walker Protocol, also

starts from Broadbent’s protocol but modifies it in a different way to achieve a protocol that

only requires a constant number of rounds of interaction. The latter property is achieved by

leveraging the fact that, when the prover in Broadbent’s EPR protocol is honest, his actions

can be performed before the actions of the verifier. Thus the main difference between the Leash

Protocol and the Dog-Walker Protocol is that, in the latter, the classical verifier first obtains all of

PP’s measurement outcomes via one round of interaction. Then these outcomes are sent by the

verifier to PV, together with the input G of the computation (which is now communicated in the

clear). With these, PV is able to perform the required adaptive measurements without the need

to interact with the verifier any further. An additional rigidity test, which we refer to as the

Tomography test is necessary to enforce that PV performs the adaptive measurements honestly.

We skip for now the details on this new test, and we defer its presentation to the beginning of

Section 3 and its precise description to Section 3.6.

The proof of security is slightly more involved, but the key ideas are the same: we use a

combination of our new rigidity results and the techniques of Broadbent’s protocol to control

the two provers, one of which plays the role of Broadbent’s verifier, and the other the role

of the prover. Because of the more complicated “leash” structure in this protocol we call it

the Dog-Walker Protocol. Like the Leash Protocol, the Dog-Walker Protocol has overall time

complexity $(, log ,). Unlike the leash protocol, the Dog-Walker protocol is not blind, since PV

simply receives the input in the clear.
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Based on the Dog-Walker Protocol, it is possible to design a classical-verifier two-prover

protocol for all languages in QMA. This is achieved along the same lines as the proof that QMIP

= MIP
∗
from [37]. PV, given the input, creates the QMA witness and teleports it to PP with

the help of the verifier. The verifier then delegates the QMA verification circuit to the second

prover, as in the Dog-Walker Protocol. PV can then be re-used to verify the operations of PP.

The Dog-Walker Protocol enables this extension in a straightforward manner, since it can be

adapted to have PV decide the input to the computation. We notice that such a transformation

is not possible with the Leash protocol given that PP must know the input G in order to be able

to create the corresponding QMA witness.

We remark that the soundness of both the Leash Protocol and the Dog-Walker Protocol can

be amplified by sequential repetition. In particular, an arbitrarily low, but constant, soundness

error can be achieved in the Dog-Walker Protocol by repeating the protocol a constant number

of times, thus maintaining constant round-complexity (we refer to Section 6 for the details).

Subsequent work. Bowles et al. [6] have independently derived a variant of our rigidity test for

multi-qubit �- , �. and �/ observables in the context of entanglement certification protocols in

quantum networks. Their self-test result has a slightly smaller set of questions but significantly

weaker robustness bounds.

Grilo [19] presented a protocol for verifiable two-prover delegation of quantum computation

by a classical client with a single round of communication. Because of this single-round structure,

space-like separation can replace the non-communication assumption. The latter protocol is not

blind, and requires resources scaling as Ω(=,2) to delegate a circuit of , gates on = qubits.

Open questions and directions for future work. We have introduced a new rigidity theorem

and shown how it can be used to transform a specific quantum-verifier delegation protocol, due

to Broadbent, into a classical-verifier protocolwith an additional prover, while suffering very little

overhead in terms of the efficiency of the protocol. We believe that a similar transformation could

be performed starting from delegation protocols based on other models of computation, such as

the protocol in the measurement-based model of [15] or the protocol based on computation by

teleportation considered in [37], and would lead to similar efficiency improvements.

Recently, [23] provided an experimental demonstration of a two-prover delegation protocol

based on [37] for a 3-qubit quantum circuit based on Shor’s algorithm to factor the number 15;

in order to obtain an actual implementation, necessitating “only” on the order of 6000 CHSH

tests, the authors had to make the strong assumption that the devices behave in an independent

and identically distributed (i. i. d.) manner at each use, and therefore the authors could not use

the most general testing results from [37]. We believe that our improved rigidity theorem could

lead to an implementation that does not require any additional assumptions. We also leave as

an open problem investigating whether (a variant of) our protocol can be made fault-tolerant,

making it more suitable for future implementation.

We note that our protocols require the verifier to communicate with one prover after at least

one round of communicationwith the other has been completed. Therefore, the requirement that

the provers do not communicate throughout the protocol cannot be enforced through space-like
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separation, and must be taken as an a priori assumption. The single-round protocol of [19], for

which non-communication can be enforced through space-like separation, is not blind. Hence,

it is an open question whether there exists a two-prover delegation protocol that consists of a

single round of simultaneous communication with each prover, and is both blind and verifiable.

We also wonder if the fact that blindness is compromised after the provers collude is unavoidable

in this model. A different avenue to achieve this is to rely on computational assumptions on

the power of the provers to achieve protocols with more properties (non-interactive, blind,

verifiable) [11, 3, 26, 25]. Unfortunately at the moment all such protocols suffer from a significant

overhead due to the use of the computational assumption; namely, a number of qubits that

scales at least as min(=, ,) times a polynomial in the security parameter.

Regarding blindness of the Leash protocol, our current proof does not say anything about

the possibility of the provers being able to increase their knowledge on the input given prior

side-information. This would be particularly important if the Leash protocol is composed with

other protocols. We leave as an open question if the blindness of the Leash protocol could be

proven using simulation-based security definitions, which would imply its composability.

Finally, due to its efficiency and robustness, our ridigity theorem is a potentially useful tool

in many other cryptographic protocols. For instance, an interesting direction to explore is the

possibility of exploiting our theorem to achieve more efficient protocols for device-independent

quantum key distribution, entanglement certification or other cryptographic protocols involving

more complex untrusted computation of the users.

Organization. In Section 2, we give the necessary preliminaries, including outlining Broad-

bent’s EPR Protocol (Section 2.4). In Section 3, we introduce our new rigidity theorems. In

Section 4, we present our first protocol, the leash protocol, and in Section 5, we discuss our

second protocol, the Dog-Walker Protocol (including the extension to a two-prover protocol for

QMA). In Section 6, we discuss the sequential repetition of our protocols.
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2 Preliminaries

2.1 Notation

We often write ®G = (G1 , . . . , G=) ∈ {0, 1}= for a string of bits, and , = ,1 · · ·,< ∈ Σ< for a

string, whereΣ is a finite alphabet. If ( ⊆ {1, . . . , <}wewrite,( for the substring of, indexed

by (. For an event �, we use 1� to denote the indicator variable for that event, so 1� = 1 if � is

true, and otherwise 1� = 0. We write poly(�) for $(�2), where 2 is a universal constant that may

change each time the notation is used.
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ℋ is a finite-dimensional Hilbert space. We denote by U(ℋ) the set of unitary operators,

Obs(ℋ) the set of binary observables (we omit the term “binary” from here on; in this paper all

observables are binary) and Proj(ℋ) the set of projective measurements onℋ . We let |EPR〉
denote an EPR pair:

|EPR〉 = 1√
2

(|00〉 + |11〉) .

Observables. We use capital letters -, /,,, . . . to denote observables. We use greek letters �,
� with a subscript �, , �, , to emphasize that the observable, specified as subscript acts in a

particular basis. For example, - is an arbitrary observable but �- is specifically the Pauli -

matrix defined in (2.1).

For 0 ∈ {0, 1}= and commuting observables �,1
, . . . , �,= , we write �, (0) =

∏=
8=1
(�,8
)08 .

The associated projective measurements are {�0

,8
, �1

,8
} where �,8

= �0

,8
− �1

,8
and {�D

,
}D∈{0,1}=

where �D
,
= E0(−1)D·0�, (0). Often the �,8

will be single-qubit observables acting on distinct

qubits, in which case each is implicitly tensored with the identity outside of the qubit on which

it acts.

We recall the commutator notation [�, �] for �� + �� and anti-commutator notation {�, �}
for �� + ��, where �, � are linear operators on the same Hilbert space.

Pauli and Clifford groups. Let

�� =

(
1 0

0 1

)
, �- =

(
0 1

1 0

)
, �. =

(
0 −8
8 0

)
and �/ =

(
1 0

0 −1

)
(2.1)

denote the standard Pauli matrices acting on a qubit. The single-qubit Weyl-Heisenberg group

ℋ (1) = �(ℤ2) =
{
(−1)2�-(0)�/(1) : 0, 1, 2 ∈ {0, 1}

}
is the matrix group generated by the Pauli �- and �/ . We letℋ (=) = �(ℤ=

2
) be the direct product

of = copies ofℋ (1). The =-qubit Clifford group is the normalizer ofℋ (=) in the unitary group,

up to phase:

�
(=)
C =

{
� ∈ U((ℂ2)⊗=) : ���† ∈ ℋ (=) ∀� ∈ ℋ (=)

}
.

Some Clifford observables we will use include

�� =
�- + �/√

2

, ��′ =
�- − �/√

2

, �� =
−�- + �.√

2

, �� =
�- + �.√

2

. (2.2)

Note that �� and ��′ satisgy �-���- = ��′ and �/���/ = −��′. Similarly, �� and �� satisfy

�-���- = −�� and �.���. = ��.
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2.2 Concentration inequality

A supermartingale is a sequence of random variables {-:}:≥0 such that for all : ≥ 0, -: ≥
E[-:+1 |-1 , . . . , -:]. We make use of the following formulation of the Azuma–Hoeffding

inequality. See, for example, [9, Section 6] and [30, Theorem 12.4]. The latter gives a proof for

martingales that also applies to supermartingales.

Theorem 2.1. Let {-:}:≥0 be a real-valued supermartingale such that for every : ∈ ℕ, the condition

|-: − -:−1 | ≤ 3: holds almost surely, for some 3: ≥ 0. Then for any = ≥ 1 and � ≥ 0,

Pr(-= ≥ -0 + �) ≤ exp

(
− �2

2

∑=
:=1

32

:

)
.

2.3 Quantum circuits

We use capital letters in sans-serif font to denote gates. We work with the universal quantum

gate set {CNOT,H, T}, where the controlled-not gate is the two-qubit gate with the unitary action

CNOT|11 , 12〉 = |11 , 11 ⊕ 12〉,

and the Hadamard and T gates are single-qubit gates with actions

H|1〉 = 1√
2

(
|0〉 + (−1)1 |1〉

)
and T|1〉 = e

81�/4 |1〉,

respectively. We will also use the following gates:

X|1〉 = |1 ⊕ 1〉, Z|1〉 = (−1)1 |1〉, and P|1〉 = 81 |1〉.

Measurements in the / basis (or computational basis) will be denoted by the standard measure-

ment symbol:

To measure another observable,, , we can perform a unitary change of basis U, before the

measurement in the computational basis.

We assume that every circuit has a specified output wire, which is measured at the end

of the computation to obtain the output bit. Without loss of generality, we can assume this is

always the first wire. For an =-qubit system, we let Π1 , for 1 ∈ {0, 1}, denote the orthogonal
projector onto states with |1〉 in the output wire: |1〉〈1 | ⊗ Id. For example, the probability that a

circuit & outputs 0 on input | ®G〉 is


Π0& | ®G〉



2

.

We can always decompose a quantum circuit into layers such that each layer contains at

most one T gate applied to each wire. The minimum number of layers for which this is possible

is called the T depth of the circuit. We note that throughout this paper we will assume circuits

are compiled in a specific form that introduces extra T gates (see the paragraph on the H gadget

in Section 2.4). The T depth of the resulting circuit is proportional to the depth of the original

circuit.
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2.4 Broadbent’s EPR protocol

In this section we summarize the main features of a delegation protocol introduced in [7],

highlighting the aspects that will be relevant to understanding our subsequent adaptation into

two-prover protocols. The “EPR Protocol” from [7] involves the interaction between a verifier

+�%' and a prover %∗
�%'

. We write %�%' for the “honest” behavior of the prover. The verifier

+�%' has limited quantum powers. Her goal is to delegate a BQP computation to the prover

%∗
�%'

in a verifiable way. Specifically, the verifier has as input a quantum circuit & on = qubits

and an input string ®G ∈ {0, 1}= , and the prover gets as input &. The verifier and prover interact.

At the end of the protocol, the verifier outputs either accept or reject. The protocol is such that

there exist values ?sound and ?compl with ?sound < ?compl such that ?compl − ?sound, called the

soundness-completeness gap, is a constant independent of input size, and moreover:

Completeness: If the prover is honest and


Π0& | ®G〉



2 ≥ 2/3, then the verifier outputs accept
with probability at least ?compl;

Soundness: If


Π0& | ®G〉



2 ≤ 1/3, then the probability the verifier outputs accept is at most

?sound.

In the EPR protocol, +�%' and %�%' are assumed to share (= + C) EPR pairs at the start of

the protocol, where C is the number of T gates in & and = the number of input bits. The first

= EPR pairs correspond to the input to the computation; they are indexed by # = {1, . . . , =}.
The remaining pairs are indexed by ) = {= + 1, . . . , = + C}; they will be used as ancilla qubits to

implement each of the T gates in the delegated circuit. In [7] the EPR protocol is only considered

in the analysis, and it is assumed that the EPR pairs are prepared by the verifier.

The behavior of +�%' depends on a run type randomly chosen by +�%' after her interaction

with %�%'. There are three possible run types:

• Computation run (A = 0): the verifier delegates the computation to %�%', and at the end of

the run can recover its output if %�%' behaves honestly;

• --test run (A = 1) and /-test run (A = 2): the verifier tests that %�%' behaves honestly, and

rejects if malicious behavior is detected.

For some constant ?, V chooses A = 0 with probability ?, and otherwise chooses A ∈ {1, 2} with

equal probability. Since the choice of run type is made after the interaction with %�%', %�%'’s

behavior cannot depend on the run type. In particular, any deviating behavior in a computation

run is reproduced in both types of test runs. The analysis amounts to showing that any deviating

behavior that affects the outcome of the computation will be detected in at least one of the test

runs.

In slightly more detail, the high-level structure of the protocol is the following. +�%'
measures her halves of the = qubits in # in order to prepare the input state on %�%'’s system. As

a result the input is quantum one-time padded with keys that depend on +�%'’s measurement

results. For example, in a computation run, +�%' measures each input qubit in the / basis, and

gets some result
®3 ∈ {0, 1}= , meaning the input on %�%'’s side has been prepared as X®3 |0〉⊗= . In

[7], the input is always considered to be
®
0, but we can also prepare an arbitrary classical input
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®G ∈ {0, 1}= by reinterpreting the one-time pad key as ®0 = ®3 ⊕ ®G so that the input state on %�%'’s

side is X®0 | ®G〉. In a test run, on the other hand, the input is prepared as the one-time pad of either

|0〉⊗= or |+〉⊗= . Note that as indicated in Figure 2 this choice of measurements will be made

after the interaction with %�%' has taken place.

The honest prover %�%' applies the circuit &, which we assume is compiled in the universal

gate set {H, T,CNOT}, to his one-time padded input. We will shortly describe gadgets that %�%'
can apply in order to implement each of the three gate types. The gadgets are designed in a way

that in a test run each gadget amounts to an application of an identity gate; this is what enables

+�%' to perform certain tests in those runs that are meant to identify deviating behavior of a

dishonest prover. After each gadget, the one-time padded keys can be updated by +�%', who is

able to keep track of the keys at any point in the circuit using the update rules in Table 2.

CNOT
H

T

Key Update Rule

(0 9 , 1 9 , 0 9′ , 1 9′) ← (0 9 , 1 9 + 1 9′ , 0 9 + 0 9′ , 1 9′)
(0 9 , 1 9) ← (1 9 , 0 9)

(0 9 , 1 9) ← (0 9 + 28 , 1 9 + 48 + 0 9 + 28 + (0 9 + 28)I8)
(0 9 , 1 9) ← (48 , 0)

(0 9 , 1 9) ← (0, 1 9 + 48 + I8)

Computation Run

--test, even parity; or /-test, odd parity

/-test, even parity; or --test, odd parity

Table 2: Rules for updating the one-time-pad keys after applying each type of gate in the EPR

Protocol, in particular: after applying a CNOT gate controlled on the 9-th wire and targeting the

9′-th wire; applying an H gate to the 9-th wire; or applying the 8-th T gate to the 9-th wire.

We now describe the three gadgets, before giving a complete description of the protocol.

CNOT Gadget To implement a CNOT gate on wires 9 and 9′, %�%' simply performs the CNOT
gate on those wires of his input qubits. The one-time pad keys are changed by the update

rule in Table 2, because CNOT · X0 9Z1 9 ⊗ X0 9′Z1 9′ = X0 9Z1 9+1 9′ ⊗ X0 9+0 9′Z1 9′ · CNOT. Note that

CNOT|0〉|0〉 = |0〉|0〉 and CNOT|+〉|+〉 = |+〉|+〉, so in the test runs, %�%' is applying the identity.

HGadget To implement an H gate on wire 9, %�%' simply performs the H on wire 9, and the

one-time-pad keys are changed as in Table 2. Unlike CNOT, H does not act as the identity on

|0〉 and |+〉, so it is not the identity in a test run. To remedy this, assume that & is compiled

so that every H gate appears in a pattern H(TTH): , where : is odd. This can be accomplished

by replacing each H by HTTHTTHTTH, which implements the same unitary. In test runs, the T
gadget, described shortly, implements the identity, and since H(Id H): for odd : implements the

identity, H(TTH): will also have no effect in test runs.

Parity of a T Gate Within a pattern H(TTH): , the H has the effect of switching between an

--test run scenario (the state |0〉) and a /-test run scenario (the state |+〉). In order to consistently

talk about the type of a run while evaluating the circuit, we can associate a parity with each

T gate in the circuit. The parity of the T gates that are not part of the pattern H(TTH): will be
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defined to be even. An H will always flip the parity, so that within such a pattern, the first two T
gates will be odd, the next two will be even, etc., until the last two T gates will be odd again.

T Gadget The gadget for implementing the 8-th T gate on the 9-th wire is performed on %�%'’s

9-th input qubit, and his 8-th auxiliary qubit (indexed by = + 8), which we can think of as being

prepared in a particular auxiliary state by +�%' measuring her half of the corresponding EPR

pair, as shown in Figure 1. The gadget depends on a uniformly random bit I8 that is chosen by

+�%' and sent to the prover.

9

= + 8 PI8

28
U,8

48

Prover (%�%'){
Verifier (+�%'){

Figure 1: The gadget for implementing the 8-thT gate on the 9-thwire. The gateU,8
implementing

the change of basis associated with observable,8 is applied as part of the procedure + A
�%'

(see

Figure 3b) and is determined by the run type A, the parity of the 8-th T gate, I8 , 28 , and 0
′
8
(the

X-key going into the 8-th T gate), as in Table 3.

The EPR protocol. We show how the gadgets just described are used in the complete protocol.

We first describe the protocol for +�%' below. For later convenience we have divided the action

of +�%' into classical actions and a single quantum subroutine + A
�%'

depending on the run

type A.

The procedure + A
�%'

measures each of the = + C EPR halves according to some observable

that depends on A, ®2, and ®I. In the case of a computation run, +0

�%'
measures the qubits in )

adaptively. We describe the steps of +�%', +
A
�%'

and the honest behavior of %�%' in Fig. 3.
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+�%'

%�%'

®I ∈ {0, 1}C

®2 ∈ {0, 1}C
2 5 ∈ {0, 1}

+ A
�%'

®G, ®2, ®I

®0, ®1, ®4

Figure 2: This figure describes how different

pieces of the protocol fit together. +�%' and

%�%' share = + C EPR pairs. The honest prover

%�%' can be seen as a procedure that acts on =+C
qubits — the EPR pair halves — depending on

a C-bit string ®I. We have separated the quantum

part of+�%' into its own procedure, called+ A
�%'

,

where A ∈ {0, 1, 2} indicates the run type, which

+�%' runs on her = + C EPR halves, and the 2C

bits ®2 and ®I. Aside from running + A
�%'

, +�%' is

classical.

Computation Run

--test Run

/-test Run

0′
8
⊕ 28 ⊕ I8 = 0

0′
8
⊕ 28 ⊕ I8 = 1

even T gate

odd T gate

I8 = 0

I8 = 1

odd T gate

even T gate

I8 = 0

I8 = 1

U,8
(observable,8)

HT (observable �)

HPT (observable �)

Id (observable /)

H (observable -)

HP (observable .)

Id (observable /)

H (observable -)

HP (observable .)

Table 3: The choice of U,8
in the T gadget. We also indicate the observable,8 associated with

the final measurement,8 = U†
,8
/U,8

.

Completeness and soundness. We summarize the relevant part of the analysis of the EPR

protocol from [7]. First suppose %�%' behaves honestly. If



Π0& | ®G〉


2

= ?, then in a computation

run, +�%' outputs accept with probability ?, whereas in a test run, +�%' outputs accept with

probability 1. This establishes completeness of the protocol:

Theorem 2.2 (Completeness). Suppose the verifier executes the EPR Protocol, choosing A = 0 with

probability ?, on an input (&, | ®G〉) such that


Π0& | ®G〉



2 ≥ 1− �. Then the probability that+�%' accepts

when interacting with the honest prover %�%' is at least (1 − ?) + ?(1 − �).

The following theorem is implicit in [7, Section 7.6], but we include a brief proof sketch:

Theorem 2.3 (Soundness). Suppose the verifier executes the EPR Protocol, choosing A = 0 with

probability ?, on an input (&, | ®G〉) such that



Π0& | ®G〉


2 ≤ �. Let %∗

�%'
be an arbitrary prover such that
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%∗
�%'

is accepted by +�%' with probability @C conditioned on A ≠ 0, and @2 conditioned on A = 0. Then

the prover’s overall acceptance probability is ?@2 + (1 − ?)@C , and

@2 ≤ 2 (@C � + (1 − @C)) − �.

Proof sketch. Using the notation of [7], let �(�) = ∑
:  :� 

†
:
be the Kraus decomposition of an

arbitrary attack performed by a malicious prover on the <-qubit state resulting from an honest

run of the protocol.5 Wewrite the :-th Kraus operator of � as a sumof Paulis  : =
∑
&∈P(<)
:,&&.

Finally, we define the set of benign attacks �C ,< ⊆ P(<)as the subset of Paulis containing � or /
in the positions that are measured (in the computational basis) during the protocol.

Notice that the benign attacks do not affect the the acceptance of the protocol, and therefore

the value � =
∑
:

∑
&∉�C ,<

|
:,& |2 can be interpreted then as the total weight on attacks that could

change the outcome of the computation. By [7], the probability of rejecting in a computation

run is 1 − @2 ≥ (1 − �)(1 − �), whereas the probability of rejecting in a test run is 1 − @C ≥ 1

2
�.

Combining these gives @2 ≤ 2(@C� + (1 − @C)) − �. �

3 Rigidity

In this section we describe the main rigidity tests used in our delegation protocols. To present

the tests we adopt the terminology of “players” instead of “provers” and “referee” instead of

“verifier”, as this terminology is the standard one in the area of self-testing from which the

section borrows. Each of the tests consists of a two-message interaction between the referee and

the two players: first, a pair of questions is selected by the referee and each player is sent one

element of the pair. Second, each player responds to its question with an answer. Finally, the

referee decides to accept or reject the player’s answers in the test.

Our main test is called rigid(Σ, <) and it is described in Section 3.5. Here Σ denotes

the five-element set Σ = {-,., /, �, �}. Each element of Σ is a label for the corresponding

single-qubit observable introduced in Section 2.1. The test is parametrized by an integer <

which denotes the number < of EPR pairs used by the players in the honest strategy. In the test,

with some constant probability either player is sent as question a string, chosen uniformly at

random from Σ< . In these cases the honest player is expected to measure each qubit in the basis

indicated by, and return the <-bit string of outcomes obtained. In other cases, the player may

be asked to perform measurements in other bases, such as a measurement of pairs of qubits in

the Bell basis. These measurements are required to test that the player indeed performs the right

measurement when sent a basis from Σ< (up to an isometry, as explained in Section 3.1 below).

In general a strategy for the players in any of the tests presented in this section consists of an

arbitrary entangled state |#〉 ∈ ℋA ⊗ ℋB (which we take to be pure), and measurements (which

5Note that we can assume such behavior by the malicious prover without loss of generality since all measurements

can be performed coherently, with the first step of the attack undoing all honest operations.
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1. +�%' sends ®I ∈' {0, 1}C to %�%', and receives back ®2 ∈ {0, 1}C and 2 5 ∈ {0, 1}.

2. +�%' chooses a random run type A ∈ {0, 1, 2} and runs + A
�%'

(see Figure 3b) on ®G, ®2, ®I and
on her EPR halves, to obtain bits ®0, ®1 ∈ {0, 1}= and ®4 ∈ {0, 1}C .

3. +�%' applies the update rules from Table 2 on the initial keys (®0, ®1), gate-by-gate, to obtain,

for every 8 ∈ [C], the X-key before the 8-th T gate is applied, 0′
8
, and the final X key for the

output wire, 0′
5
. If A = 1 (--test run) and there exists an 8 such that the 8-th T gate is even

and 28 ≠ 0
′
8
⊕ 48 , output reject. If A = 2 (/-test run) and there exists an 8 such that the 8-th T

gate is odd and 28 ≠ 0′
8
⊕ 48 , output reject. If A ∈ {0, 1} (computation or --test run) and

2 5 ⊕ 0′5 ≠ 0, output reject. Otherwise, output accept.

(a) +�%'’s point of view.

Input: A circuit & with C T gates, ®G ∈ {0, 1}= , ®2, ®I ∈ {0, 1}C , an =-qubit system indexed by # ,

and a C-qubit system indexed by ).

1. If A ∈ {0, 1}, measure each qubit in # in the / basis, and otherwise measure in the -

basis, to get results
®3 ∈ {0, 1}= . If A = 0, set (®0, ®1) = (®3 ⊕ ®G, 0=); if A = 1, set (®0, ®1) = (®3, 0=);

and if A = 2 set (®0, ®1) = (0= , ®3).

2. Going through & gate-by-gate, use the update rules in Table 2 to update the one-time-pad

keys. For every 8 ∈ [C], when the 8-th T gate is reached, let 0′
8
be the X key before the 8-th T

gate is applied. Choose an observable,8 according to Table 3 in which to measure the

8-th qubit in ), corresponding to the 8-th T gate, obtaining result 48 .

(b) The procedure + A
�%'

, employed by +�%'.

1. Receive ®I ∈ {0, 1}C from +�%'.

2. Evaluate & gate-by-gate using the appropriate gadget for each gate. In particular, use I8
to implement the 8-th T gadget, and obtain measurement result 28 .

3. Measure the output qubit to obtain 2 5 , and return ®2 and 2 5 to +�%'.

(c) Honest prover strategy %�%'

Figure 3: The EPR Protocol.
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we take to be projective) for each possible question.6 This includes an <-bit outcome projective

measurement {,D}D∈{0,1}< for each of the queries, ∈ Σ< , which we take to be identical for

both players (in Section 3.2 we justify why this is without loss of generality). Our rigidity result

states that for any strategy that succeeds with probability 1 − � in the test, the measurements

associated with questions in Σ< are within poly(�) of the honest strategy, up to local isometries

and in the appropriate norm, which depends on the state shared by the players (see Theorem 3.1

for a precise statement). This is almost true, but for an irreconcilable ambiguity in the definition

of the complex phase

√
−1. The fact that complex conjugation of observables leaves correlations

invariant implies that no classical test can distinguish between the two nontrivial inequivalent

irreducible representations of the Pauli group, which are given by the Pauli matrices �- , �. , �/
and their complex conjugates �- = �- , �/ = �/, �. = −�. , respectively. In particular, the

players may use a strategy that uses a combination of both representations; as long as they

do so consistently, no test will be able to detect this behavior.7 The formulation of our result

accommodates this irreducible degree of freedom by forcing the players to use a single qubit,

the (< + 1)-st, to make their choice of representation (so honest players require the use of (< + 1)
EPR pairs to test the operation of <-fold tensor products of observables from Σs).

Theorem 3.1 below summarizes the guarantees of our main test, rigid(Σ, <). Informally,

Theorem 3.1 establishes that a strategy that succeeds in rigid(Σ, <) with probability at least

1 − & must be such that (up to local isometries):

• The players’ joint state is close to a tensor product of < EPR pairs, together with an

arbitrary ancilla register;

• The projective measurements performed by either player upon receipt of a query of the

form , ∈ Σ< are, on average over the uniformly random choice of , ∈ Σ< , close to

a measurement that consists of first, measuring an ancilla register Â or B̂ to extract a

single bit that specifies whether to perform the ideal measurements or their conjugated

counterparts, respectively, and second, measuring the player’s < half-EPR pairs in either

the bases indicated by, , or their complex conjugates, depending on the bit obtained

from the ancilla register.

For an observable, ∈ Σ, let �, = �+1

,
− �−1

,
be its eigendecomposition, where �, are the

“honest” Pauli matrices defined in (2.1) and (2.2). For D ∈ {±1} let �D
,,+ = �D

,
for, ∈ Σ, and

�D-,− = �D- , �D/,− = �D/ , �D.,− = �−D. , �D�,− = �−D� , �D�,− = �−D� .

(In words, �D
,,− is just the complex conjugate of �D

,
.) We note that for the purpose of our

delegation protocols, we made a particular choice of the set Σ. The result generalizes to any

constant-sized set of single-qubit Clifford observables, yielding a test for <-fold tensor products

of single-qubit Clifford observables from Σ.

6We make the assumption that the players employ a pure-state strategy for convenience, but it is easy to check

that all proofs extend to the case of a mixed strategy. Moreover, it is always possible to consider (as we do) projective

strategies only by applying Naimark’s dilation theorem, and adding an auxiliary local system to each player as

necessary, since no bound is assumed on the dimension of their systems.

7See [38, Appendix A] for an extended discussion of this issue, with a similar resolution to ours.
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Theorem 3.1. Let � > 0 and < an integer. Suppose that a strategy for the players succeeds with

probability 1 − � in the test rigid(Σ, <). For, ∈ Σ< and � ∈ {�, �} let {,D
D }D be the measurement

performed by player� on question, . Let also |#〉 be the state shared by the players. Then for� ∈ {�, �}
there exists an isometry

+� : ℋD → (ℂ2)⊗<D′ ⊗ ℋD̂

and a state |aux〉ÂB̂ ∈ ℋÂ ⊗ ℋB̂ such that

(+� ⊗ +�)|#〉AB − |EPR〉⊗< ⊗ |aux〉ÂB̂



2

= $(
√
�) , (3.1)

and positive semidefinite matrices �� on Â with orthogonal support, for � ∈ {+,−}, such that Tr(�+) +
Tr(�−) = 1 and

E

,∈Σ<

∑
D∈{0,1}<




+�TrB
(
(Id� ⊗,D

B )|#〉〈# |AB(Id� ⊗,D
B )
†)+†�

−
∑
�∈{±}

( <⊗
8=1

�D8
,8 ,�

2

)
⊗ ��





1

= $(poly(�)). (3.2)

A symmetric relation holds with the roles of � and � exchanged. Moreover, players employing the honest

strategy succeed with probability 1 − e
−Ω(<)

in rigid(Σ, <).

We give some intuition for (3.2). In the honest strategy for rigid(Σ, <), for any , ∈ Σ<
the {,D

B }D∈{0,1}< form a projective measurement on < qubits that consists in measuring the

8-th qubit in the eigenbasis of the observable �, , for 8 ∈ {1, . . . , <}. Moreover, in the honest

strategy the state |#〉AB consists of < EPR pairs shared between the players. Therefore, the

post-measurement state onℋA associated with the outcome D when {,D
B }D∈{0,1}< is performed

on ℋB is (without renormalization) ⊗8( 1
2
�D8
,8
). In case the system Â is trivial (1-dimensional)

and �+ = 1, �− = 0, (3.2) states that the post-measurement state for any successful strategy is

close to the “ideal” post-measurement state. Informally the density matrices ��, which live

onℋÂ, represent a “phase ambiguity” already discussed prior to the theorem statement: the

malicious player � is allowed to use a strategy that is a mixture of two strategies, resulting in the

post-measurement state being a mixture of two post-measurement states, the “ideal” one (� = 1)
and the “phase-flipped” one (� = −1). Here it is important that �+ and �− have orthogonal, so
that there is no overlap between the two components. This ambiguity is unavoidable since no

test of the form considered here (that takes the form of a two-player one-round interaction) can

distinguish between . and .) , whose eigenvectors are swapped.

The statement of the theorem differs from more standard rigidity statements in providing

guarantees on the initial shared state as well as certain post-measurement states that can be

created by the players, as opposed to guarantees on the player’s observables. The motivation for

this is to write the theorem in a way that is easily usable in the other sections and in particular

the analysis of the leash protocol from Section 4.
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Before proceeding with the details we give an outline for the proof of Theorem 3.1. As

already mentioned the test to which Theorem 3.1 applies is denoted rigid(Σ, <). The goal of
this test is to rigidly enforce that each players measures < qubits in a basis indicated by a string

, ∈ Σ< when asked to do so, and reports the <-bit outcome.

The first ingredient to design the test rigid(Σ, <) is an extension of the “Pauli braiding

test” from [35] to handle tensor products of not only �- and �/, but also �. Pauli observables.

This test is denoted pbt(-,., /) and described in Appendix A.4.3. The test would allow us to

conclude if we had Σ = {-,., /}. It remains to develop the ability to test for the single-qubit

Clifford observables � and � as well as tensor products of them and -,., /. Our strategy to do

this is the following.

• First we introduce a test for a player making use of a unitary ' that conjugates Paulis

to Paulis in a prescribed way; for example we may test that '-' = −.. Here we wrote

“makes use of” because the test does not directly access the unitary ', which need not be

a measurement observable (such as a binary observable). Instead the player is asked to

measure according to the observable -' =

(
0 '†

' 0

)
. As a consequence the honest strategy

for this test makes use of one more qubit than the number of qubits required to implement

'. Our test for conjugation is called conj-cliff(') and described in Section 3.3. This test is

based on a more general conjugation test introduced in Section 3.2, which is not restricted

to Cliffords. Note that the test conj-cliff(') directly tests for <-qubit Clifford observables

through their action on the <-qubit Clifford group, which can be tested using pbt(-,., /).

• The test conj-cliff(') allows us to test that a unitary respects the requisite conjugation

relations. However, this is not sufficient in general, as for example � and (−�) both have

the same action on the Pauli group. When testing for observables that are associated

with strings , ∈ Σ< we need to make sure that every time the symbol � appears it

is the “same” observable that is used, and not sometimes its opposite (which would

correspond to exchanging eigenvectors).8 In Section 3.4 we introduce a test cliff(Σ, <)
which removes such inconsistencies by implementing a swap test between the (supposedly)

same observable acting on different qubits. The swap test is realized by asking one player

to measure in the Bell basis and the other, for instance, to measure ��, and the results are

checked for consistency.

• Finally in Section 3.5 the test rigid(Σ, <) is introduced. The only missing ingredient is to

test that all the � observables are indeed � as intended, and not all −�. For this we perform

tomography against the - and / observables, which allows us to distinguish between the

two eigenstates of �, thereby lifting the remaining ambiguity (and similarly for �).

We start by introducing the language required to formulate our testing results.

8Here “same” is in quotes because the observables act on different qubits”
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3.1 Testing

In this section we recall the standard formalisms from self-testing, including state-dependent

distance measure, local isometries, etc. We also introduce a framework of “tests for relations”

that will be convenient to formulate our results.

3.1.1 Distance measures

Ultimately our goal is to test that a player implements a certain tensor product of single-qubit or

two-qubit measurements defined by observables such as �- , �. , or ��. Since it is impossible to

detect whether a player applies a certain operation - on state |#〉, or +-+† on state + |#〉, for
any isometry + : L(ℋ) → L(ℋ ′) such that +†+ = Id, we will (as is standard in testing) focus on

testing identity up to local isometries. Towards this, we introduce the following important piece

of notation:

Definition 3.2. For finite-dimensionalHilbert spacesℋA andℋA′ , � > 0, andoperators' ∈ L(ℋA)
and ( ∈ L(ℋA′)we say that ' and ( are �-isometric with respect to |#〉 ∈ ℋA ⊗ ℋB, and write

' '� (, if there exists an isometry + : ℋA →ℋA′ such that

(' −+†(+) ⊗ IdB |#〉


2

= $(�).

When ' = {'0} and ( = {(0} are POVM with the same set of outcomes we write '0 '� (0 to
mean ∑

0



('0 −+†(0+) ⊗ IdB |#〉


2

= $(�).

If + is the identity, then we further say that ' and ( are �-equivalent, and write ' ≈� ( for

‖(' − () ⊗ IdB |#〉‖2 = $(�).

The notation ' '� ( carries some ambiguity, as it does not specify the state |#〉. The latter
should always be clear from context: we will often simply write that ' and ( are �-isometric,

without explicitly specifying |#〉 or the isometry. The relation is transitive, but not reflexive: the

operator on the right will always act on a space of dimension at least as large as that on which

the operator on the left acts. The notion of �-equivalence is both transitive (its square root obeys

the triangle inequality) and reflexive, and we will use it as our main notion of distance.

3.1.2 Strategies

Given a two-player game, or test, a strategy for the players consists of a bipartite entangled state

|#〉 ∈ ℋA ⊗ ℋB together with families of projective measurements {, 0
A } for Alice and {, 0

B } for
Bob, one for each question, that can be sent to either player in the test. (We often use the

same symbol, a capital letter -, /,,, . . . , to denote a question in the game and the associated

projective measurement {, 0} applied by the player upon reception of that question.) Recall

that to a projective measurement with outcomes in {0, 1}= we associate a family of observables

,(D) parametrized by =-bit strings D ∈ {0, 1}= , defined by,(D) = ∑
0(−1)D·0, 0

. If = = 1 we

simply write, =,(1) =,0 −,1
; note that,(0) = Id.
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As already mentioned, for convenience we restrict our attention to pure-state strategies

employing projective measurements. We will loosely refer to a strategy for the players as

(,, |#〉), with the symbol, referring to the complete set of projective measurements used by

the players in the game.

3.1.3 Consistency tests

We formulate our tests as two-player games in which both players are treated symmetrically.

Specifically, when in a test we write “send one player the question - and the other the question

.” we implicitly mean that the role of “first player” and “second player” have been assigned

at random, and moreover a player only gets told its question, not its “role” as assigned by the

referee. Taking advantage of this symmetry we often omit the subscript A or B, as all statements

involving observables for one player hold verbatim with the other player’s observables as well.

With the exception of the Tomography Test tom presented in Section 3.6, all the games we

consider implicitly include a “consistency test” which is meant to enforce that whenever both

players are sent identical questions, they produce matching answers.9 More precisely, let )

be any of the two-player tests described in the paper. Let Pr)(,,, ′) be the distribution on

questions (,,, ′) to the players that is specified by ). Since the players are always treated

symmetrically, Pr)(·, ·) is permutation-invariant. Let Pr)(·) denote the marginal on either player.

Then, instead of executing the test ) as described, the verifier performs the following:

(i) With probability 1/2, execute ).

(ii) With probability 1/2, select a random question, according to Pr)(,). Send, to both

players. Accept if and only if the players’ answers are equal.

Then, success with probability at least 1− � in the modified test implies success with probability

at least 1 − 2� in the original test, as well as in the consistency test. If {, 0
A } and {,

1
B } are

the players’ corresponding projective measurements and |#〉AB their shared state, the latter

condition implies∑
0

‖(, 0
A ⊗ Id− Id⊗, 0

B )|#〉AB‖2 = 2 − 2

∑
0

〈# |AB,
0
A ⊗,

0
B |#〉AB

≤ 4�, (3.3)

so that , 0
A ⊗ Id ≈� Id⊗, 0

B (where the condition should be interpreted on average over the

choice of a question, distributed as in the test). Similarly, if,A,,B are observables for the

players that succeed in the consistency test with probability 1− 2�we obtain,A ⊗ Id ≈� Id⊗,B.

We will often use both relations to “switch” operators from one player’s space to the other’s; as

a result we will also often omit an explicit specification of which player’s space an observable is

applied to.

9Here by a “test” we mean a named test, such as conj(�, �, ') or ac(-, /). Since conj(�, �, ') uses ac(-, /) as
a subroutine, both the named subtest ac(-, /) and the named test conj(�, �, ') are endowed with an additional

consistency test.
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3.1.4 Relations

We use ℛ to denote a set of relations over matrix variables -, /,,, . . . , such as

ℛ =
{
-/-/ = − Id, �- = /�, {-, /, �} ∈ Obs

}
.

Here the notation {-, /, �} ∈ Obs means that each of the symbols in {-, /, �} satisfies the
pair of relations, {- = -† , -2 = Id} (since we consider only binary observables) and similarly

for /, �. Each relation implicitly imposes that the variables that appear in it have compatible

dimension, e. g., -/-/ = − Id imposes that -, / have the same dimension. We only consider

relations that can be expressed in the form of one of the following equations:

• (−1)0,1 · · ·,: = Id, where the ,8 are (not necessarily distinct) unitary variables and

0 ∈ ℤ2, or

• ,1 · (
∑
0 $0,

0
2
) = Id, where,1 is a unitary variable, {, 0

2
} a projective measurement with

B possible outcomes, and $0 are (arbitrary) B-th roots of unity.

Here what we mean by “unitary variable” and “projective measurement” is that when saying

that a collection of matrices satisfies the relation, we always require that the matrices be unitary

and a projective measurement), resp.; if they are not then by definition they do not satisfy the

relation.

Definition 3.3 (Rigid self-test). We say that a set ℛ of relations is (2, �(�))-testable, on average

under the distributionD : ℛ → [0, 1], if there exists a game (or test) � with question set Q such

that the following holds. The set Q includes (at least) a symbol for each variable in ℛ that is

either an observable or a POVM. Moreover,

• (Completeness) There exists a set of operators which exactly satisfy all relations in ℛ and a

strategy for the players which uses these operators for the questions in Q that correspond

to symbols appearing in the relations in ℛ (together possibly with others for the additional

questions) that has success probability at least 2;

• (Soundness) For any � > 0 and any strategy (,, |#〉��) that succeeds in the game with

probability at least 2 − �, the associated measurement operators satisfy the relations in

ℛ up to �(�). More precisely, on average over the choice of a relation 5 (,) = Id from ℛ
chosen according toD, it holds that ‖( 5 (,) − Id) ⊗ Id |#〉AB‖2 ≤ �(�).

If both conditions hold, we also say that the game � is a robust (2, �(�)) self-test for the set ℛ of

relations.

Most of the games we consider have perfect completeness, 2 = 1, in which case we omit

explicitly mentioning the parameter. The distributionD will often be implicit from context, and

we do not always specify it explicitly (e. g., in case we only measure �(�) up to multiplicative

factors of order |ℛ| the exact distributionD does not matter as long as it has complete support).
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Definition 3.4 (Stable relations). We say that a set of relations ℛ is �(�)-stable, on average

under the distributionD : ℛ → [0, 1], if for any state |#〉 ∈ ℋA ⊗ ℋB and families of operators

,� ∈ L(ℋA) and,� ∈ L(ℋB) that are consistent on average, i. e.,

E

5∼D
E

,∈* 5



(Id⊗,� −,� ⊗ Id)|#〉


2 ≤ �,

where, ∈* 5 is shorthand for, being a uniformly random operator among those appearing

in the relation specified by 5 , and satisfy the relations on average, i. e.,

E

5∼D:

5 (,)=Id∈ℛ



( 5 (,�) − Id) ⊗ Id |#〉


2 ≤ �,

there exists operators ,̂ which satisfy the same relations exactly and are �(�)-isometric to the

, with respect to |#〉, on average over the choice of a random relation in ℛ and a uniformly

random, appearing in the relation, i. e., there exists an isometry +� such that

E

5∼D
E

,∈* 5



(,̂� −+�,�) ⊗ Id |#〉


2

= $(�(�)).

3.2 The conjugation test

We give a test which certifies that a unitary (not necessarily an observable) conjugates one

observable to another. More precisely, let �, � be observables and ' a unitary acting on the

same space ℋ . The test conj(�, �, ') certifies that the players implement observables of the

form

-' =

(
0 '†

' 0

)
and � = ��,� =

(
� 0

0 �

)
, (3.4)

such that moreover -' and � commute. The fact that -' is an observable implies that ' is

unitary,10 while the commutation condition is equivalent to the relation '�'† = �. The test

thus tests for the relations

C{', �} =
{
{-' , �, -, /} ∈ Obs

}
∪

{
-/ = −/-

}
∪

{
-'� = �-' , -'/ = −/-' , �/ = /�

}
.

Here the anti-commuting observables - and / are used to specify a basis in which -' and �

can be block-diagonalized. The anti-commutation and commutation relations with / enforce

that -' and � have the form described in (3.4). These relations are enforced using commutation

and anti-commutation tests that are standard in the literature on self-testing. For convenience,

we state those tests, com and ac, in Appendix A. The conjugation test, which uses them as

subtests, is given in Figure 4. Here, “Inputs” refers to a subset of designated questions in the

test; “Relation” indicates a relation that the test aims to certify; “Test” describes the certification

protocol. (Recall that all our protocols implicitly include a “consistency test”, not specified on

10Note that ' will not be directly accessed in the test, since by itself it does not necessarily correspond to a

measurement.
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the figure, in which a question is chosen uniformly at random from the marginal distribution

and sent to both players, whose answers are accepted if and only if they are equal. We use this

consistency test implicitly by analyzing only strategies that are symmetric, i. e., both provers’

Hilbert spaces and measurement operators are identical.)

Test conj(A,B,R)

• Inputs: �, �, -, /, -' and � observables.

• Relations: C{', �}, with ' defined from -', and � related to � and �, as in (3.4).

• Test: execute each of the following with equal probability

(a) With probability 1/8 each, execute tests ac(-, /), com(�, /), com(-' , �), ac(-' , /)
and com(�, -), com(�, -), com(�, /), com(�, /).

(b) Ask one player to measure �, �, � or / (with probability 1/4 each), and the other to

jointly measure � or � (with probability 1/2 each) and /. The first player returns one

bit, and the second two bits. Make an acceptance decision as follows:

– If the first player was asked � and the second player was asked (�, /) then accept

unless the second player’s second answer bit is 0 and his first answer bit does not

match the first player’s;

– If the first player was asked � and the second player was asked (�, /) then accept

unless the second player’s second answer bit is 1 and his first answer bit does not

match the first player’s;

– If the first player was asked �, �, or / then accept if and only if his answer bit

matches the corresponding answer from the second player.

In all other cases, accept.

Figure 4: The conjugation test, conj(�, �, ').

Lemma 3.5. The test conj(�, �, ') is a (1, �) self-test for the set of relations C{', �}, for some

� = $(
√
�). Moreover, for any strategy that succeeds with probability at least 1 − � in the test it holds

that � ≈� �(Id+/)/2 + �(Id−/)/2, where �, �, � and / are the observables applied by the player on

receipt of a question with the same label.

Proof. Completeness is clear, as players making measurements on a maximally entangled state

onℋA ⊗ ℋB, tensored with an EPR pair on ℂ2

A′ ⊗ ℂ
2

B′ for the - and / observables, and using

-' and � defined in (3.4) (with the blocks specified by the space associated with each player’s

half-EPR pair) succeed in each test with probability 1.

We now consider soundness. Success in ac(-, /) in part (a) of the test implies the existence of

local isometries +� , +� such that +� : ℋA →ℋÂ ⊗ ℂ2

A′ , with - '√� IdÂ ⊗�- and / '√� IdÂ ⊗�/ .
By Lemma A.3, approximate commutation with both - and / enforced by the tests com(�, -),
com(�, /), com(�, -) and com(�, /) implies that under the same isometry,

� '√� �� ⊗ Id and � '√� �� ⊗ Id , (3.5)
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for observables �� , �� onℋÂ. Similarly, the parts of the test involving � and -' imply that they

each have the block decomposition specified in (3.4). In particular, using the second part of

Lemma A.6 (with = = 1 and 2 = 1, exchanging the roles of / and -) anti-commutation of -'
with / certifies that -' has a decomposition of the form

-' '√� '- ⊗ �- + '. ⊗ �. . (3.6)

Let ' = ('- + 8'.)|'- + 8'. |−1
, so that ' is unitary. Note that since -' is an observable,

-2

'
= Id.

and so it follows from (3.6) that ('- + 8'.)('- + 8'.)† ⊗ Id '√� Id. Thus ' '√� '- + 8'. .
Similarly, using the first part of Lemma A.6 commutation of � with / implies that

� '√� �� ⊗ �� + �/ ⊗ �/ , (3.7)

for Hermitian �� , �/ such that �� ± �/ are observables because � is an observable.

Next we analyze part (b) of the test. Let {, 0,I
�/
} be the projective measurement applied by

the second player upon query (�, /). Success with probability 1 − $(�) conditioned on the

questions being � and (�, /) item ensures that��〈# |�0 ⊗ (,00

�/ +,
01

�/ +,
11

�/) + �
1 ⊗ (,10

�/ +,
01

�/ +,
11

�/)|#〉
�� ≥ 1 − $(�), (3.8)

and a similar condition holds for the case � and (�, /), with,�/ instead of,�/.

Success with probability 1 − $(�) in the case of questions �, � or / and (�, /) or (�, /)
ensures consistency of {, 0,I

�/
} and {, 1,I

�/
}, resp., with the observable � and �, resp., when

marginalizing over the second outcome, and / when marginalizing over the first outcome.

Since � and � approximately commute with /, using the decompositions for � and � derived

in (3.5) it follows that,�/ '√� �� ⊗ �/ and,�/ '√� �� ⊗ �/.
Similarly regarding the observable �, using that we already showed in (3.7) that � is block-

diagonal in the basis specified by - and /, (3.8) and,�/ '√� �� ⊗ �/ gives (�0

�
+ �0

/
) '√� �0

�

and (�1

�
+ �1

/
) '√� �1

�
. Using the analogous relations for,�/ we get (�� − �/) '√� �� . Thus

�� '√� (� + �)/2 and �/ '√� (� − �)/2. This shows the “Moreover” part of the lemma.

Finally, success in test com(-' , �) certifies the approximate commutation relation [-' , �] '√�
0, which, given the decomposition of -' and � obtained so far, implies '� '√� �', as

desired. �

3.3 Testing Clifford unitaries

Let < ≥ 1 be an integer, and ' an <-qubit Clifford unitary. ' is characterized, up to phase, by its

action by conjugation on the <-qubit Weyl-Heisenberg group. This action is described by linear

functions ℎ( : {0, 1}< × {0, 1}< → {0, 1} and ℎ- , ℎ/ : {0, 1}< × {0, 1}< → {0, 1}< such that

'�-(0)�/(1)'† = (−1)ℎ((0,1)�-(ℎ-(0, 1))�/(ℎ/(0, 1)), ∀0, 1 ∈ {0, 1}< . (3.9)

Using that (�-(0)�/(1))† = (−1)0·1�-(0)�/(1), the same condition must hold of the right-

hand side of (3.9), thus ℎ-(0, 1) · ℎ/(0, 1) = 0 · 1 mod 2. To any family of observables
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{-(0), /(1), 0, 1 ∈ {0, 1}<} satisfying the Pauli anti-commutation relations we associate, for

0, 1 ∈ {0, 1}< ,

�(0, 1) = 80·1-(0)/(1), �(0, 1) = 80·1-(ℎ-(0, 1))/(ℎ/(0, 1)), (3.10)

where the phase 80·1 is introduced to ensure that �(0, 1) and �(0, 1) are observables. Define -'
in terms of ', and �(0, 1) in terms of �(0, 1) and �(0, 1), as in (3.4). The Clifford conjugation

test aims to test for the conjugation relation -'�(0, 1)-†' = �(0, 1), for all (in fact, on average

over a randomly chosen) (0, 1). For this, we first need a test that ensures �(0, 1) and �(0, 1)
themselves have the correct form, in terms of a tensor product of Pauli observables. Such a

test was introduced in [35], where it is called “Pauli braiding test”. The test certifies the Pauli

relations

P(<){-,., /} =
{
,(0) ∈ Obs : , ∈ {-,., /}< , 0 ∈ {0, 1}<

}
∪

{
,(0), ′(0′) = (−1)|{8:,8≠,

′
8
∧08 0′8=1}|, ′(0′),(0) : ,,, ′ ∈ {-,., /}= , 0, 0′ ∈ {0, 1}<

}
∪

{
,(0),(0′) =,(0 + 0′) : , ∈ {-,., /}= , 0, 0′ ∈ {0, 1}<

}
.

The Pauli braiding test, which is due to [35], allows to test for tensor products of �- and �/
Pauli observables. We recall the test in Appendix A.4.1. In Appendix A.4.3 we extend the test to

include Pauli �. . We refer to the extended test as pbt(-,., /). For the extended test we can

show the following; see Appendix A.4.3 for the proof.

Lemma 3.6. Suppose |#〉 ∈ ℋA ⊗ ℋB and,(0) ∈ Obs(ℋA), for, ∈ {-,., /}< and 0 ∈ {0, 1}< ,
specify a strategy for the players that has success probability at least 1 − � in the extended Pauli

braiding test pbt(-,., /) described in Figure 32. Then there exist a state |aux〉ÂB̂ and isometries

+� : ℋD → ((ℂ2)⊗<)D′ ⊗ ℋ̂D̂, for � ∈ {�, �}, such that

(+� ⊗ +�)|#〉AB − |EPR〉⊗<A′B′ |aux〉ÂB̂



2

= $(
√
�),

and on expectation over, ∈ {-,., /}< ,

E

0∈{0,1}<



(,(0) −+†�(�, (0) ⊗ Δ, (0))+�) ⊗ Id� |#〉


2

= $(
√
�), (3.11)

where Δ, (0) =
∏

8 Δ
08
,8
∈ Obs(ℋÂ) are observables with Δ- = Δ/ = Id and Δ. an arbitrary observable

on ℋ̂
�̂
. Moreover, similar conditions hold on the B systems and

Δ. ⊗ Δ. |aux〉 − |aux〉



2

= $(
√
�) ,

where as usual we use the same label for an observable acting on registers A or B.
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Building on the Pauli braiding test and the conjugation test from the previous section, the

Clifford conjugation test conj-cliff(') described in Figure 5 provides a test for the set of relations

Jℎ( ,ℎ- ,ℎ/ {'} = P(<){-,., /} ∪ {' ∈ U} ∪ {Δ. ∈ Obs}
∪

{
'-(0)/(1)'† = Δℎ((0,1)

.
-(ℎ-(0, 1))/(ℎ/(0, 1)) : 0, 1 ∈ {0, 1}<

}
∪

{
Δ.-(0) = -(0)Δ. , Δ./(1) = /(1)Δ. : 0, 1 ∈ {0, 1}<

}
. (3.12)

Note the presence of the observable Δ. , which arises from the conjugation ambiguity in the

definition of . (see Lemma 3.6).

Test conj-cliff(R):

• Input: ' an <-qubit Clifford unitary. Let ℎ( , ℎ- , ℎ/ be such that (3.9) holds, and

�(0, 1), �(0, 1) the observables defined in (3.10).

• Relations: Jℎ( ,ℎ- ,ℎ/ {'} defined in (3.12).

• Test: execute each of the following with equal probability

(a) Execute test pbt(-,., /) on (< + 1) qubits, where the last qubit is called the “control”

qubit;

(b) Select 0, 1 ∈ {0, 1}< uniformly at random. Let �(0, 1) be the observable defined from

�(0, 1) and �(0, 1) in (3.4), with the block structure specified by the control qubit.

Execute test conj{�(0, 1), �(0, 1), '}. In the test, to specify query �(0, 1) or �(0, 1),
represent each as a string in {� , -, ., /}< (omitting the additional phase 8, which is

applied by the prover but not specified explicitly on the query label) and use the

same label as for the same query when it is used in part (a).

Figure 5: The Clifford conjugation test, conj-cliff(').

Lemma 3.7. Let ' be an <-qubit Clifford unitary and ℎ( , ℎ- , ℎ/ such that (3.9) holds. Suppose a

strategy for the players succeeds with probability at least 1 − � in test conj-cliff('). Let +� : ℋA →
((ℂ2)⊗(<+1))A′ ⊗ℋÂ be the isometry whose existence follows from part (a) of the test, andΔ. the observable

onℋÂ′ that represents the phase ambiguity (see Lemma 3.6). Then there exists a unitary Λ' onℋÂ and

another unitary Λ' onℋB̂, such that each commutes with Δ. on the same system and

Λ' ⊗ Λ' |aux〉 − |aux〉


2

= $(poly(�)), (3.13)

where |aux〉 is the state defined in Lemma 3.6. Moreover, let �̂' be any <-qubit Clifford unitary, acting

on the space (ℂ2)⊗< into which the isometry +� maps, which satisfies the relations specified in (3.9),

where for any location 8 ∈ {1, . . . , <} such that 08 = 18 = 1 we replace �-�/ by �. = �. ⊗ (8Δ.).11

11Note that �̂' is uniquely defined up to phase.
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Then, letting �' = �̂'(IdA′ ⊗Λ') we have that under the same isometry,

' '
poly(�) �' .

In the lemma, the unitary Λ' is necessary because whenever a unitary ' satisfies the

relations (3.9) the unitary ' ⊗ Λ' satisfies them as well, where Λ' is any unitary acting on an

ancilla system. In Section 3.5 we show that these unitaries can be ignored when looking at

post-measurement states in the protocol, which is what will ultimately be important for us.

Note that �̂' is only defined up to phase in the lemma. Any representative will do, as the

phase ambiguity can be absorbed in Λ'. As an example, in this notation we have

�̂� =
1√
2

(
− �- + �. ⊗ Δ.

)
, �̂� =

1√
2

(
�- + �. ⊗ Δ.

)
, (3.14)

where the “honest” single-qubit Clifford observables �� and �� are defined in (2.2).

Completeness of the test is clear, as players making measurements on (< + 1) shared EPR

pairs using standard Pauli observables, ', and �(0, 1) defined in (3.4) with �(0, 1) and �(0, 1)
as in (3.10) will pass all tests with probability 1.

Proof sketch. For � ∈ {�, �} let +� be the isometries that follow from part (a) of the test and

Lemma 3.6. According to (3.10), �(0, 1) and �(0, 1) can each be expressed (up to phase) as a

tensor product of -,., / operators, where the number of occurrences of . modulo 2 is 0 · 1
for �(0, 1) and ℎ-(0, 1) · ℎ/(0, 1) = 0 · 1 mod 2 for �(0, 1). Thus the labels used to specify

the observables in �(0, 1) and �(0, 1) in part (b), together with the analysis of part (a) and

Lemma 3.6, imply that under the same isometry we have

�(0, 1) '√� �-(0)�/(1) ⊗ (8Δ.)0·1 and �(0, 1) '√� �-(ℎ-(0, 1))�/(ℎ/(0, 1)) ⊗ (8Δ.)0·1+ℎ((0,1) ,

where the imaginary phase comes from (3.10). Applying the analysis of the conjugation test

given in Lemma 3.5 shows that -' must have the form in (3.4), for some ' that approximately

conjugates �(0, 1) to �(0, 1), on average over uniformly random 0, 1 ∈ {0, 1}< .
Let �̂' be as defined in the lemma. Note that �̂' acts onℋA′ andℋÂ. After application of the

isometry, ' has an expansion

' ' �̂' ·
(∑
0,1

�-(0)�/(1) ⊗ Λ'(0, 1)
)
, (3.15)

for arbitrary Λ'(0, 1) on ℋÂ; since �̂' is invertible such an expansion exists for any operator.

Using the approximate version of (3.9) certified by the conjugation test (Lemma 3.5),

'+†�
(
�-(0)�/(1) ⊗ Δ0·1.

)
+� ≈ +†�

(
�-(ℎ-(0, 1))�/(ℎ/(0, 1)) ⊗ Δ0·1+ℎ((0,1).

)
+�',

where the approximation holds on average over a uniformly random choice of (0, 1) and up to

error that is polynomial in � but independent of <. Expanding out ' and using the consistency
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relations between the two players,∑
2,3

�̂'
(
�-(2)�/(3) ⊗ Λ'(2, 3)

)
⊗

(
(−1)0·1�-(0)�/(1) ⊗ Δ0·1.

)
≈

∑
2,3

(
�-(ℎ-(0, 1))�/(ℎ/(0, 1)) ⊗ Δ0·1+ℎ((0,1).

)
�̂'

(
�-(2)�/(3) ⊗ Λ'(2, 3)

)
⊗ Id ,

(3.16)

where the factor (−1)0·1 comes from using(
�-(0)�/(1) ⊗ Id

)
|EPR〉⊗< =

(
Id⊗

(
�-(0)�/(1)

)) ) |EPR〉⊗< .

The approximation in (3.16) and the following equations are meant on average over uniformly

random 0, 1 ∈ {0, 1}= . Using the conjugation relations satisfied, by definition, by �̂', the
right-hand side of (3.16) simplifies to∑

2,3

�̂'
(
�-(0)�/(1)�-(2)�/(3) ⊗ Δ0·1. Λ'(2, 3)

)
⊗ Id . (3.17)

Next using the fact that the state on which the approximations are measured is maximally

entangled across registers A and B together with the Pauli (anti-)commutation relations to

simplify the left-hand side of (3.16), together with (3.17) we arrive at the approximation∑
2,3

(
(−1)0·3+1·2�-(0 + 2)�/(1 + 3) ⊗ Λ'(2, 3)

)
⊗

(
Id⊗Δ0·1.

)
≈

∑
2,3

(
�-(0 + 2)�/(1 + 3) ⊗ Δ0·1. Λ'(2, 3)

)
⊗ Id .

If (2, 3) ≠ (0, 0) a fraction about half of all (0, 1) such that 0 · 1 = 0 satisfy 0 · 3 + 1 · 2 = 1.

Using that {�-(0)�/(1) ⊗ Id |EPR〉} are orthogonal for different (0, 1), the above then implies

that Λ'(2, 3) ≈ −Λ'(2, 3), on average over (2, 3) ≠ (0, 0). Hence Λ'(2, 3) ≈ 0, on average over

(2, 3) ≠ (0, 0). Considering (0, 1) such that 0 ·1 = 1 implies thatΛ'(0, 0) approximately commutes

with Δ. . Finally, the relation (3.13) follows from consistency of -' with itself implicitly enforced

in the test (see Section 3.1.3). �

3.4 Tensor products of single-qubit Clifford observables

We turn to testing observables in the <-fold direct product of the Clifford group. Although

the test can be formulated more generally, for our purposes it will be sufficient to specialize

it to the case where each element in the direct product is an observable taken from the set

Σ = {-,., /, �, �} associated with the single-qubit Pauli observables defined in Section 2.1.

Recall that the associated operators satisfy the conjugation relation �.���. = ��, which will be

tested as part of our procedures (specifically, item (c) in Figure 6).
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The test is described in Figure 6. It is divided in five parts. Part (a) of the test executes

conj-cliff(,) to verify that an observable, ∈ Σ< satisfies the appropriate Pauli conjugation

relations (3.9). Note that a priori test conj-cliff(,) only tests for the observable -, obtained

from, in blocks as -' from ' in (3.4) (indeed, in that test, need not be an observable). Thus

part (b) of the test is introduced to verify that -, ≈ ,-(4<+1), where the (< + 1)-st qubit is
the one used to specify the block decomposition relating -, to, . The result of parts (a) and

(b) is that, under the same isometry as used to specify the Pauli - and /,, ' �̂, · (Id⊗Λ, ),
according to the same decomposition as shown in Lemma 3.7. The goal of the remaining three

parts of the test is to verify that Λ, = Λ
|{8:,8∈{�,�}}|
�

, for a single observable Λ� . For this, part (c)

of the test verifies that Λ, only depends on the locations at which,8 ∈ {�, �}, but not on the

specific observables at those locations. Part (d) verifies that Λ, ≈
∏

8:,8∈{�,�} Λ8 for commuting

observables Λ8 . Finally, part (e) checks that Λ8 is (approximately) independent of 8.
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Test cliff(Σ, <):

• Input: An integer < and a subset Σ = {-,., /, �, �} of the single-qubit Clifford group.

• Test: Select , ∈ Σ< uniformly at random. Execute each of the following with equal

probability:

(a) Execute the test conj-cliff(,);
(b) Send one player either the query, , or -, and the other (,, -(4<+1)), where 4<+1

indicates the control qubit used for part (a). Receive one bit from the first player,

and two from the second. If the query to the first player was, , check that the first

player’s answer is consistent with the second player’s first answer bit. If the query to

the first player was -, , then: If the second player’s second bit is 0, check that his first

bit is consistent with the first player’s; If the second player’s second bit is 1, check

that his first bit is different than the first player’s.

(c) Let ( and ) be subsets of the positions in which,8 = � and,8 = �, respectively, are

chosen uniformly at random. Let, ′ equal, except, ′
8
= � for 8 ∈ (, and, ′

8
= �

for 8 ∈ ). Let ' = .(∑8∈(∪) 48). Execute test conj(,,, ′, ').
(d) Set, ′

8
= -,., �, �8 whenever,8 = ., -, �8 , �, respectively. Set,

′
8
= - whenever

,8 = /. Execute test pbt(,,, ′) on < qubits.

(e) Let ( and ) be subsets of (non-overlapping) pairs of positions in which,8 = � and

,8 = �, respectively, chosen uniformly at random. Send one player the query, ,

with entries (8 , 9) ∈ ( ∪) removed and replaced by Φ8 , 9 (indicating a measurement in

the Bell basis).

– With probability 1/2, send the other player the query, . Check consistency of

outcomes associated with positions not in (∪). For outcomes in (∪), check the

natural consistency as well. E. g., if the Bell measurement indicated the outcome

Φ00, then the two outcomes reported by the other player at those locations should

be identical.

– With probability 1/2, execute an independent copy of the Bell measurement test

Bell (Figure 29) between the first and second players in each of the pair of qubits

in ( ∪ ).

Figure 6: The <-qubit Clifford test, cliff(Σ, <).
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Theorem 3.8. Suppose a strategy for the players succeeds in test cliff(Σ, <) (Figure 6) with probability

at least 1 − �. Then for � ∈ {�, �} there exists an isometry

+� : ℋD → (ℂ2)⊗<D′ ⊗ ℋD̂

such that 

(+� ⊗ +�)|#〉AB − |EPR〉⊗<A′B′ |aux〉ÂB̂



2

= $(
√
�), (3.18)

and

E

,∈Σ< , 2∈{0,1}<




Id� ⊗

(
+�,(2) − �, (2)+�

)
|#〉AB



2

= $(poly(�)). (3.19)

Here �, is defined from , as in Lemma 3.7, with Λ,8
= Id if ,8 ∈ {-,., /} and Λ,8

= Λ� if

,8 ∈ {�, �}, where Λ� is an observable onℋB̂ that commutes with Δ. .

Proof sketch. We indicate all steps of the proof, but omit some of the more routine calculations

for legibility. The existence of the isometry, as well as (3.18) and (3.19) for, ∈ {� , -, ., /}< ,
follows from the test pbt(-,., /), executed as part of the Clifford conjugation test from part

(a), and Lemma 3.6. Using part (a) of the test and Lemma 3.7 it follows that every, ∈ Σ< is

mapped under the same isometry to

, '√� �, = �̂, (Id⊗Λ, ), (3.20)

where �̂, is as defined in the lemma and Λ, is an observable onℋÂ which may depend on the

whole string, ; here we also use the consistency check in part (b) to relate the observable -,
used in the Clifford conjugation test with the observable, used in part (c). Note that from the

definition we can write �̂, = ⊗8 �̂,8
, where in particular �̂- = �- , �̂/ = �/ and �̂. = �. ⊗ Δ. .

The analysis of the conjugation test given in Lemma 3.5 shows that success with probability

1 − $(�) in part (c) of the test implies the relations

�̂,�'(Id⊗Λ, ) = �'�̂, (Id⊗Λ, )
≈√� �̂,′�'(Id⊗Λ,′),

where the first equality is by definition of �', and uses that �. = �. ⊗Δ. and Δ. commutes with

Λ, ; the approximation holds as a consequence of the conjugation test and should be understood

on average over a uniformly random choice of, ∈ Σ< . Thus Λ, depends only on the locations

at which,8 ∈ {�, �}, but not on the particular values of the observables at those locations.

Part (d) of the test and Lemma 3.6 imply that the observables ,(0) satisfy approximate

linearity conditions ,(0),(0′) ≈ ,(0 + 0′), on average over a uniformly random choice of

, ∈ Σ= and 0, 0′ ∈ {0, 1}= . Using the form (3.20) for , and the fact that the �̂, (0) satisfy
the linearity relations by definition, we deduce that Λ,(0)Λ,(0′) ≈ Λ,(0+0′) as well. Using the

analysis of the Pauli braiding test (Lemma 3.6), this implies that for each 8 and,8 there is an

observableΛ8 ,,8
such that theΛ8 ,,8

pairwise commute andΛ, ≈
∏

8 Λ8 ,,8
. Using the preceding

observations, Λ8 ,,8
≈ Λ8 if,8 ∈ {�, �}, and Λ8 ,,8

≈ Id if,8 ∈ {-,., /}.
Success in part (e) of the test implies the condition E, 〈# |, ⊗,Φ |#〉 ≥ 1 − $(�), where

, is distributed as in the test, and,Φ is the observable applied by the second player upon
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a query , , with some locations, indexed by pairs in ( and ), have been replaced by the Φ

symbol (as described in the test). Let* be the set of 8 such that,8 ∈ {�, �}. Since Δ. commutes

with all observables in play, for clarity let us assume in the following that Δ. = Id. From the

decomposition of the observables, obtained so far and the analysis of the test Bell given in

Lemma A.4 it follows that

, '
(
⊗8 �̂,8

)
⊗

(∏
8∈*

Λ8

)
, and ,Φ '

(
⊗8∉(∪) �̂,8

)
⊗

(
⊗(8 , 9)∈(∪) SW8 , 9

)
⊗

( ∏
8∈*\(∪)

Λ8

)
,

where the ordering of tensor products does not respect the ordering of qubits, but it should be

clear which registers each operator acts on. Using that for any operators �, � and Δ,

〈EPR|⊗2
(
� ⊗ � ⊗ |Φ00〉〈Φ00 |

)
|EPR〉⊗2 =

1

8

Tr

(
��)

)
,

the above conditions imply

E

(={(B8 ,B′8)}
E

)={(C8 ,C′8 )}
ΛB8ΛB′8

ΛC8ΛC′8
≈ Id,

where the expectation is taken over sets ( and ) specified as in part (e), for a given, , and on

average over the choice of, . Let Λ = E8 Λ8 . By an averaging argument it follows that for* the

set of locations such that,8 ∈ {�, �},
∏

8∈* Λ8 ≈ Λ|( | , again on average over the choice of, . To

conclude we let Λ� = Λ/|Λ|, which is an observable and satisfies the required conditions. �

3.5 Post-measurement states

We prove Theorem 3.1. The remaining work consists in “lifting” the phase ambiguity Λ, which

remains in the statement of Theorem 3.8 (in contrast to the ambiguity Δ. , which itself cannot be

lifted solely by examining correlations). This ambiguity means that the players have the liberty

of choosing to report opposite outcomes whenever they apply an � or � observable, but they

have to be consistent between themselves and across all of their qubits in doing so. To verify

that the provers use the “right” labeling for their outcomes we incorporate a small tomography

test. Our final test rigid(Σ, <), which builds on all tests developed in this section, is described

in Figure 7. Note that a drawback of the tomography is that the test no longer achieves perfect

completeness (although completeness remains exponentially close to 1).
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Test rigid(Σ, <):

• Input: An integer < and a subset Σ = {-,., /, �, �} of the single-qubit Clifford group.

• Test: execute each of the following with equal probability:

(a) Execute the test cliff(Σ, <);
(b) Send each player a uniformly random query,,, ′ ∈ Σ< . Let ) ⊆ {1, . . . , <} be the

subset of positions 8 such that,8 ∈ {-,.} and, ′8 ∈ {�, �}. Reject if the fraction of

answers (08 , 18), for 8 ∈ ), from the players that satisfy the CHSH correlations (i. e.,

08 ≠ 18 if and only if (,8 ,,
′
8
) = (-, �)) is not at least cos

2 �
8
− 0.1.

Figure 7: The =-qubit rigidity test, rigid(Σ, <).

Proof of Theorem 3.1. From Theorem 3.8 and part (a) we get isometries +�, +� and commut-

ing observables Δ. , Λ� on ℋÂ such that the conclusions of the theorem hold. Write the

eigendecomposition Δ. = Δ
+
.
− Δ−

.
and Λ� = Λ

+
�
−Λ−

�
. For � ∈ {+,−}2 let

�� = TrB̂
( (

IdÂ ⊗Δ
�1

.
Λ
�2

�

)
|aux〉〈aux|

(
IdÂ ⊗Δ

�1

.
Λ
�2

�

) )
.

Using that Δ. and Λ� commute and satisfy

Δ. ⊗ Δ. |aux〉 ≈ Λ� ⊗ Λ� |aux〉 ≈ |aux〉
it follows that the (subnormalized) densities �� have (approximately) orthogonal support. In

particular the provers’ strategy in part (b) of the test is well-approximated by a mixture of

four strategies, labeled by (�. ,��) ∈ {±1}2, such that the strategy with label (�. ,��) uses the
observables

(-, /, ., �, �) =
(
�- , �/ , �.�. ,

1√
2

��
(
− �- + �.�.

)
,

1√
2

��
(
�- + �.�.

) )
.

Among these four strategies, the two with �� = −1 fail part (b) of the test with probability

exponentially close to 1. Success in both parts of the test with probability at least 1 − 2� each
thus implies

Tr

(
�+−

)
+ Tr

(
�−−

)
= poly(�). (3.21)

For , ∈ Σ< and 2 ∈ {0, 1}< the observable ,(2) = ⊗8, 28
8

can be expanded in terms of a

2
<
-outcome projective measurement {,D} as

,(2) =
∑

D∈{0,1}<
(−1)D·2,D .

Similarly, by definition the projective measurement associated with the commuting Pauli

observables �, (2) = ⊗8�28,8
, 2 ∈ {0, 1}< , is

�D, =
⊗
8

(
E

2∈{0,1}<
(−1)D·2�, (2)

)
.
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Thus,

E

2∈{0,1}<




Id� ⊗

(
,(2) −+†��, (2)+�

)
|#〉AB



2

= E

2∈{0,1}<




∑
D

(−1)D·2 Id� ⊗
(
,D −+†��

D
,+�

)
|#〉AB




2

=
∑

D∈{0,1}<




Id� ⊗

(
,D −+†��

D
,+�

)
|#〉AB



2

, (3.22)

where the third line is obtained by expanding the square and using E2∈{0,1}< (−1)E·2 = 1 if E = 0
<
,

and 0 otherwise. Using (3.19), the expression in (3.22), when averaged over all , ∈ Σ< , is
bounded by $(poly(�)). Using the Fuchs-van de Graaf inequality and the fact that trace distance

cannot increase under tracing out, we get that the following is $(poly(�)):

E

,∈Σ<

∑
D




+�TrB
(
(IdA ⊗,D)|#〉〈# |(IdA ⊗,D)†

)
+†� − TrB

(
(IdA ⊗�D, )|#〉〈# |(IdA ⊗�D, )

†)



1

. (3.23)

Using that �- = �- , �/ = �/, and �. = �.Δ. , we deduce the post-measurement states for

D ∈ {±1}

�D- = �D- , �D/ = �D/ , �D. = �D. ⊗ (�++ + �+−) + �
−D
. ⊗ (�−+ + �−−).

Similarly, from �� = (−�- + �.)Λ� and �� = (�- + �.)Λ� we get, e. g., that the +1 eigenspace of

�� is the combination of:

• The simultaneous +1 eigenspace of �� = (−�- + �.)/
√

2, +1 eigenspace of Δ. , and +1

eigenspace of Λ�;

• The simultaneous −1 eigenspace of ��, +1 eigenspace of Δ. , and −1 eigenspace of Λ�;

• The simultaneous −1 eigenspace of �� = −(−�- − �.)/
√

2, −1 eigenspace of Δ. , and +1

eigenspace of Λ�;

• The simultaneous +1 eigenspace of ��, −1 eigenspace of Δ. , and −1 eigenspace of Λ�.

Proceeding similarly with ��, we obtain

�D� = �D� ⊗ �++ + �
−D
� ⊗ �+− + �

−D
� ⊗ �−+ + �

D
� ⊗ �−− ,

�D� = �D� ⊗ �++ + �
−D
� ⊗ �+− + �

−D
� ⊗ �−+ + �

D
� ⊗ �−−.

Starting from (3.23) and using (3.18) we obtain

E

,∈Σ<

∑
D




+�TrB
(
(IdA ⊗,D)|#〉〈# |(IdA ⊗,D)†

)
+†�

− TrB
(
(IdA ⊗�D, )|EPR〉〈EPR|⊗< ⊗ |aux〉〈aux|ÂB̂(IdA ⊗�D, )

†)



1

= $(poly(�)).

Since TrB(Id⊗�|EPR〉〈EPR|AB Id⊗�†) = (�†�))/2 for any single-qubit operator �, to conclude

the bound claimed in the theorem it only remains to apply the calculations above and use (3.21)

to eliminate the contribution of �+− and �−−; the factor 1

2
comes from the reduced density matrix

of an EPR pair. �
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3.6 Tomography

Theorem 3.8 and Theorem 3.1 show that success in test rigid(Σ, <) gives us control over the
players’ observables and post-measurement states in the test. This allows us to use one of

the players to perform some kind of limited tomography (limited to post-measurement states

obtained from measurements in Σ), that will be useful for our analysis of the Dog-Walker

Protocol from Section 5.12

Let 1 ≤ <′ ≤ < and consider the test tom(Σ, <′, <) described in Figure 8. In this test,

one player is sent a question , ∈ Σ< chosen uniformly at random. Assuming the players

are also successful in the test rigid(Σ, <) (which can be checked independently, with some

probability), using that the input distribution � in rigid(Σ, <) assigns weight at least |Σ|−</2 to

any, ′ ∈ Σ< , from Theorem 3.1 it follows that the second player’s post-measurement state is

close to a state consistent with the first player’s reported outcomes. Now suppose the second

player is sent a random subset ( ⊆ [<] of size |( | = <′, and is allowed to report an arbitrary

string, ′ ∈ Σ<′, together with outcomes D. Suppose also that for each 8 ∈ (, we require that

D8 = 08 whenever , ′
8
= ,8 . Since the latter condition is satisfied by a constant fraction of

8 ∈ {1, . . . , <′}, irrespective of, ′, with very high probability, it follows that the only possibility

for the second player to satisfy the condition is to actually measure his qubits precisely in the

basis that he indicates. This allows us to check that a player performs a measurement of its

choice correctly (i. e., the player is forced to report the correct measurement made).

Tomography Test tom(Σ, <′, <):

• Input: Integer 1 ≤ <′ ≤ < and a subset Σ = {-,., /, �, �} of the single-qubit Clifford

group.

• Test: Let ( ⊆ [<] be chosen uniformly at random among all sets of size |( | = <′. Select
, ∈ Σ< uniformly at random. Send , to the first player, and the set ( to the second.

Receive 0 from the first player, and, ′ ∈ Σ<′ and D from the second. Accept only if 08 = D8
whenever 8 ∈ ( and,8 =,

′
8
.

Figure 8: The <-qubit tomography test tom(Σ, <′, <).

Corollary 3.9. Let � > 0 and 1 ≤ <′ ≤ < integer. Suppose a strategy for the players succeeds with

probability 1 − � in both tests rigid(Σ, <) (Figure 7) and tom(Σ, <′, <) (Figure 8). Let +� , +� be the
isometries specified in Theorem 3.1. Let {&,′,D} be the projective measurement applied by the second

12The tomography test described in this section is different from subtest (b) in rigid(Σ, <) (Figure 7). The

tomography test described here is more general and designed to verify that a player prepares post-measurement

states of its choice.
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player in tom(Σ, <′, <). Then there exists a distribution @ on Σ<
′ × {±} such that∑

,′∈Σ<′

∑
D∈{±1}<′




TrAB̂
(
(Id� ⊗+�&,′,D)|#〉〈# |AB(Id� ⊗+�&,′,D)†

)
−

∑
�∈{±}

@(, ′,�)
( <′⊗
8=1

1

2

�D8
,′
8
,�

)



1

= $(poly(�)),

where the notation is the same as in Theorem 3.1.

Moreover, players employing the honest strategy succeed with probability 1 in the tom(Σ, <′, <).

Proof. Success in rigid(Σ, <) allows us to apply Theorem 3.1. For any (, ′, D) let �,
′,D

A’,� be the

post-measurement state on the first player’s space, conditioned on the second player’s answer in

test tom(Σ, <′, <) being (, ′, D), after application of the isometry +�, and conditioned onℋÂ
being in a state that lies in the support of �� (note this makes sense since �+, �− have orthogonal
support). Using that for any 8 ∈ (,,8 =,

′
8
with constant probability |Σ|−1

, it follows from (3.1)

and (3.2) in Theorem 3.1 that success in tom(Σ, <) implies the condition

E

(⊆{1,...,<}
|( |=<′

∑
,′,�,D

Tr(��)Tr
(( |Σ| − 1

|Σ| Id+ 1

|Σ| ⊗8∈( �
D8
,′
8
,�

)
�,

′,D
A’,�

)
= 1 − $(poly(�)). (3.24)

Eq (3.24) concludes the proof, for some distribution @(, ′,�) ≈ ∑
D Tr(�,

′,D
A’,� )Tr(��) (the approx-

imation is due to the fact that the latter expression only specifies a distribution up to error

$(poly(�)). �

4 The Verifier-on-a-Leash protocol

4.1 Protocol and statement of results

The Verifier-on-a-Leash Protocol (or “Leash Protocol” for short) involves a classical verifier and

two quantum provers. The idea behind the Leash Protocol is to have a first prover, nicknamed

PV for Prover + , carry out the quantum part of +�%' from Broadbent’s EPR Protocol by

implementing the procedure + A
�%'

.13 A second prover, nicknamed PP for Prover %, will play

the part of the prover %�%'. Unlike in the EPR Protocol, the interaction with PV (i. e., running

+ A
�%'

) will take place first, and PV will be asked to perform random measurements from the set

Σ = {-,., /, �, �}. The values ®I, rather than being chosen at random, will be chosen based

on the corresponding choice of observable. We let = be the number of input bits and C be the

number of T gates in &.

The protocol is divided into two subgames; which game is played is chosen by the verifier

by flipping a biased coin with probability (?A , ?3 = 1 − ?A).

13Throughout this section we assume that the circuit & provided as input is compiled in the format described in

Section 2.4, which also provides a summary of the protocol and a description of +�%' .
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• The first game is a sequential version of the rigidity game rigid(Σ, <) described in Figure 11.

This aims to enforce that PV performs precisely the right measurements;

• The second game is the delegation game, described in Figures 12, 13, and 14, and whose

structure is summarized in Figure 9. Here the verifier guides PP through the computation

in a similar way as in the EPR Protocol.

We call the resulting protocol the Leash Protocol with parameters (?A , ?3). In both subgames

the parameter < = Θ(= + C) is chosen large enough so that with probability close to 1 each

symbol in Σ appears in a random, ∈ Σ< at least = + C times. It is important that PV is not

able to tell which kind of game is being played. Notice also that in order to ensure blindness,

we will require that the interaction with PV in the delegation game is sequential (more details

on this are found in Section 4.4). In order for the two subgames to be indistinguishable, we

also require that the rigidity game rigid(Σ, <) be played sequentially (i. e., certain subsets of

questions and answers are exchanged sequentially, but the acceptance condition in the test is the

same). Note, importantly, that the rigidity guarantees of rigid(Σ, <) hold verbatim when the

game is played sequentially, since this only reduces the number of ways that the provers can

cheat. The following theorem states the guarantees of the Leash Protocol.

Theorem 4.1. There are constants ?A , ?3 = 1 − ?A , and Δ > 0 such that the following hold of the

Verifier-on-a-Leash Protocol with parameters (?A , ?3), when executed on an input (&, | ®G〉).

• (Completeness:) Suppose that ‖Π0& | ®G〉‖2 ≥ 2/3. Then there is a strategy for PV and PP that is

accepted with probability at least ?compl = ?A(1 − e
−Ω(=+C)) + 8?3/9.

• (Soundness:) Suppose that ‖Π0& | ®G〉‖2 ≤ 1/3. Then any strategy for PV and PP is accepted with

probability at most ?sound = ?compl − Δ.

Further, for any strategy of PV and PP, the reduced state of PV and PP, resp., at the end of the leash

protocol is independent of the input ®G, aside from its length.

The proof of the completeness property is given in Lemma 4.2. The soundness property is

shown in Lemma 4.5. Blindness is established in Section 4.4. We first give a detailed description

of the protocol. We start by describing the delegation game, specified in Figures 12, 13 and 14,

which describe the protocol from the verifier’s view, an honest PV’s view, and an honest PP’s

view, respectively. This will motivate the need for a sequential version of the game rigid(Σ, <),
described in Figure 11. As we will show, the rigidity game forces PV to behave honestly. Thus,

for the purpose of exposition, we assume for now that PV behaves honestly, which results in the

joint behavior of PV and V being similar to that of the verifier +�%' in the EPR Protocol.
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Verifer

Prover +

Prover %

�,,� ∈ Σ|�|

®4� ∈ {0, 1} |�|

�1 ,,�1
∈ Σ|�1 |

®4�1
∈ {0, 1} |�1 |

...

�3 ,,�3 ∈ Σ|�3 |

®4�3 ∈ {0, 1} |�3 |

), # ⊂ [<]

®2)1
∈ {0, 1})1

®I)1
∈ {0, 1})1

...

®2)ℓ ∈ {0, 1})ℓ

®I)ℓ ∈ {0, 1})ℓ

2 5 ∈ {0, 1}

Figure 9: Structure of the delegation game.

From the rigidity game we may also assume that PV and PP share < EPR pairs, labeled

{1, . . . , <}, for < = Θ(= + C). We will assume that the circuit & is broken into 3 layers,

& = &1 . . . &3, such that in every &ℓ , each wire has at most one T gate applied to it, after which

no other gates are applied to that wire. We will refer to 3 as the T-depth of the circuit. We will

suppose the T gates are indexed from 1 to C, in order of layer.

The protocol begins with an interaction between the verifier and PV. The verifier selects

a uniformly random partition �, �1 , . . . , �3 of {1, . . . , <}, with |�| = Θ(=), and for every

ℓ ∈ {1, . . . , 3}, |�ℓ | = Θ(Cℓ ), where Cℓ is the number of T gates in &ℓ . The verifier also selects a

uniformly random, ∈ Σ< , and partitions it into substrings,� and,�1
, . . . ,,�3 , meant to

contain observables to initialize the computation qubits and auxiliary qubits, respectively, for

each layer of T gates. The verifier instructs PV to measure his halves of the EPR pairs using the

observables,� first, and then,�1
, . . . ,,�3 , sequentially. Upon being instructed to measure a

set of observables, PV measures the corresponding half-EPR pairs and returns the results ®4 to
the verifier. Breaking this interaction into multiple rounds is meant to enforce that, for example,

the results output by PV upon receiving,�ℓ , which we call ®4�ℓ , cannot depend on the choice of

observables,�ℓ+1
. This is required for blindness.

Once the interaction with PV has been completed, as in the EPR Protocol, V selects one of

three run types: computation (A = 0), --test (A = 1), and /-test (A = 2). The verifier selects a
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subset # ⊂ � of size = of qubits to play the role of inputs to the computation. These are chosen

from the subset of � corresponding to wires that PV has measured in the appropriate observable

for the run type (see Table 4). For example, in an --test run, PV’s EPR halves corresponding to

input wires should be measured in the / basis so that PP is left with a one-time pad of the state

|0〉⊗= , so in an --test run, the computation wires are chosen from the set {8 ∈ � : ,8 = /}. The
input wires # are labeled by X1 , . . . ,X= .

The verifier also chooses subsets )ℓ = )0

ℓ
∪ )1

ℓ
⊂ �ℓ where )0

ℓ
and )1

ℓ
have sizes Cℓ ,0 and

Cℓ ,1 = Cℓ − Cℓ ,0, respectively, where Cℓ ,0 is the number of odd T gates in the ℓ -th layer of & (recall

the definition of even and odd T gates from Section 2.4). The wires )0

ℓ
and )1

ℓ
will play the role

of auxiliary states used to perform T gates from the ℓ -th layer. They are chosen from those wires

from �ℓ whose corresponding EPR halves have been measured in a correct basis, depending

on the run type. For example, in an --test run, the auxiliaries corresponding to odd T gates

should be prepared by measuring the corresponding EPR half in either the - or . basis (see

Table 3), so in an --test run, )1

ℓ
is chosen from {8 ∈ �ℓ : ,8 ∈ {-,.}} (see Table 4). We will let

T1 , . . . ,TC label those EPR pairs that will be used as auxiliary states. In particular, the system T8
will be used for the 8-th T gate in the circuit, so if the 8-th T gate is even, T8 should be chosen

from )0 = ∪ℓ)0

ℓ
, and otherwise it should be chosen from )1 = ∪ℓ)1

ℓ
. The verifier sends labels

T1 , . . . ,TC andX1 , . . . ,X= to PP, who will act as %�%' on the = + C qubits specified by these labels.

Just as in the EPR Protocol, the input on PP’s system specified by X1 , . . . ,X= is a quantum
one-time pad of either | ®G〉, |0〉⊗= , or |+〉⊗= , depending on the run type, with V holding the keys

(determined by ®4). Throughout the interaction, PP always maintains a one-time pad of the

current state of the computation, with the verifier in possession of the one-time-pad keys. The

verifier updates her keys as the computation is carried out, using the rules in Table 2.

From PP’s perspective, the protocol works just as the EPR Protocol, except that he does not

receive the bit I8 needed to implement the T gadget until during the T gadget, after he has sent V

his measurement result 28 (see Figure 10).

X9 X9

T8

28

PI8

I8

I8 =


0 9 + 28 if,8 = �

0 9 + 28 + 1 if,8 = �

I ∈' {0, 1} if,8 = /

0 if,8 = -

1 if,8 = .

U,8

,8 ∈' {-,., /, �, �} 48

PP

PV

V V

Figure 10: The gadget for implementing the 8-th T gate, on the 9-th wire.

To perform the 8-th T gate on the 9-th wire, PP performs the circuit shown in Figure 10. As

Figure 10 shows, PV has already applied the observable specified by V to his half of the EPR
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pair. The T gadget requires interaction with the verifier, to compute the bit I8 , which depends on

the measured 28 , the value,8 , and one-time-pad key 0 9 , however, this interaction can be done

in parallel for T gates in the same layer.

It is simple to check that the T gadget in Figure 10 is the same as the T gadget for the EPR

Protocol shown in Figure 1. Note that in the EPR Protocol, we let 0′
8
denote the one-time-pad

key of the 9-th wire just before application of the 8-th T gate (to the 9-th wire). Here we will

assume 0 9 denotes the current updated one-time-pad key of the 9th wire, so it is the same as

0′
8
in the EPR Protocol. In the case of the leash protocol,, is chosen at random, and then ®I is

chosen accordingly, whereas in the case of the EPR Protocol, ®I is chosen at random and then,

is chosen accordingly.

Computation Run --test Run /-test Run

# {8 ∈ � : ,8 = /} {8 ∈ � : ,8 = /} {8 ∈ � : ,8 = -}
)0

ℓ
{8 ∈ �ℓ : ,8 ∈ {�, �}} {8 ∈ �ℓ : ,8 = /} {8 ∈ �ℓ : ,8 ∈ {-,.}}

)1

ℓ
{8 ∈ �ℓ : ,8 ∈ {�, �}} {8 ∈ �ℓ : ,8 ∈ {-,.}} {8 ∈ �ℓ : ,8 = /}

Table 4: How the verifier chooses index sets ) = )0 ∪ )1
and # for each type of run. These sets

determine which systems are labeled by {T8}C8=1
and {X9}=9=1

, respectively.

Let <, =, and C1 , . . . , C3 be parameters provided as input, such that < = Θ(= + C1 + · · · + C3).

1. The verifier selects questions,,, ′, for the first and second player, respectively, according

to the distribution of questions in the game rigid(Σ, <).

2. If, ∉ Σ< or, ′ ∉ Σ< :

(a) The verifier partitions {1, . . . , <} at random into subsets � and �ℓ , for ℓ ∈ {1, . . . , 3},
of size |�| = Θ(=) and |�ℓ | = Θ(Cℓ ), exactly as in Step 1 of Figure 12.

(b) The verifier sends (�,,�), (�1 ,,�1
), .., (�3 ,,�3 ) and (�,, ′�), (�1 ,,

′
�1

), .., (�3 ,, ′�3 )
in sequence to the first and second prover, respectively. They sequentially return ®4� ∈
{0, 1} |�|, ®4�1

∈ {0, 1} |�1 | , .., ®4�3 ∈ {0, 1} |�3 | and ®4′� ∈ {0, 1} |�|, ®4
′
�1

∈ {0, 1} |�1 | , .., ®4′
�3
∈

{0, 1} |�3 | , respectively. Let ®4 , ®4′ be the concatenation of ®4�8 and ®4′�8 in the correct order.

3. Otherwise: (which happens when the verifier sends instructions for Bell measurements)

(a) The verifier sends, and, ′ to the first and second prover, respectively.

(b) The first and second prover answer back with ®4 and ®4′, respectively.

4. The verifier accepts if and only if ®4 , ®4′ and ,,, ′ satisfy the winning condition of

rigid(Σ, <).

Figure 11: Sequential version of rigid(Σ, <).
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Let (&, ®G) be the input to the verifier, where & is compiled in the form described in Section 2.4.

Let = be the size of the input to &. Let 3 be the T-depth, and for ℓ ∈ {1, . . . , 3} let Cℓ be the

number of T gates in the ℓ -th layer.

1. The verifier selects, ∈' Σ< . She partitions {1, . . . , <} arbitrarily into non-overlapping

subsets � and �1 , . . . , �3 such that,� contains at least = copies of each symbol in Σ, and

for each ℓ ∈ {1, . . . , 3},,�ℓ contains at least Cℓ copies of each symbol in Σ.

2. The verifier sends �,,� to PV, who returns ®4� ∈ {0, 1}�. The verifier sequentially sends

(�1 ,,�1
), . . . , (�3 ,,�3 ) to PV, each time receiving ®4�ℓ ∈ {0, 1}�ℓ as answer.

3. The verifier selects a run type uniformly at random. She selects sets # ⊆ � and )ℓ ⊆ �ℓ ,
for ℓ ∈ {1, . . . , 3}, of sizes |# | = = and |)ℓ | = Cℓ , as follows:

Computation Run: # is chosen at random from {8 ∈ � : ,8 = /}. )ℓ is chosen at random

from {8 ∈ �ℓ : ,8 ∈ {�, �}}. She sets ®0 = ®4# + ®G and
®1 = 0

=
.

--test Run: # is chosen at random from {8 ∈ � : ,8 = /}. )ℓ = )0

ℓ
∪ )1

ℓ
, where )0

ℓ
is

of size Cℓ ,0 chosen at random from {8 ∈ �ℓ : ,8 = /} and )1

ℓ
is of size Cℓ ,1 chosen at

random from {8 ∈ �ℓ : ,8 ∈ {-,.}}. She sets ®0 = ®4# and
®1 = 0

=
.

/-test Run: # is chosen at random from {8 ∈ � : ,8 = -}. )ℓ = )0

ℓ
∪ )1

ℓ
, where )0

ℓ
is of

size Cℓ ,0 chosen at random from {8 ∈ �ℓ : ,8 ∈ {-,.}} and )1

ℓ
is of size Cℓ ,1 chosen at

random from {8 ∈ �ℓ : ,8 = /}. She sets ®0 = 0
=
and
®1 = ®4# .

The verifier sends the sets # and )0

ℓ
, )1

ℓ
, for all ℓ ∈ {1, . . . , 3}, to PP.

4. For ℓ = 1, . . . , 3,

(a) For each Clifford gate in the ℓ -th layer, perform the appropriate key update (Table 2).

(b) The verifier receives ®2 = {28}8∈)ℓ from PP. If it is an --test run and 8 ∈ )0

ℓ
, or it is a

/-test run and 8 ∈ )1

ℓ
, reject if 28 ≠ 0 9 + 48 , where 9 is the wire to which the 8-th T gate

is applied.

(c) For each 8 ∈ )ℓ , the verifier computes ®I = {I8}8∈)ℓ as follows:

Computation Run I8 = 0 9 + 1,8=� + 28 ;
--test Run if 8 ∈ )0

ℓ
, I8 ∈' {0, 1}; else if 8 ∈ )1

ℓ
, I8 = 1,8=. ;

/-test Run if 8 ∈ )0

ℓ
, I8 = 1,8=. ; else if 8 ∈ )1

ℓ
, I8 ∈' {0, 1}.

(d) The verifier sends ®I to PP and updates keys for each T gate applied (Table 2).

5. The verifier receives a bit 2 5 from PP. She outputs reject if it is a computation or --test

run and 2 5 + 0 5 ≠ 0, where 0 5 is the final X-key on the output wire; and accept otherwise.

Figure 12: The Delegation Game: Verifier’s point of view. Note that the condition 28 ≠ 0 9 + 48 is
the same as the condition 28 ≠ 0

′
8
+ 48 in the EPR Protocol — 0 9 here and 0

′
8
in the EPR Protocol

both represent the one-time-pad key just before application of the 8-th T gate.
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1. For ℓ = 0, 1, . . . , 3,

(a) PV receives a string,( ∈ Σ(, for some subset ( of {1, . . . , <}, from V.

(b) For 8 ∈ (, PV measures his half of the 8-th EPR pair using the observable indicated by

,8 , obtaining an outcome 48 ∈ {0, 1}.
(c) PV returns ®4( to V.

Figure 13: Honest strategy for PV in the Delegation game

Before describing the Delegation game, we present now the sequential version of the game

rigid(Σ, <) (Figure 11). We notice that this sequential version is no different than rigid(Σ, <),
except for the fact that certain subsets of questions and answers are exchanged sequentially, but

with the same acceptance condition. Running the game sequentially only reduces the provers’

ability to cheat, hence the guarantees from rigid(Σ, <) hold verbatim for the sequential version.

We now give the precise protocols for the delegation game V (Figure 12) and honest provers

PV (Figure 13) and PP (Figure 14).

1. PP receives subsets # and )0

ℓ
, )1

ℓ
of {1, . . . , <}, for ℓ ∈ {1, . . . , 3}, from the verifier.

2. For ℓ = 1, . . . , 3,

(a) PP does the Clifford computations in the ℓ -th layer.

(b) For each 8 ∈ )ℓ = )0

ℓ
∪ )1

ℓ
, PP applies a CNOT from T8 into the input register

corresponding to the wire on which this T gate should be performed, X9 , and
measures this wire to get a value 28 . The register T8 is relabeled X9 . He sends

®2)ℓ = {28}8∈)ℓ to V.

(c) PP receives ®I)ℓ = {I8}8∈)ℓ from V. For each 8 ∈ )ℓ , he applies PI8 to the correspond-

ing X9 .

3. PP performs the final computations that occur after the 3-th layer of T gates, measures the

output qubit, X1, and sends the resulting bit, 2 5 , to V.

Figure 14: Honest strategy for PP in the Delegation game

With all of these subprotocols in hand, we can now present the Leash protocol (Figure 15).

Figure 16 illustrates the tree-like structure of all the different subgames and tests used within

the protocol.
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1. With probability ?A , the players run the sequential version of rigid(Σ, <) as described in

Figure 11.

2. With probability ?3, the players run the delegation game, described in Figures 12, 13,

and 14.

Figure 15: Leash protocol with parameters ?A and ?3.

4.2 Leash completeness

The honest provers in the Leash Protocol are essentially executing the EPR Protocol, with the

only difference being that in the case of the leash protocol,, is chosen at random and then ®I is
chosen accordingly, whereas in the case of the EPR Protocol, ®I is chosen at random and then,

is chosen accordingly. The resulting distribution on ®I and, is the same, and so completeness

follows from that of the EPR Protocol.

Lemma 4.2. Suppose the verifier executes the rigidity game with probability ?A and the delegation game

with probability ?3 = 1 − ?A , on an input (&, | ®G〉) such that ‖Π0& | ®G〉‖2 ≥ 2/3. Then there is a strategy

for the provers which is accepted with probability at least ?compl = ?A(1 − e
−Ω(=+C)) + 8

9
?3.

Proof. The provers PV and PP play the rigidity game in accordance with the honest strategy, and

the delegation game as described in Figures 13 and 14, respectively. Their success probability

in the delegation game is the same as the honest strategy in the EPR Protocol, which is at

least
2

3
+ 2

3

1

3
= 8

9
, by Theorem 2.2 and since the verifier chooses each of the three types of runs

uniformly. �

4.3 Leash soundness

We divide the soundness analysis into three parts. First we analyze the case of an honest

PV, and a cheating PP (Lemma 4.3). Then we show that if PV and PP pass the rigidity game

with almost optimal probability, then one can construct new provers PV
′
and PP

′
, with PV

′

honest, such that the probability that they are accepted in the delegation game is not changed

by much (Lemma 4.4). In Lemma 4.5, we combine the previous to derive the desired constant

soundness-completeness gap, where we exclude that the acceptance probability of the provers

in the rigidity game is too low by picking a ?A large enough.

Lemma 4.3 (Soundness against PP). Suppose the verifier executes the delegation game on input

(&, | ®G〉) such that ‖Π0& | ®G〉‖2 ≤ 1/3 with provers (PV, PP
∗) such that PV plays the honest strategy.

Then the verifier accepts with probability at most 7/9.
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Leash Protocol

Fig. 15

?A

Rigidity

Ensure PV does mea-

surements he’s sup-

posed to by running

the sequential version

(Fig. 11) of rigid

rigid

Fig. 7

1/2 (a)

cliff

Fig. 6

Test tensor products of

single-qubit Clifford gates

1/5 (a)

conj-cliff

Fig. 5

Test that each Clifford sat-

isfies Pauli conjugation

relations

1/2 (a)

pbt

Fig. 30

Pauli braiding test

1/2
(b)

conj

Fig. 4

Conjugation test

1/5
(b)

Test block form of observ-

able -,

3/5
(c)-(e)

Force same phase ambi-

guity in the definitions of

�, � for all qubits

1/2
(b)

Lift phase ambiguity in

the definition of �, �

?3

Delegation

Fig. 9 (Fig. 12, 13, and 14) PV

uses EPR Protocol to delegate

computation to PP

1/3

--test

Ensure PP returns

correctly measured

bits, except for those

returned on odd T
gadgets

1/3
/-test

Ensure PP returns

correctly measured

bits on odd T gad-

gets

1/3

Computation

Run the computa-

tion

Figure 16: Structure of the Leash Protocol. The Verifier plays the rigidity game with probability

?A , and the delegation game with probability ?3 = 1 − ?A . In either case, a subgame is chosen,

some of which involve their own subgames. We illustrate this structure here, letting probabilities

label branches in the tree. Note that not all random choices are shown. For example, when conj

is played, it is with a random choice of inputs, but this figure illustrates the high-level structure

of the protocol, and connection to different tests.
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Proof. Let PP
∗
be any prover. Assume that PV behaves honestly and applies the measurements

specified by his query, on halves of EPR pairs shared with PP
∗
. As a result the corresponding

half-EPR pair at PP
∗
is projected onto the post-measurement state associated with the outcome

reported by PV to V.

From PP
∗
, we define another prover, %∗, such that if %∗ interacts with+�%', the honest verifer

for the EPR Protocol (Figure 3a), then +�%' rejects with the same probability that V would reject

on interaction with PP
∗
. The main idea of the proof can be seen by looking at Figure 10, and

noticing that: (1) the combined action of V and PV is unchanged if instead of choosing the

,8-values at random and then choosing I8 as a function of these, the I8 are chosen uniformly at

random, and then the,8 are chosen as a function of these; and (2) with this transformation, the

combined action of V and PV is now the same as the action of +�%' in the EPR Protocol.

We now define %∗. %∗ acts on a system that includes = + C qubits that, in an honest run of

the EPR Protocol, are halves of EPR pairs shared with +�%'. %
∗
receives {I8}C8=1

from +�%'. %
∗

creates < − (= + C) half EPR pairs (i. e., single-qubit maximally mixed states) and randomly

permutes these with his = + C unmeasured qubits, = of which correspond to computation qubits

on systemsX1 , . . . ,X= —he sets # to be the indices of these qubits — and C of which correspond

to T-auxiliary states — he sets )0
and )1

to be the indices of these qubits. %∗ simulates PP
∗
on

these < qubits in the following way. First, %∗ gives PP
∗
the index sets # , )0

, and )1
. In the

ℓ -th iteration of the loop (Step 2. in Figure 14), PP
∗
returns some bits {28}8∈)ℓ , and then expects

inputs {I8}8∈)ℓ , which %∗ provides, using the bits he received from +�%'. Finally, at the end of

the computation, PP
∗
returns a bit 2 5 , and %

∗
outputs {28}8∈) and 2 5 .

This completes the description of %∗. To show the lemma we argue that for any input

(&, | ®G〉) the probability that + outputs accept on interaction with PV and PP
∗
is the same as the

probability that+�%' outputs accept on interaction with %∗, which is at most
2

3
@C + 1

3
@2 whenever

‖Π0& | ®G〉‖2 ≤ 1/3, by Theorem 2.3. Using � = 1

3
, Theorem 2.3 gives @2 ≤ 5

3
− 4

3
@C , which yields

2

3

@C +
1

3

@2 ≤
5

9

+ 2

9

@C ≤
7

9

.

There are two reasons that +�%' might reject: (1) in a computation or --test run, the output

qubit decodes to 1; or (2) in an evaluation of the gadget in Figure 10 (either an --test run for an

even T gate, or a /-test run for an odd T gate) the condition 28 = 0 9 ⊕ 48 fails. Note that in the

description of the EPR Protocol, the one-time-pad key just before application of the 8-th T gate is

denoted 0′
8
, which we denote here by 0 9 .

We first consider case (1). This occurs exactly when 2 5 ⊕ 0 5 = 1, where 0 5 is the final X key of

the output wire, held by+�%'. We note that 0 5 is exactly the final X key that V would hold in the

Verifier-on-a-Leash Protocol, which follows from the fact that the update rules in both the EPR

Protocol and the leash protocol are the same. Thus, the probability that +�%' finds E 5 ⊕ 0 5 = 1

on interaction with %∗ is exactly the probability that V finds 2 5 ⊕ 0 5 = 1 in Step 5 of Figure 12.

Next, consider case (2). The condition 28 ≠ 0 9 ⊕ 48 is exactly the condition in which a verifier

interacting with %∗ as in Figure 12 would reject (see Step 4.(b)).

Thus, the probability that +�%' outputs reject upon interaction with %∗ is exactly the

probability that V outputs reject on interaction with PP
∗
, which, as discussed above, is at

most 7/9. �
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The following lemma shows soundness against cheating PV
∗
.

Lemma4.4. Suppose the verifier executes the leash protocol on input (&, | ®G〉) such that ‖Π0& | ®G〉‖2 ≤ 1/3
with provers (PV

∗ , PP
∗), such that the provers are accepted with probability 1 − �, for some � > 0, in

the rigidity game, and with probability at least @ in the delegation game. Then there exist provers PP
′

and PV
′
such that PV

′
applies the honest strategy and PP

′
and PV

′
are accepted with probability at least

@ − poly(�) in the delegation game.

Proof. By assumption, PP
∗
and PV

∗
are accepted in the rigidity game with probability at least

1 − �. Let +�, +� be the local isometries guaranteed to exist by Theorem 3.1, and {��} the
subnormalized densities associated with PP

∗
’s Hilbert space (recall that playing the rigidity

game sequentially leaves the guarantees from Theorem 3.1 unchanged, since it only reduces the

provers’ ability to cheat).

First define provers PV
′′
and PP

′′
as follows. PP

′′
and PV

′′
initially share the state

|#′〉AB = ⊗<8=1
|EPR〉〈EPR|AB ⊗

∑
�∈{±}

|�〉〈�|A′ ⊗ |�〉〈�|B′ ⊗ (��)A′′ ,

with registers AA′A′′ in the possession of PP
′′
and BB′ in the possession of PV

′′
. Upon receiving a

query, ∈ Σ< , PV
′′
measures B′ to obtain a � ∈ {±}. If � = +, he proceeds honestly, measuring

his half-EPR pairs exactly as instructed. If � = −, he proceeds honestly except that for every

honest single-qubit observable specified by , , he instead measures the complex conjugate

observable. Note that this strategy can be implemented irrespective of whether, is given at

once, as in the game rigid, or sequentially, as in the Delegation Game. PP
′′
simply acts like PP

∗
,

just with the isometry +� applied.

First note that by Theorem 3.1, the distribution of answers of PV
′′
to the verifier, as well as

the subsequent interaction between the verifier and PP, generate (classical) transcripts that are

within statistical distance poly(�) from those generated by PV
∗
and PP

∗
with the same verifier.

Next we observe that taking the complex conjugate of both provers’ actions does not change

their acceptance probability in the delegation game, since the interaction with the verifier is

completely classical. Define PP
′
as follows: PP

′
measures A′ to obtain the same � as PV

′′
, and

then executes PP
′′
or its complex conjugate depending on the value of �. Define PV

′
to execute

the honest behavior (he measures to obtain �, but then discards it and does not take any complex

conjugates).

Then PV
′
applies the honest strategy, and (PV

′, PP
′) applies either the same strategy as

(PV
′′, PP

′′) (if � = +) or its complex conjugate (if � = −). Therefore they are accepted in the

delegation game with exactly the same probability. �

Combining Lemma 4.3 and Lemma 4.4 gives us the final soundness guarantee.

Lemma 4.5. (Constant soundness-completeness gap) There exist constants ?A , ?3 = 1 − ?A and Δ > 0

such that if the verifier executes the leash protocol with parameters (?A , ?3) on input (&, | ®G〉) such that
‖Π0& | ®G〉‖2 ≤ 1/3, any provers (PV

∗ , PP
∗) are accepted with probability at most ?sound = ?compl − Δ.
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Proof. Suppose provers PP
∗
and PV

∗
succeed in the delegation game with probability

7

9
+ F

for some F > 0, and the testing game with probability 1 − �∗(F), where �∗(F)will be specified

below. By Lemma 4.4, this implies that there exist provers PP
′
and PV

′
such that PV

′
is honest

and the provers succeed in the delegation game with probability at least
7

9
+ F − ,(�∗(F)),

where ,(�) = poly(�) is the function from the guarantee of Lemma 4.4. Let �∗(F) be such that

,(�∗(F)) ≤ F
2
. In particular,

7

9
+ F − ,(�∗(F)) ≥ 7

9
+ F

2
> 7

9
. This contradicts Lemma 4.3.

Thus if provers PP and PV succeed in the delegation game with probability
7

9
+ F they must

succeed in the rigidity game with probability less than 1 − �∗(F). This implies that for any

strategy of the provers, on any no instance, the probability that they are accepted is at most

max

{
?A + (1 − ?A)

(
7

9

+ 1

18

)
, ?A

(
1 − �∗

(
1

18

))
+ (1 − ?A) · 1

}
. (4.1)

Since �∗( 1

18
) is a positive constant, it is clear that one can pick ?A large enough so that

?A

(
1 − �∗

(
1

18

))
+ (1 − ?A) · 1 < ?A + (1 − ?A)

(
7

9

+ 1

18

)
. (4.2)

Select the smallest such ?A . Then the probability that the two provers are accepted is at most

?sound := ?A + (1 − ?A)
(
7

9

+ 1

18

)
< ?A

(
1 − e

−Ω(=+C)) + (1 − ?A)8
9

= ?compl ,

which gives the desired constant completeness-soundness gap Δ. �

4.4 Blindness

We now establish blindness of the Leash Protocol. In Lemma 4.6, we will prove that the protocol

has the property that neither prover can learn anything about the input to the circuit, ®G, aside
from its length. Thus, the protocol can be turned into a blind protocol, where& is also hidden, by

modifying any input (&, ®G) where & has , gates and acts on = qubits, to an input (*, ,= , (&, ®G)),
where*, ,= is a universal circuit that takes as input a description of a ,-gate circuit& on = qubits,

and a string ®G, and outputs & | ®G〉. The universal circuit*, ,= can be implemented in $(, log =)
gates. By Lemma 4.6, running the Leash Protocol on (*, ,= , (&, ®G)) reveals nothing about & or ®G
aside from , and =.

In the form presented in Figure 12, the verifier V interacts first with PV, sending him random

questions that are independent from the input ®G, aside from the input length =. It is thus clear

that the protocol is blind with respect to PV.

In contrast, the questions to PP depend on PV’s answers and on the input, so it may a priori

seem like the questions can leak information to PP. To show that the protocol is also blind with

respect to PP, we show that there is an alternative formulation, in which the verifier first interacts

with PP, sending him random messages, and then only with PV, with whom the interaction is

now adaptive. We argue that, for an arbitrary strategy of the provers, the reduced state of all

registers available to either prover, PP or PV, is exactly the same in both formulations of the

protocol — the original and the alternative one. This establishes blindness for both provers. This

technique for proving blindness is already used in [37] to establish blindness of a two-prover

protocol based on computation by teleportation.
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Lemma 4.6 (Blindness of the Leash Protocol). For any strategy of PV
∗
and PP

∗
, the reduced state of

PV
∗
and PP

∗
, resp., at the end of the leash protocol is independent of the input ®G, aside from its length.

Proof. Let PV
∗
and PP

∗
denote two arbitrary strategies for the provers in the leash protocol. Each

of these strategies can be modeled as a super-operator

TPV : L(ℋ)PV
⊗ ℋPV) → L(ℋ)′

PV

⊗ ℋPV),

TPP,03 : L(ℋ)PP
⊗ ℋPP) → L(ℋ)′

PP

⊗ ℋPP).

Hereℋ)PV
andℋ)′

PV

(ℋ)PP
andℋ)′

PP

) are classical registers containing the inputs and outputs to

and from PV
∗
(PP
∗
, resp.) andℋPV (ℋPP) is the private space of PV

∗
(PP
∗
, resp.). Note that the

interaction of each prover with the verifier is sequential, and we use TPV and TPP,03 to denote the

combined action of the verifier and the prover, resp., across all rounds of interaction (formally

these are sequences of superoperators).

Consider an alternative protocol, which proceeds as follows. The verifier first interacts with

PP. From Figure 14 we see that the inputs required for PP are subsets # and )1 , . . . , )3, and

values {I8}8∈)ℓ for each ℓ ∈ {1, . . . , 3}. To select the former, the verifier proceeds as in the first

step of the Delegation Game. She selects the latter uniformly at random. The verifier collects

values {28}8∈)ℓ from PP exactly as in the original Delegation Game.

Once the interaction with PP has been completed, the verifier interacts with PV. First, she

selects a random string,# ∈ Σ# , conditioned on the event that,# contains at least = copies

of each symbol in Σ, and sends it to PV, collecting answers ®4# . The verifier then follows the

same update rules as in the delegation game. We describe this explicitly for computation runs.

First, the verifier sets ®0 = ®4# . Depending on the values {28}8∈)1
and {I8}8∈)1

obtained in the

interaction with PP, using the equation I8 = 0 9 + 1,8=� + 28 she deduces a value for 1,8=� for each

8 ∈ )1 ⊆ �1. She then selects a uniformly random,�1
∈ Σ�1

, conditioned on the event that,�1

contains at least C1 copies of each symbol from Σ, and for 8 ∈ )1 it holds that,8 = � if and only if

I8 = 0 9 + 1 + 28 . The important observation is that, if )1 is a uniformly random, unknown subset,

the marginal distribution on,�1
induced by the distribution described above is independent

of whether I8 = 0 9 + 1 + 28 or I8 = 0 9 + 0 + 28 : precisely, it is uniform conditioned on the event

that ,�1
contains at least C1 copies of each symbol from Σ. The verifier receives outcomes

®4�1
∈ {0, 1}�1

from PV, and using these outcomes performs the appropriate key update rules;

she then proceeds to the second layer of the circuit, until the end of the computation. Finally,

the verifier accepts using the same rule as in the last step of the original delegation game.

We claim that both the original and alternative protocols generate the same joint final state:

TPP,03 ◦ TPV(�>A8,) = TPV,03 ◦ TPP(�0;C) ∈ ℋPP ⊗ ℋ)′
PP

⊗ ℋV ⊗ ℋ)′
PV

⊗ ℋPV , (4.3)

where we use �>A8, and �0;C to denote the joint initial state of the provers, as well as the verifier’s

initialization of her workspace, in the original and alternative protocols, respectively, and

TPV,03 and TPP are the equivalent of TPV and TPP,03 for the reversed protocol (in particular they

correspond to the same strategies PV
∗
and PP

∗
used to define TPV and TPP,03). Notice that TPV,03

and TPP are well-defined since neither prover can distinguish an execution of the original from
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the alternative protocol.14 To see that equality holds in (4.3), it is possible to re-write the final

state of the protocol as the result of the following sequence of operations. First, the verifier

initializes the message registers with PP
∗
and PV

∗
using half-EPR pairs, keeping the other halves

in her private workspace. This simulates the generation of uniform random messages to both

provers. Then, the superoperator TPV ⊗ TPP is executed. Finally, the verifier post-selects by

applying a projection operator onℋ)PV
⊗ ℋ)′

PV

⊗ ℋ)PP
⊗ ℋ)′

PP

that projects onto valid transcripts

for the original protocol (i. e., transcripts in which the adaptive questions are chosen correctly).

This projection can be implemented in two equivalent ways: either the verifier first measures

ℋ)PV
⊗ ℋ)′

PV

, and thenℋ)PP
⊗ ℋ)′

PP

; based on the outcomes she accepts a valid transcript for the

original protocol or she rejects. Or, she first measuresℋ)PP
⊗ ℋ)′

PP

, and thenℋ)PV
⊗ ℋ)′

PV

; based

on the outcomes she accepts a valid transcript for the alternative protocol or she rejects. Using

the commutation of the provers’ actions, conditioned on the transcript being accepted, the first

gives rise to the first final state in (4.3), and the second to the second final state. The two are

equivalent because the acceptance condition for a valid transcript is identical in the two versions

of the protocol.

Since in the first case the reduced state onℋ)′
PV

⊗ ℋPV is independent of the input to the

computation, ®G, and in the second the reduced state on ℋPP ⊗ ℋ)′
PP

is independent of ®G, we

deduce that the protocol hides the input from each of PV
∗
and PP

∗
. �

5 Dog-Walker protocol

The Dog-Walker Protocol again involves a classical verifier V and two provers PV and PP.

As in the leash protocol presented in Section 4, PP and PV take the roles of %�%' and +�%'
from [7], respectively. The main difference is that the Dog-Walker Protocol gives up blindness

in order to reduce the number of rounds to two (one round of interaction with each prover,

played sequentially). After one round of communication with PP, who returns a sequence of

measurement outcomes, V communicates all of PP’s outcomes, except for the one corresponding

to the output bit of the computation, as well as the input ®G, to PV. With these, PV can perform

the required adaptive measurements without the need to interact with V. It may seem risky to

communicate bits sent by PP directly to PV — this seems to allow for communication between

the two provers! Indeed, blindness is lost. However, if PP is honest, his outcomes {28}8 in the

computation run are the result of measurements he performs on half-EPR pairs, and are uniform

random bits. If he is dishonest, and does not return the outcomes obtained by performing the

right measurements, he will be caught in the test runs. It is only in computation runs that V

sends the measurement results {28}8 to PV.

We note that PV has a much more important role in this protocol: he decides himself the

measurements to perform according to previous measurements’ outcomes as well as the input

G. For this reason, we must use the Tomography test discussed in Section 3.6, in order to test if

PV remains honest with respect to these new tasks. With the tomography test, we can achieve

14One must ensure that a prover does not realize if the alternative protocol is executed instead of the original; this

is easily enforced by only interacting with any of the provers at specific, publicly decided times.
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a rigidity theorem that will allow us to prove the soundness of the Dog-walker protocol (see

Figure 21 for a glimpse of the proof structure).

Finally, the Dog-Walker Protocol can be easily extended to a classical-verifier two-prover

protocol for all languages in QMA. Along the same lines of the proof that QMIP =MIP
∗
from [37],

one of the provers plays the role of PP, running the QMA verification circuit, while the second

prover creates and teleports the corresponding QMA witness. In our case, it is not hard to see

that the second prover can be re-used as PV in the Dog-Walker Protocol, creating the necessary

gadgets for the computation and allowing the Verifier to check the operations performed by the

first prover. We describe the protocol in Section 5.4.

5.1 Protocol and statement of results

Throughout this section we let Σ = {-,., /, �, �}, and let < = Θ(= + C) be chosen large enough

so that each symbol in Σ appears at least = + C times in a uniform random , ∈ Σ< , with

probability close to 1. Let �(,) denote the probability that a player receives input, while

playing rigid(Σ, <) (recall that both players have the same marginals in rigid). Let �(, ′ |,)
denote the probability that one player receives, ′ given that the other player receives, .

The full protocols are presented in Figure 18 (verifier’s point of view), Figure 19 (PV’s point

of view) and Figure 20 (PP’s point of view). The protocol has two types of runs: EPR and

Rigidity. Within an EPR run are three types of subruns: Computation subrun, --test subrun,

and /-test subrun. We will generally think of -- and /-test subruns as one subrun type (Test

subrun). Within a Rigidity run are two types of subruns: Tomography subrun, which should be

thought of as the Rigidity version of the EPR-Computation run; and Clifford subrun, which

should be thought of as the Rigidity version of the EPR-Test run. With some probability ?1, V

runs a Rigidity run, Clifford subrun; with some probability ?2, V runs an EPR run, Test subrun;

with some probability ?3, V runs an EPR run, Computation subrun; and with probability

?4 = 1 − ?1 − ?2 − ?3, V runs a Rigidity run, Tomography subrun. This structure is illustrated in

Figure 17. We call this the Dog-Walker Protocol with parameters (?1 , ?2 , ?3 , ?4).
The following theorem states the guarantees of the Dog-Walker Protocol.

Theorem 5.1. There exist constants ?1, ?2, ?3, ?4 = 1− ?1 − ?2 − ?3, and Δ > 0 such that the following

hold of the Dog-Walker Protocol with parameters (?1 , ?2 , ?3 , ?4), when executed on input (&, | ®G〉).

• (Completeness: ) Suppose that



Π0& | ®G〉


2 ≥ 2/3. Then there is a strategy for PV and PP that is

accepted with probability at least ?compl = ?1(1 − e
−Ω(=+C)) + ?2 + 2

3
?3 + ?4.

• (Soundness: ) Suppose that



Π0& | ®G〉


2 ≤ 1/3. Then any strategy for PV and PP is accepted with

probability at most ?sound = ?compl − Δ.
The proof of completeness is given in Lemma 5.2, and proof of soundness is given in Lemma 5.7.

5.2 Dog-Walker completeness

Lemma 5.2. Suppose V executes the Dog-Walker Protocol with parameters (?1 , ?2 , ?3 , ?4). There is
a strategy for the provers such that, on any input (&, | ®G〉) such that



Π0& | ®G〉


2 ≥ 2

3
, V accepts with
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Dog Walker

Fig. 20, Fig. 19, and Fig. 18

?1 + ?4

Rigidity Run

Ensure PV behaves

honestly

?4

?1+?4

Computation Subrun

(Tomography)

Ensure PV reports

correct measure-

ments when he gets

to choose measure-

ment to perform

using tom (Fig. 8)

?1

?1+?4

Test Subrun

(Clifford)

Ensure PV applies

correct gates using

rigid (Fig. 7)

?2 + ?3

EPR Run

PV uses EPR Protocol to

delegate computation to

PP
?2

?2+?3

Test Subrun

1/2

--test

Ensure PP returns

correctly measured

bits, except for those

returned on odd T
gate gadgets

1/2

/-test

Ensure PP returns

correctly measured

bits on odd T gate

gadgets

?3

?2+?3

Computation Subrun

Run the computa-

tion

Figure 17: The structure of the Dog-Walker Protocol. We illustrate the structure of different

runs, subruns, and games/tests, letting probabilities label branches.

probability at least ?compl = ?1(1 − �2) + ?2 + 2

3
?3 + ?4, for some �2 = e

−Ω(=+C)
.

Proof. The provers PV andPPplay the strategy described in Figures 19 and 20, respectively. In the

Rigidity-Tomography run, the verification performed by V amounts to playing tom(Σ, = + C , <)
with the provers (with an extra constraint on the output, of PV that is always satisfied by the

honest strategy). This game has perfect completeness, whichmakes the V accept with probability

1 in the Rigidity-Tomography run. In the Rigidity-Clifford run, V plays rigid(Σ, <) with the

provers. The game has completeness at least 1 − �2 for some �2 = e
−Ω(=+C)

, since < = Ω(= + C),
therefore their success probability in this run is at least 1 − �2 .

In the EPR run, the provers are exactly carrying out the EPR Protocol, with V using PV to run

+ A
�%'

, and PP playing the role of %�%'. Thus, test runs result in acceptance with probability 1,

and the computation run results in acceptance with probability



Π0& | ®G〉


2

, by Theorem 2.2. �
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1. Select a run type EPR or Rigidity, and disjoint sets #,)0 , )1 ⊂ {1, . . . , <} of sizes =, C0 and
C − C0.

EPR Choose ®I uniformly at random from {0, 1}C and send it, along with # , )0
and )1

, to PP.

Receive measurement outcomes ®2 ∈ {0, 1}C and 2 5 ∈ {0, 1} from PP.

Rigidity Choose, ′ according to �(·) and send it to PP. Receive ®4′ ∈ {0, 1}< from PP.

2. Select a subrun type at random from Computation, --test or /-test.

Computation Based on whether it is an EPR or a Rigidity Run:

EPR (i) Send ®G, ®I, ®2 and sets # , )0
and )1

to PV, and receive measurement outcomes

®0, ®1 ∈ {0, 1}= and ®4 ∈ {0, 1}C .
(ii) Apply the update rules from Table 2 gate-by-gate to obtain the final X key for the

output wire 0′
5
. If 2 5 + 0′5 ≠ 0, reject.

Rigidity (Tomography) (i) Choose uniform random strings ®2, ®I ∈ {0, 1}C , ®G ∈ {0, 1}= to
send to PV, along with # and ), and receive measurement outcomes

®3 ∈ {0, 1}=
and ®4 ∈ {0, 1}C .

(ii) From ®G, ®2, ®I, ®3, and ®4, determine the adaptive measurements, ∈ Σ=+C that+0

�%'
would have performed (based on Figure 3b), and reject if the input-output pairs
(, ′, ®4′) and (#∪), (,, ®4))do not satisfy thewinning criterion for tom(Σ, =+C , <).

--test Based on whether it is an EPR or a Rigidity Run:

EPR (i) Choose, ∈ Σ< uniformly at random among all strings satisfying: ,8 = / for

all 8 ∈ # ;,8 = / for all 8 ∈ )0
; and,8 ∈ {-,.} for all 8 ∈ )1

. Send, to PV and

receive measurement results ®4 ∈ {0, 1}< . Let (®0, ®1) = (®4# , 0=).
(ii) Apply update rules from Table 2 gate-by-gate to obtain ∀8 ∈ [C] the X key before

the 8-th T gate is applied, 0′
8
, and the final X key for the output wire, 0′

5
. If ∃8 s.t.

the 8-th T gate is even and 28 ≠ 0
′
8
+ 48 , reject. If 2 5 + 0′5 ≠ 0, reject.

Rigidity (Clifford) Choose, according to themarginal conditioned on, ′, �(·|, ′). Send
, to PV and receive ®4 ∈ {0, 1}< . Reject if (, ′, ®4′,,, ®4) does not win rigid(Σ, <).

/-test Based on whether it is an EPR or a Rigidity Run:

EPR (i) Choose, ∈ Σ< uniformly at random among all strings satisfying: ,8 = - for

all 8 ∈ # ;,8 ∈ {-,.} for all 8 ∈ )0
; and,8 = / for all 8 ∈ )1

. Send, to PV and

receive measurement results ®4 ∈ {0, 1}< . Let (®0, ®1) = (0= , ®4# ).
(ii) Apply update rules from Table 2 gate-by-gate to obtain ∀8 ∈ [C], the X key before

the 8-th T gate is applied, 0′
8
. If ∃8 s.t. the 8-th T gate is odd and 28 ≠ 0

′
8
+ 48 , reject.

Rigidity (Clifford) Identical to --test case.

Figure 18: The Dog-Walker Protocol: Verifier’s point of view.
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1. If PV receives a question, from V (he is playing rigid or an -- or /-test Run):

Measure the < qubits in the observable indicated by, — for example, if, ∈ Σ< ,
for 8 ∈ {1, . . . , <}, measure the 8-th qubit in the basis indicated by,8 — and report

the outcomes ®4 to V.

2. If PV receives ®G, ®I, ®2 and sets # , )0
and )1

from V (he is playing tom or a Computation

Run):

Run the procedure +0

�%'
from Figure 3b on input ®G, ®2, ®I, the = qubits in # , and the C

qubits in )0 ∪ )1
. Report the outputs

®3 and ®4 of +0

�%'
to V.

Figure 19: The Dog-Walker Protocol: Honest strategy for PV.

1. If PP receives a question, ′ from V (he is playing tom or rigid):

Measure the < qubits in the observable indicated by, ′— for example, if, ′ ∈ Σ< ,
for 8 ∈ {1, . . . , <}, measure the 8-th qubit in the basis indicated by, ′

8
— and report

the outcomes ®4′ to V.

2. If PP receives ®I, and sets # , )0
and )1

from V (he is playing the role of %�%' from the EPR

Protocol):

Run the prover %�%' from Figure 3c on input ®I, the = qubits in # , and the C qubits in

)0 ∪ )1
. Report the outputs ®2 ∈ {0, 1}C and 2 5 ∈ {0, 1} of %�%' to V.

Figure 20: The Dog-Walker Protocol: Honest strategy for PP.

5.3 Dog-Walker soundness

Figure 21 summarizes the high-level structure of the soundness analysis. Intuitively, our ultimate

goal is to argue that both provers either apply the correct operations in EPR-Computation runs,

or are rejected with constant probability. This will be achieved by employing a form of “hybrid

argument” whereby it is argued that the provers, if they are not caught, must be using the

honest strategies described in Figure 20 and Figure 19 in the different types of runs considered

in the protocol. Towards this, we divide the run types into the following four scenarios:

1. Rigidity-Clifford: The run type is Rigidity and the subrun type is either --test or /-test.
(When the provers are honest) PV behaves as in Item 1 of Figure 19, and PP behaves as in

Item 1 of Figure 20.

2. EPR-Test: The run type is EPR and the subrun type is either --test or /-test. PV behaves

as in Item 1 of Figure 19, and PP behaves as in Item 2 of Figure 20.
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3. EPR-Computation: The run type is EPR and the subrun type is Computation. PV behaves

as in Item 2 of Figure 19, and PP behaves as in Item 2 of Figure 20.

4. Rigidity-Tomography: The run type is Rigidity and the subrun type is Computation. PV

behaves as in Item 2 of Figure 19, and PP behaves as in Item 1 of Figure 20.

Examining Figure 18, we can see the following. In the Rigidity-Clifford scenario, the verifier is

precisely playing the game rigid with the provers, as the provers receive questions, ′ and,
distributed according to �(·, ·), the distribution of questions for rigid(Σ, <); their answers are

tested against the winning conditions of rigid(Σ, <). In the Rigidity-Tomography scenario, the

verifier plays a variant of the game tom with the provers, in which PV’s choice of observable,

is uniquely determined by his inputs ®G, ®2 and ®I: it should match the observable implemented

by +0

�%'
on these inputs. In EPR runs, PV plays the part of + A

�%'
from the EPR Protocol, and

PP plays the part of %�%'. The EPR-Test scenario corresponds to -- and /-tests from the EPR

Protocol, whereas the EPR-Computation scenario corresponds to computation runs from the

EPR Protocol.

1 1

2 2

3 3

4 4

rigid Test

Soundness of EPR

U
ni
fo
rm

ity
of
{2 8} 8

tom Test

1 Rigidity-Clifford

2 EPR-Test

3 EPR-Computation

4 Rigidity-Tomography

PV PP

Figure 21: Overview of the soundness of the Dog-Walker Protocol

The structure of the proof is as follows (see also Figure 21):

(i) By the game rigid, in the Rigidity-Clifford runs, both PP and PV must be honest, or they

would lose the game.

(ii) Since PV cannot distinguish between Rigidity-Clifford and EPR-Test (both are Figure 19

Item 1 from his perspective, and the input distributions, while not identical, have total

variation distance 1 − �, for some constant � > 0), PV must be honest in the EPR-Test runs,

by (i).

(iii) Since PP cannot distinguish between Rigidity-Clifford and Rigidity-Tomography (both are

Figure 20 Item 1 from his perspective), PP must be honest in the Rigidity-Tomography

runs, by (i).
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(iv) Since PV is honest in EPR-Test runs by (ii), PP must be honest in EPR-Test runs or he will

get caught, but in particular, he must output values {28}8∈[C] that are uniform random and

independent of ®I. Since PP cannot distinguish between EPR-Test and EPR-Computation

runs, this is also true in EPR-Computation runs, when the verifier sends the values {28}8
to PV.

(v) PV must be honest in Rigidity-Tomography runs, or the provers would lose the game tom.

(vi) Since PV cannot distinguish between Rigidity-Tomography runs and EPR-Computation

runs (both are Figure 19 Item 2 from his perspective), PV must be honest in EPR-

Computation runs, by (v), and his input distribution to both runs has total variation

distance 1 − �′, for some constant �′ > 0, by (iv).

(vii) Since PV is honest in EPR-Test runs by (ii), and EPR-Computation runs by (vi), the

combined behavior of V and PV in the EPR runs is that of +�%' in the EPR Protocol, so by

the soundness of the EPR Protocol, PP must be honest in EPR-Computation runs, or get

caught in the EPR-Test runs with high probability.

The following lemma establishes (i), (ii) and (iii).

Lemma 5.3. Suppose the verifier executes the Dog-Walker Protocol with provers (PV
∗ , PP

∗) such that
the provers are accepted with probability @1 ≥ 1 − � in the Rigidity-Clifford Run, @2 in the EPR-Test

Run, @3 in the EPR-Computation Run, and @4 in the Rigidity-Tomography Run. Then there exist provers

(PV
′, PP

′) such that:
• PV

′
and PP

′
both apply the honest strategy in the Rigidity-Clifford runs, PV

′
applies the honest

strategy in the EPR-Test runs, and PP
′
applies the honest strategy in the Rigidity-Tomography runs;

in particular, the state shared by the provers at the beginning of the protocol is a tensor product of

the honest state consisting of < shared EPR pairs and an arbitrary shared ancilla;

• The provers are accepted with probability @′
2
= @2 − $(poly(�)) in the EPR-Test Run, @′

3
= @3 in

the EPR-Computation Run, and @′
4
= @4 − $(poly(�)) in the Rigidity-Tomography Run.

Proof. Using a similar argument as in Lemma 4.4, the strategy of PV
∗
in Rigidity-Clifford

runs, which is also his strategy in EPR-Test runs (Figure 19 Item 1); and the strategy of PP
∗
in

Rigidity-Clifford runs, which is also his strategy in Rigidity-Tomography runs (Figure 20 Item 1);

can both be replaced with the honest strategies. Since the distribution of inputs to PP
∗
in the

Rigidity-Tomography runs and Rigidity-Clifford runs is the same, the success probability in

the Rigidity-Tomography runs is changed by at most $(poly(�)) by using the honest strategy.

On the other hand, PV
∗
’s input distribution in EPR-Test runs is uniform on Σ< , whereas his

distribution in Rigidity-Clifford runs is given by �. However, from the description of the test

rigid it is clear that for all, ∈ Σ< , �(,) ≥ 1

2 |Σ|< for some constant 2 > 1, thus the total variation

distance between the two distributions is at most 1 − 1

2 . Thus, replacing PV
∗
with the honest

strategy in the EPR-Test runs will change the success probability by at most $(poly(�)).
Finally, since the provers’ strategy in the EPR-Computation run has not changed, the

acceptance probability in it remains unchanged. �
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Next, we will show that whenever PV
∗
is honest in the EPR-Test runs this forces PP

∗
to output

(close to) uniformly random {28}8∈[C] that are independent of the run type, even given ®I. This
will allow us to verify that PP

∗
is unable to signal to PV

∗
whether the run is an EPR Run in the

EPR-Computation run, when PV
∗
is sent ®I and ®2. This establishes (iv).

Lemma 5.4. Suppose the verifier executes the Dog-Walker Protocol with provers (PV
∗ , PP

∗) such that
the initial shared state of the provers consists of < shared EPR pairs, together with an arbitrary shared

auxiliary state; PV
∗
plays the honest strategy in the EPR-Test runs; the provers are accepted with

probability @1 in the Rigidity-Clifford Run, @2 = 1− �′ in the EPR-Test Run, @3 in the EPR-Computation

Run, and @4 in the Rigidity-Tomography Run. Then the input (®2, ®I) given by the verifier to PV
∗
in the

EPR-Computation runs has a distribution that is within $(�′) total variation distance of uniform on

{0, 1}C × {0, 1}C .

Proof. Let 0′
8
denote the X key of the wire to which the 8-th T gate is applied, just before the

8-th T gate is applied, and let �8 be a random variable defined as follows. If the 8-th T gate is

even, let �8 = 48 + 0′8 , where we interpret 48 and 0
′
8
as the random variables representing the

measurement result and key V would get if she chooses to execute an --test run. If the 8-th T
gate is odd, let �8 = 48 + 0′8 , where we interpret 48 and 0

′
8
as the measurement result and key

V would get if she chooses to execute an /-test run. Since PV
∗
is assumed to play honestly in

EPR-Test runs,
®� is uniformly distributed in {0, 1}C . In particular, we have, for any

®3, ®I ∈ {0, 1}C ,

Pr[ ®� = ®3, ®/ = ®I] = 1

4
C
. (5.1)

Let �8 be the random variable that corresponds to the measurement output of the 8-th T
gadget by PP

∗
in --test run if the 8-th T gate is even, or the measurement output of the 8-th T

gadget by PP
∗
in /-test run if the 8-th T gate is odd.

Let )0 ⊂ [C] be the set of even T gates and )1 ⊂ [C] the set of odd T gates. In an --test Run,

the provers are rejected whenever 8 ∈ )0
and 28 ≠ 38 , and in a /-test Run, they are rejected

whenever 8 ∈ )1
and 28 ≠ 38 . An EPR-Test Run consists of running one of these two runs with

equal probability, so:

Pr[ ®� ≠ ®�] ≤ 2�′. (5.2)

We can express (5.2) as

Pr[( ®�, ®/) ≠ ( ®�, ®/)] ≤ 2�′.

We conclude by using the easily verifiable fact that for any random variables - and . such that

Pr[- = .] ≥ 1 − 2�′, the total variation distance between the marginal distributions on - and .

is at most 2�′. �

Next, we can use the tomography test tom to establish (v), and then the fact that by Lemma 5.4

the input to PV is not very different in EPR-Computation and Rigidity-Tomography runs to

establish (vi):
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Lemma 5.5. Suppose the verifier executes the Dog-Walker Protocol with provers (PV
∗ , PP

∗) such
that: PV

∗
applies the honest strategy in EPR-Test runs; PP

∗
applies the honest strategy in the Rigidity-

Tomography runs; and the provers are accepted with probability @1 in the Rigidity-Clifford Run, @2 = 1−�′
in the EPR-Test Run, @3 in the EPR-Computation Run, and @4 = 1 − � in the Rigidity-Tomography Run.

Then there exist provers (PV
′, PP

′) such that PV
′
applies the honest strategy in the Rigidity-Tomography

runs and EPR-Computation runs, PP
′
applies the honest strategy in Rigidity-Tomography runs, and the

provers are accepted with probability @1 in the Rigidity-Clifford Run, @2 = 1 − �′ in the EPR-Test Run

and @3 − poly(�) − $(�′) in the EPR-Computation run.

Proof. The Rigidity-Tomography runs can be seen as V playing the Tomography Game with the

provers, except that whereas PV
∗
gets no non-trivial input in the Tomography Game, in the

Rigidity-Tomography run, he gets random values ®2 and ®I on which his strategy can depend. Fix

®G, and let {&D
®2,®I}D be the projective measurement that PV

∗
applies upon receiving ®2, ®I, ®G, where

D = (®3, ®4) is the string of outcomes obtained by PV on the = + C single-qubit measurements he is

to perform according to Step 2 in Figure 19.

By Corollary 3.9, since the provers win the Rigidity-Tomography run with probability 1 − �,
for every ®2, ®I ∈ {0, 1}C , there exist distributions @®2,®I on Σ

< × {±} such that the following is

$(poly(�)):

E

®2,®I

∑
D∈{0,1}<




TrA,B̂

(
(IdA ⊗+B&

D
®2,®I)|#〉〈# |AB(IdA ⊗+B&

D
®2,®I)
†
)
−

∑
�∈{±}

@®2,®I(, ′,�)
(

<⊗
8=1

�D8
,′
8
,�

2

) 



1

.

(5.3)

Here we use the notation from Theorem 3.1 and 3.9. The string, ′ =,(®2, ®I, ®D) ∈ Σ< is uniquely

determined by ®2, ®I, and the outcomes D reported by PV
∗
; indeed it is using this string that PV

∗
’s

answers are checked against the measurement outcomes obtained by PP
∗
, who by assumption

applies the honest strategy. For any fixed (, ′,�) the distribution on outcomes D obtained in the

“honest” strategy represented by the right-hand side in (5.3) is uniform. Thus the outcomes D

reported by PV
∗
are within poly(�) of uniform. From this it follows that the joint distribution on

transcripts (®2, ®I, D,, ′ =,(®2, ®I, D)) that results from an interaction with PV
∗
is within statistical

distance poly(�) of the distribution generated by an interaction with the honest PV; furthermore,

by (5.3) the resulting post-measurement states on PP
∗
are also poly(�) close to the honest ones,

on average over this distribution.

We can now consider two provers PV
′
and PP

′
who, in Rigidity-Tomography runs, first apply

the isometries +�, +� from Corollary 3.9, then measure their auxiliary systems Â and B̂ using

Δ. , obtaining a shared outcome � ∈ {±}, and finally apply the honest strategy shown in Item 2

of Figure 19 (� = +) or its conjugate (� = −). Furthermore, conjugating the honest strategy

produces exactly the same statistics as the honest strategy itself, so we may in fact assume that

PV
′
and PP

′
both apply the honest strategy in Rigidity-Tomography runs.

A consequence of PV
′
applying the honest strategy in Figure 19 Item 2 is that PV

′
also plays

the honest strategy in EPR-Computation runs. Since PV
′
is still honest in the EPR-Test run and

@2 = 1 − �′, Lemma 5.4 implies that the distribution of the input to PV
′
in EPR-Computation

runs is within poly(�) + $(�′) total variation distance of his input in Rigidity-Tomography
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runs, therefore the provers’ success probability in EPR-Computation runs changes at most by

poly(�) + $(�′). �

Finally, we show that if PV is honest, PP must be honest in EPR computation runs, or the

acceptance probability would be low, establishing (vii):

Lemma 5.6. Suppose V executes the Dog-Walker Protocol on an input (&, | ®G〉) such that



Π0& | ®G〉


2 ≤

1/3, with provers (PV, PP) such that PV plays the honest strategy. Let @2 be the provers’ acceptance

probability in EPR-Test runs. Then the verifier accepts with probability at most ?1(1 − �2) + ?2@2 +
?3(5/3 − 4@2/3) + ?4.

Proof. With probability ?2 + ?3, V executes an EPR run, in which case, she executes EPR-

Computation with probability
?3

?2+?3

and EPR-Test with probability
?2

?2+?3

. In the former case,

since PV is honest, he is executing +0

�%'
. In fact, the behavior of an honest PV in the EPR-Test

runs is also that of + A
�%'

. Thus, the combined behavior of V and PV is that of +�%'. Then the

result follows from Theorem 2.3. �

We can now combine Lemmas 5.3, 5.5, and 5.6 to get the main result of this section, the

“soundness” part of Theorem 5.1.

Lemma 5.7 (Constant soundness-completeness gap). There exist constants ?1, ?2, ?3, ?4 =

1 − ?1 − ?2 − ?3 and Δ > 0 such that if the verifier executes the Dog-Walker Protocol with parameters

(?1 , ?2 , ?3 , ?4) on input (&, | ®G〉) such that



Π0& | ®G〉


2 ≤ 1/3, then any provers (PV

∗ , PP
∗) are accepted

with probability at most ?sound = ?compl − Δ.

Proof. Suppose the provers PV
∗
and PP

∗
are such that the lowest acceptance probability in either

the Rigidity-Clifford run or the Rigidity-Tomography run is 1 − �, and they are accepted with

probability 1 − �′ in the EPR-Test run, and with probability 1/3 + F in the Computation Run.

Applying Lemma 5.3 and Lemma 5.5 in sequence, we deduce the existence of provers (PV
′, PP

′)
for which

@′
1
= 1 − $(�2),

@′
2
= 1 − �′ − poly(�),

@′
3
=

1

3

+ F − poly(�) − $(�′),

@′
4
= 1,

where @′
1
, @′

2
, @′

3
and @′

4
are their success probabilities in the four types of runs, and 1 − �2 is the

completeness of the rigid test; from Theorem 3.1 we have �2 = 2
−Ω(=+C)

. Moreover PV
′
applies

the honest strategy in all runs, while PP
′
applies the honest strategy in the Rigidity-Clifford and

Rigidity-Tomography runs. Applying Lemma 5.6, it follows that

F ≤ $(�′) + poly(�) + ?1 · $(�2).
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Therefore the prover’s overall success probability is at most

min(?1 , ?4)(1 − �) +max(?1 , ?4) + ?2(1 − �′) + ?3

(
1

3

+ F
)

≤?compl −
( ?3

3

+ �′?2 + �min(?1 , ?4)
)
+ ?3

(
$(�′) + poly(�)

)
+ (?1 + ?3?1) · $(�2),

where recall from Lemma 5.2 that ?compl = ?1(1 − �2) + ?2 + ?4 + 2

3
?3. Fixing ?2 to be a large

enough multiple of ?1 and of ?3 we can ensure that the net contribution of the terms involving

�′ and �2 on the right-hand side is always non-positive. Choosing ?1 = ?4 and ?3 so that the

ratio ?3/?1 is small enough we can ensure that the right-hand side is less than ?compl − Δ, for
some universal constant Δ > 0 and all �, �′ ≥ 0. �

5.4 Two-prover game for QMA

In this section we propose a new two-prover game for QMA, which is based on the Dog-Walker

protocol. Such type of games are important in the context of the Quantum PCP conjecture [1],

more specifically to its game version that was recently proved [36].

A promise problem ! is in QMA if there is a uniform family of quantum circuits {+G}G∈!
such that if G is a yes-instance, then there exists a quantum state |#〉 ∈

(
ℂ2

)⊗=F
, such that +G

accepts on input |#〉|0〉⊗=0 with probability at least
2

3
, while for a no-instance G and all states

|#〉 ∈
(
ℂ2

)⊗=F
, +G rejects on input |#〉|0〉⊗=0 with probability at least

2

3
. The run-time of the

circuit +G and the values =F and =0 are polynomially bounded in |G |.
In a multi-prover game for a promise problem !, an instance G ∈ ! is reduced to a game

�G such that if G is a yes-instance, then the maximum acceptance probability in the game is at

least 2, whereas if G is a no-instance, then the maximum acceptance probability in the game is at

most B, for 2 > B.

Here, we are interested in multi-prover games where the verifier is classical, the honest

provers run a polynomially bounded quantum computation on copies of an accepting witness

and the completeness-soundness gap 2 − B is constant. Using the Dog-Walker protocol, we are

able to construct, to the best of our knowledge, the first two-prover game for QMA with these

parameters. In our protocol the Verifier and provers exchange messages of polynomial size in

two rounds of communication, one with each prover.

Our protocol consists in the Verifier running the Dog-Walker protocol, with the following

changes:

• On --test runs and /-test runs, the Verifier randomly selects positions where PV has

measured in the / basis and - basis, respectively, and sends them to PP. PP uses the EPR

pair halves in these positions as the witness register when he executes the circuit +G .

• On Rigidity-Computation runs, the Verifier informs PV of the halves of EPR pairs that

should be used to teleport the witness state to PP, and PV reports the outcomes of the

teleportation measurements along with the answers for the original Dog-Walker protocol.
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The Verifier ignores the measurements corresponding to the teleportation and uses the

remaining bits to perform the same checks as in the original Dog-Walker protocol.

• On EPR-Computation runs, the Verifier informs PP of the EPR pair halves that should

be used as the witness when he performs the circuit +G . The Verifier also informs PV of

these positions, who should use them to teleport the witness state to PP. The outcomes of

the teleportation measurements are reported to the Verifier along with the answers for

the original Dog-Walker protocol, in order that the Verifier can decrypt the output of the

computation.

The full description of the protocol is presented in Figures 22, 23 and 25, where the differences

to the original Dog-Walker protocol are underlined. We state our result in Lemma 5.8 and

provide a proof sketch for it.

Let G be an instance of a language ! ∈ QMA and +G the associated verification circuit. +G takes

as input an =F-qubit witness register and an =0-qubit ancilla register. It has C T gates, C0 of which

are even and C − C0 are odd (see Section 2.4 for the definition of even and odd T gates).

1. Select a run type EPR or Rigidity, and disjoint sets #F , # 0 , )0 , )1 ⊂ {1, . . . , <} of sizes =F ,
=0 , C0 and C − C0, respectively.

EPR Choose ®I uniformly at random from {0, 1}C and send it, along with ®G, #F
, # 0

, )0
and )1

,

to PP. Receive measurement outcomes ®2 ∈ {0, 1}C and 2 5 ∈ {0, 1} from PP.

Rigidity Choose, ′ according to �(·) and send it to PP. Receive ®4′ ∈ {0, 1}< from PP.

2. Select a subrun type at random from Computation, X-test or Z-test. Based on this choice, as

well as the run type (EPR or Rigidity), proceed as in Figure 24.

Figure 22: QMA Protocol: Verifier’s point of view.

1. If PP receives a question, ′ from V (he is playing tom or rigid):

Measure the < qubits in the observable indicated by, ′— for example, if, ′ ∈ Σ< ,
for 8 ∈ {1, . . . , <}, measure the 8-th qubit in the basis indicated by, ′

8
— and report

the outcomes ®4′ to V.

2. If PP receives ®G, ®I, and sets #F
,# 0

, )0
and )1

from V (he is playing the role of %�%' from

the EPR Protocol):

Run prover %�%' from Figure 3c with the+G as the circuit&, on input ®I, the =F qubits

in #F
as the witness, the =0 qubits in #

0
as the ancilla, and the C qubits in )0 ∪ )1

for T gadgets. Report the outputs ®2 ∈ {0, 1}C and 2 5 ∈ {0, 1} of %�%' to V.

Figure 23: QMA Protocol: Honest strategy for PP.
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Computation Based on whether it is an EPR or a Rigidity Run:

EPR (i) Send ®G, ®I, ®2 and sets #F
, # 0

, )0
and )1

to PV, and receive measurement

outcomes ®0, ®1 ∈ {0, 1}=F+=0 and ®4 ∈ {0, 1}C .
(ii) Apply the update rules from Table 2 gate-by-gate to obtain the final X key for the

output wire 0′
5
. If 2 5 + 0′5 ≠ 0, reject.

Rigidity (Tomography) (i) Choose uniform random strings ®2, ®I ∈ {0, 1}C , ®G ∈ {0, 1}=
to send to PV, along with #F

, # 0
and ), and receive measurement outcomes

®0, ®1 ∈ {0, 1}=F+=0 and ®4 ∈ {0, 1}C .
(ii) From ®G, ®2, ®I, ®0, ®1 and ®4, determine the adaptive measurements , ∈ Σ=+C

that +0

�%'
would have performed (based on Figure 3b), and reject if the input-

output pairs (, ′, ®4′) and (# ∪ ), (,, ®4)) do not satisfy the winning criterion for

tom(Σ, = + C , <).

--test Based on whether it is an EPR or a Rigidity Run:

EPR (i) Choose, ∈ Σ< uniformly at random among all strings satisfying: ,8 = / for

all 8 ∈ #F ∪ # 0
;,8 = / for all 8 ∈ )0

; and,8 ∈ {-,.} for all 8 ∈ )1
. Send, to

PV and receive measurement results ®4 ∈ {0, 1}< . Let (®0, ®1) = (®4# , 0=).
(ii) Apply update rules from Table 2 gate-by-gate to obtain ∀8 ∈ [C] the X key before

the 8-th T gate is applied, 0′
8
, and the final X key for the output wire, 0′

5
. If ∃8 s.t.

the 8-th T gate is even and 28 ≠ 0
′
8
+ 48 , reject. If 2 5 + 0′5 ≠ 0, reject.

Rigidity (Clifford) Choose, according to themarginal conditioned on, ′, �(·|, ′). Send
, to PV and receive ®4 ∈ {0, 1}< . Reject if (, ′, ®4′,,, ®4) does not win rigid(Σ, <).

/-test Based on whether it is an EPR or a Rigidity Run:

EPR (i) Choose, ∈ Σ< uniformly at random among all strings satisfying: ,8 = - for

all 8 ∈ #F ∪ # 0
;,8 ∈ {-,.} for all 8 ∈ )0

; and,8 = / for all 8 ∈ )1
. Send, to

PV and receive measurement results ®4 ∈ {0, 1}< . Let (®0, ®1) = (0= , ®4# ).
(ii) Apply update rules from Table 2 gate-by-gate to obtain ∀8 ∈ [C], the X key before

the 8-th T gate is applied, 0′
8
. If ∃8 s.t. the 8-th T gate is odd and 28 ≠ 0

′
8
+ 48 , reject.

Rigidity (Clifford) Identical to --test case.

Figure 24: QMA Protocol: Step 2 of Verifier’s point of view. Verifier’s behavior in Step 2 is

determined by the subrun type (Computation, X-test or Z-test) as well as the run type (EPR or

Rigidity).
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1. If PV receives a question, from V (he is playing rigid or an -- or /-test Run):

Measure the < qubits in the observable indicated by, — for example, if, ∈ Σ< ,
for 8 ∈ {1, . . . , <}, measure the 8-th qubit in the basis indicated by,8 — and report

the outcomes ®4 to V.

2. If PV receives ®G, ®I, ®2 and sets#F
,# 0

,)0
and)1

fromV (he is playing tom or a Computation

Run):

Using the EPR pairs in #F
, teleports the witness state |#〉 that makes+G accept with

high probability. Let (®0#F , ®1#F ) be the corresponding outcomes of the teleportation

measurements.

Measure each qubit in # 0
in the / basis with outcomes

®3 and let (®0# 0 , ®1# 0 ) = (®3, ®0)
Run the second step of procedure +0

�%'
from Figure 3b with +G as the circuit &, and

the values ®2, ®I, the =F qubits in #F
as the witness, the =0 qubits in #

0
as the ancilla,

and the C qubits in )0 ∪ )1
for T gadgets. Report the outputs ®0, ®1 and ®4 of +0

�%'
to V.

Figure 25: QMA Protocol: Honest strategy for PV.

Lemma 5.8. There exist universal constants 0 ≤ ?compl ≤ 1 and Δ > 0 such that the following holds.

Let ! be a language in QMA and G an instance of ! such that = = |G |. Let +G be the verification circuit

for this instance and , the number of gates in +G (in the compiled form as described in Section 2). Then

there exists a two-round interactive protocol between a classical verifier and two entangled provers where

the Verifier sends $(= + ,)-bit questions to the provers, the provers answer with $(= + ,) bits and the
protocol satisfies the following properties.

Completeness: If G is a yes-instance, then there is a strategy for the provers such that the Verifier accepts

with probability at least ?compl.

Soundness: If G is a no-instance, then for all strategies of the provers, the Verifier accepts with probability

at most ?sound = ?compl − Δ.

Proof sketch. The Verifier performs the operations described in Figure 22.

The completeness of the protocol is straightforward: if PP and PV use the strategy in

Figures 23 and 25, respectively, then the Verifier accepts with high probability.

The soundness of the protocol follows from the combination of the soundness of the Dog-

Walker protocol and the soundness of the QMA verification circuit. Along the same lines

as Lemmas 5.3, 5.4 and 5.5, we can show that if the acceptance probability in Rigidity-Test,

Rigidity-Computation and EPR-Test runs is sufficiently high, then there is a strategy where

the provers follow the honest strategy and the acceptance probability in EPR-Computation

run is only slightly changed. In the case where the provers are honest in the Rigidity-Test,

Rigidity-Computation and EPR-Test runs, no matter which state is held by PP as witness state,
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+G rejects with high probability in the EPR-Computation run, by the soundness of the QMA

verification circuit. The proof of soundness can be completed by repeating the arguments in

Lemma 5.7. �

6 Running our protocols in sequence

In order to make a fair comparison between previous delegated computation protocols and ours

(see Figure 1) the resource requirements are computed under the condition that they produce the

correct outcome of the computation with 99% probability. For most protocols, this is achieved

by sequentially repeating the original version, in order to amplify the completeness-soundness

gap.

In this section, we describe a sequential procedure that, starting from our protocols in

Sections 4 and 5, ensures that either the verifier aborts, or she obtains the correct outcome of

the computation with probability 99%. Moreover, for honest provers, the probability that the

procedure aborts is exponentially small in the number of sequential repetitions. Our sequential

procedure has a number of rounds which depends on the desired soundness. As long as one

only requires amplification of an arbitrarily small, but constant, soundness, to a fixed constant,

the number of sequential repetitions remains constant.

To emphasize the importance of having such a sequential procedure, we note that, firstly, the

current completeness-soundness gap between acceptance probability on yes and no instances,

for both the leash and the Dog-Walker protocol, is a very small constant. Secondly, if a classical

client wishes to employ our protocols to delegate a computation, we need to specify what

the client interprets, at the end of the protocol, as the outcome of the delegated computation.

The natural approach is to have the verifier interpret accept as a yes outcome and reject as a
no outcome. However, this is not enough, as our security model based on the constant gap

between acceptance probability for yes and no instances means that, while the provers have a

low probability of making the verifier accept a no instance as a yes, they can always make the

verifier accept a yes instance as a no, simply by behaving so that they are rejected.

The first point is addressed by running copies of the original protocol in sequence to amplify

the completeness-soundness gap. The second point is addressed by having the verifier run the

protocol twice: once for the circuit &, and once for the circuit &′ defined by appending an X
gate to the output wire of &. If 5 : - → {0, 1} for some - ⊆ {0, 1}= is defined by 5 (G) = 1 if

‖Π0& |G〉‖2 ≥ 2/3, and 5 (G) = 0 if ‖Π0& |G〉‖2 ≤ 1/3, i. e., & decides 5 with bounded error 1/3,
then it is easy to see that &′ decides 1 − 5 with bounded error 1/3. Thus, the verifier will accept

G as a yes instance of 5 if the protocol outputs accept when running & on G and outputs reject
when running &′ on G. The verifier accepts G as a no instance of 5 if the protocol outputs reject
when running & on G and outputs accept when running &′ on G. The verifier aborts if she sees
accept-accept or reject-reject.
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6.1 Sequential version of our protocols

Let % denote either the Verifier-on-a-Leash or the Dog-Walker protocol from Sections 4 and 5,

respectively, and let 2 and Δ denote the completeness and the completeness-soundness gap,

resp. Let � be a security parameter.

Protocol Seq(%, 2,Δ, �): Let (&, G) be the verifier’s input.

1. The verifier runs � copies of protocol % in sequence on input (&, G)with PP and PV. Then

she runs � copies in sequence on input (&′, G).

2. Let ®>, ®̃> ∈ {0, 1}� be such that >8 = 1 iff the 8-th copy on input (&, G) accepts, and >̃8 = 1 iff

the 8-th copy on input (&′, G) accepts. LetFC(®>) andFC(®̃>) be theirHammingweights. Then,

the verifier accepts 1 as the outcome of the delegated computation if FC(®>) ≥ (2− Δ
2
) ·� and

FC(®̃>) < (2− Δ
2
) ·�, and she accepts 0 as the outcome of the computation ifFC(®>) < (2− Δ

2
) ·�

and FC(®̃>) ≥ (2 − Δ
2
) · �. Otherwise the verifier aborts.

Figure 26: Sequential version of our protocols

We state and prove completeness and soundness for the sequential protocol.

Theorem 6.1. Let 2 and Δ be respectively the completeness and completeness-soundness gap of protocol

%. On input (&, G):

• If the provers are honest,

Pr

(
Seq(%, 2,Δ, �) outputs 5 (G)

)
≥ 1 − 2 exp

(
−Δ

2�
2

)
.

• For any cheating provers,

Pr

(
Seq(%, 2,Δ, �) outputs 1 − 5 (G)

)
≤ exp

(
−Δ

2�
8

)
.

Proof. We first show completeness. Let B = 2 − Δ be the soundness of protocol P. Suppose

5 (G) = 1 (the case 5 (G) = 0 is analogous). If the provers are honest, then the probability that the
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verifier outputs 1 is:

Pr(Verifier outputs 1) = Pr

(
FC(®>) ≥

(
2 − Δ

2

)
· � ∧ FC(®̃>) <

(
2 − Δ

2

)
· �

)
≥ 1 − Pr

(
FC(®>) <

(
2 − Δ

2

)
· �

)
− Pr

(
FC(®̃>) ≥

(
2 − Δ

2

)
· �

)
≥ 1 − 2 exp

(
−Δ

2�
2

)
by the Azuma–Hoeffding inequality (Theorem 2.1).

Next we show soundness. Again suppose 5 (G) = 1 (the case 5 (G) = 0 is analogous). Let

,9 be an indicator random variable for the event >̃ 9 = 1, and let �9 = ,9 − B. One might be

tempted to immediately assert that E(�9 |�9−1 , .., �1) ≤ 0. However, because of the sequentiality

of the runs of protocol %, this is not in general true, and an analysis that treats protocol % as a

black-box does not suffice when % is the verifier-on-a-leash protocol (because such a protocol is

blind). We argue more precisely that E(�9 |�9−1 , .., �1) ≤ 0:

• When % is the Dog-Walker protocol from Section 5 (which is not blind): suppose for a

contradiction that there were provers PV and PP, and a 9 such that E(�9 |�9−1 , .., �1) ≤ 0.

Then one can construct provers PV
′
and PP

′
which break the soundness of protocol %.

Namely PV
′
and PP

′
simulate 9 − 1 runs of protocol %. They then respectively invoke

PV and PP and forward to them the transcripts previously generated. PV
′
and PP

′
then

participate in the challenge protocol % by forwarding all of the incoming messages to the

invocations of PV and PP, respectively. By the initial hypothesis, such PV
′
and PP

′
would

break the soundness of %.

• When % is the Verifier-on-a-leash protocol from Section 4: the key observation is that

protocol % remains sound even when G is revealed to the provers. Then, notice that if it is

possible for provers to force E(�9 |�9−1 , .., �1) ≤ 0 when G is not revealed, it is clearly also

possible to do so when G is revealed. However, the latter is not possible, by an analogous

reduction to the one for the dog-walker protocol.

Define -0 = 0 and -ℓ =
∑ℓ
9=1
�9 , for ℓ = 1, .., �. The the sequence {-ℓ } constitutes a supermartin-

gale with |-ℓ − -ℓ−1 | = |�ℓ | ≤ 1 ∀ℓ . Hence,by the Azuma–Hoeffding inequality (Theorem 2.1),

for any � ≥ 1 and C ≥ 0, Pr(-� ≥ C) ≤ exp(− C2

2� ). This implies that

Pr

©­«
�∑
9=1

,9 − � · B ≥ Cª®¬ = Pr

©­«
�∑
9=1

�9 ≥ Cª®¬ = Pr (-� ≥ C) ≤ exp

(
− C

2

2�

)
.
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Then, for any provers PP and PV,

Pr(Verifier outputs 0) ≤ Pr

(
FC(®̃>) ≥ (2 − Δ

2

) · �
)

= Pr

©­«
�∑
9=1

,9 ≥ (2 −
Δ

2

) · �ª®¬
= Pr

©­«
�∑
9=1

,9 − � · B ≥ � · Δ
2

ª®¬
≤ exp

(
−Δ

2�
8

)
. �

Finally, one can check that when % is the verifier-on-a-leash protocol, then Seq(%, 2,Δ, �)
remains blind. This follows from a similar argument as in the proof of Lemma 4.6.

A Some simple tests

In this appendix we collect simple tests that will be used as building blocks. In Section A.1 and

Section A.2 we review elementary tests whose analysis is either immediate or can be found in

the literature. In Section A.3 we formulate a simple test for measurements in the Bell basis and

the associated two-qubit SWAP observable. Finally, in Section A.4, we show how to extend the

results from [35] to derive a robust self-test for the <-qubit Pauli group.

A.1 The Magic Square game

We use the Magic Square game [29] as a building block, noting that it provides a robust self-test

for the two-qubit Weyl–Heisenberg group (see Section 2.1 for the definition). A question in

this game is specified, either by a label corresponding to an entry from the square pictured in

Figure 27 (9 questions, labeled �/, etc.), or by a triple of labels corresponding to the same row or

column (6 questions, labeled (�/, -�, -/), etc.); there are 15 questions in total. An answer is

composed of three values in {±1}, one for each of the labels making up the question. Answers

from the prover should be entrywise consistent, and such that the product of the answers

associated to any row or column except the last should be +1; for the last column it should

be −1. The labels indicate the “honest” strategy for the game, which consists of each prover

measuring two half-EPR pairs using the commuting Pauli observables indicated by the labels of

his question.
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�/ /� //

-� �- --

-/ /- ..

Figure 27: Questions, and a strategy, for the Magic Square game

The following lemma states some properties of the Magic Square game, interpreted as a

self-test (see, e. g., [40]).

Lemma A.1. Suppose a strategy for the provers, using state |#〉 and observables , , succeeds with

probability at least 1 − � in the Magic Square game. Then there exist isometries +� : ℋD →
(ℂ2 ⊗ ℂ2)D’ ⊗ ℋD̂, for � ∈ {�, �} and a state |aux〉ÂB̂ ∈ ℋÂ ⊗ ℋB̂ such that



(+� ⊗ +�)|#〉AB − |EPR〉⊗2

A′B′ |aux〉ÂB̂



2

= $(
√
�),

and for, ∈ {� , -, /}2 ∪ {..},



(, −+†��,+�) ⊗ Id� |#〉


2

= $(
√
�).

A.2 Elementary tests

Figure 28 summarizes some elementary tests. For each test, “Inputs” refers to a subset of

designated questions in the test; “Relation” indicates a relation that the test aims to certify (in

the sense of Section 3.1); “Test” describes the certification protocol. (Recall that all our protocols

implicitly include a “consistency” test in which a question is chosen uniformly at random from

the marginal distribution and sent to both provers, whose answers are accepted if and only if

they are equal.)
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Test id(�, �):

• Inputs: �, � two observables on the same spaceℋ .

• Relation: � = �.

• Test: Send , ∈ {�, �} and , ′ ∈ {�, �}, chosen uniformly at random, to the first and

second prover, respectively. Receive an answer in {±1} from each prover. Accept if and

only if the answers are equal whenever the questions are identical.

Test ac(-, /):

• Inputs: -, / two observables on the same spaceℋ .

• Relation: -/ = −/-.

• Test: Execute the Magic Square game, using the label “-” for the “-�” query and “/”

for the “/�” query. All other queries, such as �/, or (�/, /�, //), are sent together

with the pair (-, /). (So, for example, the query “/�” in the Magic Square becomes “/”

here, whereas the query “�/” becomes “�/, (-, /)”, where the first �/ are simply letters,

whereas in (-, /) the - and / should be replaced by the inputs to this test.)

Test com(�, �):

• Inputs: �, � two observables on the same spaceℋ .

• Relation: �� = ��.

• Test: Send, ∈ {�, �} chosen uniformly at random to the first prover. Send (�, �) to the

second prover. Receive a bit 2 ∈ {±1} from the first prover, and two bits (0′, 1′) ∈ {±1}2
from the second. Accept if and only if 2 = 0′ if, = �, and 2 = 1′ if, = �.

Test prod(�, �, �):

• Inputs: �, � and � three observables on the same spaceℋ .

• Relations: �� = �� = �.

• Test: Similar to the commutation game, but use � to label the question (�, �).

Figure 28: Some elementary tests.

LemmaA.2. Each of the tests described in Figure 28 is a robust (1, �) self-test for the indicated relation(s),
for some � = $(�1/2).

Proof. The proof for each test is similar. As an example we give it for the commutation test

com(�, �).
First we verify completeness. Let �, � be two commuting observables on ℋA = ℋB = ℋ ,

and |EPR〉AB the maximally entangled state inℋA ⊗ ℋB. Upon receiving question � or �, the

prover measures the corresponding observable. If the question is (�, �), he jointly measures �

and �. This strategy succeeds with probability 1 in the test.
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Next we establish soundness. Let |#〉 ∈ ℋA ⊗ ℋB be a state shared by the provers, �, � their

observables on questions �, �, and {�0,1} the four-outcome PVM applied on question (�, �).
Assume the strategy succeeds with probability at least 1 − �. Recall that this includes both the

test described in Figure 28, and the automatic consistency test. Let �� =
∑
0,1(−1)0�0,1 and

�� =
∑
0,1(−1)1�0,1 . Then �� and �� commute. Thus

�A�A ⊗ IdB ≈√� �A ⊗ (��)B
≈√� IdA ⊗(��)B(��)B
= IdA ⊗(��)B(��)B
≈√� �A ⊗ (��)B
≈√� �A�A ⊗ IdB .

Here each approximation uses the consistency condition provided by the test, as explained

in (3.3). Thus [�, �] = (�� − ��) ≈√� 0, as desired. �

We will often make use of the following simple lemma, which expresses an application of

the above tests. Recall the notations [�, �] for �� − �� and {�, �} for �� + ��.

Lemma A.3. Let |#〉 ∈ ℋA ⊗ ℋB and �, - observables on ℋA such that there exists an isometry

ℋA ' ℂ2 ⊗ ℋÂ under which the following conditions hold, for some �1 , �2 , �3:15

(i) There exists an observable �′ onℋB such that � ⊗ Id ≈�1
Id⊗�′;

(ii) |#〉 '�1
|EPR〉|aux〉 and - '�1

�- ⊗ Id;

(iii) [�, -] ≈�2
0;

(iv) {�, -} ≈�3
0.

Then there exist Hermitian �� , �- , �. , �/ on ℋÂ such that � '�1+�2
Id⊗�� + �- ⊗ �- and

� '�1+�3
�. ⊗ �. + �/ ⊗ �/. (A similar claim holds with - replaced by /.)

Proof. After applicationof the isometry, an arbitrary observable �̃ onℂ2⊗ℋÂ has adecomposition

�̃ =
∑
%∈{� ,-,.,/} �% ⊗ �% , for Hermitian operators �% onℋÂ. We can compute

[�̃, �- ⊗ Id] = −28 �/ ⊗ �. + 28 �. ⊗ �/ , (A.1)

{�̃, �- ⊗ Id} = 2 �- ⊗ �� + 2 �� ⊗ �- . (A.2)

Assumptions (i) and (ii) imply [�, -] '�1
[�̃, �- ⊗ Id], so by (iii) and (A.1) we get ‖�. |aux〉‖2 +

‖�/ |aux〉‖2 = $(�1+�2). Similarly, (iv) and (A.2) give ‖�� |aux〉‖2+‖�- |aux〉‖2 = $(�1+�3). �
15Note that we allow either �8 to equal 1. The lemma is interesting when �

1
and either �

2
or �

3
is small (but it is

correct for all triples of values in [0, 1])
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A.3 The Bell basis

Given two commuting pairs of anti-commuting observables {-1 , /1} and {-2 , /2} we provide a

test for a four-outcome projective measurement in the Bell basis specified by these observables,

i. e., the joint eigenbasis of -1-2 and /1/2. The same test can be extended to test the “SW”

observable,

SW =
1

2

(
Id+-1-2 + /1/2 − (-1/1)(-2/2)

)
, (A.3)

which exchanges the qubits specified by each pair of observables. The Bell measurement test

described in Figure 29 tests for both.

Test Bell(-1 , -2 , /1 , /2):

• Inputs: For 8 ∈ {1, 2}, {-8 , /8} observables, {Φ01}0,1∈{0,1} a four-outcome projective

measurement, and SW an observable, all acting on the same spaceℋ .

• Relations: for all 0, 1 ∈ {0, 1}, Φ01 = 1

4

(
Id+(−1)0/1/2

) (
Id+(−1)1-1-2

)
, and SW =

Φ00 +Φ01 +Φ10 −Φ11
.

• Test: execute each of the following with equal probability:

(a) Execute the Magic Square game, labeling each entry of the square from Figure 27

(except entry (3, 3), labeled as .1.2) using the observables -1 , /1 and -2 , /2.

(b) Send Φ to one prover and the labels (-1-2 , /1/2 , .1.2) associated with the third

column of the Magic Square to the other. The first prover replies with 0, 1 ∈ {0, 1},
and the second with 2, 3, 4 ∈ {±1}. The referee checks the provers’ answers for the

obvious consistency conditions. For example, if the first prover reports the outcome

(0, 0), then the referee rejects if (2, 3) ≠ (+1,+1).
(c) Send Φ to one prover and SW to the other. The first prover replies with 0, 1 ∈ {0, 1},

and the second with 2 ∈ {±1}. Accept if and only 2 = (−1)01 .

Figure 29: The Bell measurement test.

Lemma A.4. The test Bell(-1 , -2 , /1 , /2) is a robust (1, �) self-test for the Hermitian operators -1,

-2, /1, /2, {Φ01}0,1∈{0,1} and SW and the relations

ℛ =
{{
Φ01

}
0,1∈{0,1} ∈ Proj, SW ∈ Obs

}
∪

{
Φ01 =

1

4

(
1 + (−1)0/1/2

) (
1 + (−1)1-1-2

)}
∪

{
SW = Φ00 +Φ01 +Φ10 −Φ11

}
,

for some �(�) = $(
√
�).
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Proof. Completeness is clear: the provers can play the honest strategy for the Magic Square

game, use a measurement in the Bell basis on their two qubits forΦ, and measure the observable

in (A.3) for SW.

For soundness, let |#〉 ∈ ℋA ⊗ ℋB, {,1,
′
2

: ,,, ′ ∈ {� , -, /}}, {Φ01} and SW denote a

state and operators for a strategy that succeeds with probability at least 1 − � in the test. From

the analysis of the Magic Square game (Lemma A.1) it follows that the provers’ observables

-1-2 and /1/2 associated to questions with those labels approximately commute, and are each

the product of two commuting observables -1�, �-2 and /1�, �/2, respectively, such that -1�

and /1�, and �-2 and �/2, anti-commute; all approximate identities hold up to error $(
√
�).

Since -1-2 and /1/2 appear together in the same question (the last column of the Magic

Square, Figure 27), each prover has a four-outcome projective measurement {, 2,3}2,3∈{0,1}
such that

∑
3(−1)2, 2,3 = -1-2 and

∑
2(−1)3, 2,3 = /1/2, from which it follows that , 2,3 =

(1/4)(1 + (−1)2/1/2)(1 + (−1)3-1-2).
The prover’s success probability in part (b) of the test is then∑

0,1

〈# |Φ01 ⊗, 0,1 |#〉 =
∑
0,1

〈# |Φ01 ⊗ 1

4

(
1 + (−1)0/1/2

) (
1 + (−1)1-1-2

)
|#〉.

Using that, by assumption, {Φ01} is a projective measurement, the condition that this expression

be at least 1 − $(�) implies

Φ01 ⊗ Id ≈√� Id⊗1

4

(
1 + (−1)0/1/2

) (
1 + (−1)1-1-2

)
.

Combining this with the implicit consistency test yields the first relation. The last is guaranteed

by part (c) of the test, which checks for the correct relationship between SW and Φ; the analysis

is similar. �

A.4 Multi-qubit tests

In this section we formulate a robust self-test for the <-qubit Pauli group. The result is an

extension of the results from [35] to allow testing of �. observables.

A.4.1 The <-qubit Weyl–Heisenberg group

We start by giving a self-test for tensor products of �- and �/ observables acting on < qubits,

i. e., the <-qubit Weyl–Heisenberg groupℋ (<) (see Section 2.1). Let P(<) denote the relations

P(<){-, /} =
{
,(0) ∈ Obs : , ∈

<∏
8=1

{-8 , /8}, 0 ∈ {0, 1}<
}

∪
{
,(0), ′(0′) = (−1)|{8:,8≠,

′
8
∧08 0′8=1}|, ′(0′),(0) : ,,, ′ ∈

<∏
8=1

{-8 , /8}, 0, 0′ ∈ {0, 1}<
}

∪
{
,(0),(0′) =,(0 + 0′) : , ∈

<∏
8=1

{-8 , /8}, 0, 0′ ∈ {0, 1}<
}
.
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Recall the notation,(0) for the string that is,8 when 08 = 1 and � otherwise. The set of relations

on the second line expresses the canonical anti-commutation relations. The last set of relations

expresses the obvious relations �, Id = Id �, and �2

,
= Id, for, ∈ {-, /}, coordinate-wise.

It is easy to verify that P(<) forms a defining set of relations forℋ (<). Our choice of relations

is suggested by the Pauli Braiding Test introduced in [35], which shows that the relations are

testable with a robustness parameter �(�) that is independent of<. The test is denoted pbt(-, /).
For convenience here we use a slight variant of the test which includes more questions and more

answers; the test is summarized in Figure 30.

Test pbt(-, /):

• Inputs: (,, 0), for, ∈∏<
8=1
{-8 , /8} and 0 ∈ {0, 1}< .

• Relations: P(<){-, /}.

• Test: Perform the following with probability 1/3 each. In each test, the question to a prover

takes the form, or (,, 0) for,, 0 as above. The answer from the prover is an <-bit

string 2 ∈ {0, 1}< or a single bit 3 ∈ {0, 1}, respectively.

(a) Select,,, ′ ∈∏
8{-8 , /8}, and 0, 0′ ∈ {0, 1}< , uniformly at random. If {8 : ,8 ≠,

′
8
∧

08 = 0
′
8
= 1} has even cardinality then execute test com((,, 0), (, ′, 0′)). Otherwise,

execute test ac((,, 0), (, ′, 0′)).
(b) Select (0, 0′) ∈ {0, 1}< and , ∈ ∏<

8=1
{-8 , /8} uniformly at random. Execute test

prod((,, 0), (,, 0′), (,, 0 + 0′)).
(c) Select, ∈∏<

8=1
{-8 , /8} and 0 ∈ {0, 1}< uniformly at random. Send, to one prover,

receiving a string 2 as answer, and (,, 0) to the other, receiving a bit 3. Accept if and

only if 3 = 2 · 0, the inner product modulo 2.

Figure 30: The Pauli braiding test, pbt(-, /).

LemmaA.5 ([35]). The test pbt(-, /) is a robust (1, �) self-test forP(<){-, /}, for some �(�) = $(�1/2).
Moreover, suppose |#〉 ∈ ℋA ⊗ ℋB and ,(0) ∈ Obs(ℋA), for , ∈ {-, /}< and 0 ∈ {0, 1}< ,
and projective measurements {,2}2∈{0,1}= on ℋA, for each , ∈ {-, /}< , specify a strategy for

the provers that has success probability at least 1 − � in pbt(-, /). Then there exist isometries

+� : ℋD → ((ℂ2)⊗<)D’ ⊗ ℋ̂D̂, for � ∈ {�, �}, such that

(+� ⊗ +�)|#〉AB − |EPR〉⊗=A′B′ |aux〉ÂB̂



2

= $(
√
�),

and on expectation over, ∈ {-, /}< ,

E

0∈{0,1}<



(,(0) −+†�(�, (0) ⊗ Id)+�
)
⊗ Id� |#〉



2

= $(
√
�), (A.4)
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and ∑
2∈{0,1}<



(,2 −+†�(�
2
, ⊗ Id)+�

)
⊗ Id� |#〉



2

= $(
√
�) . (A.5)

The fact that the test specified in Figure 30 self-tests the relations P(<){-, /} follows

immediately from the definition of P(<){-, /} and the analysis of the tests com, prod and

ac given in Section A.2. The remainder of the lemma follows directly from Theorem 13 and

Theorem 14 in [35]. The only part not present in [35] is the last part, which considers the

POVM obtained from requiring a prover to report the outcome for each of its < single-qubit

measurement (as opposed to its inner product with the string 0). Eq. (A.5) follows from part (c)

of pbt(-, /) and the preceding parts of the lemma.

The next lemma is an extension of Lemma A.3 to the case of multi-qubit Pauli observables;

the lemma avoids any dependence of the error on the number of qubits, as would result from a

sequential application of Lemma A.3.

Lemma A.6. Let < be an integer and 2 ∈ {0, 1}< . Let |#〉 ∈ ℋA ⊗ ℋB be a state and � and -(0), for
0 ∈ {0, 1}< , observables onℋA such that there exists an isometryℋA ' (ℂ2)⊗< ⊗ ℋÂ under which the

following conditions hold, for some �1 , �2 , �3:

(i) There exists an observable �′ onℋB such that � ⊗ Id '�1
Id⊗�′;

(ii) |#〉 '�1
|EPR〉⊗< |aux〉, and -(0) '�1

�-(0) ⊗ Id;

(iii) [�, -(0)] '�2
0;

(iv) Conditioned on 0 · 2 = 1, {�, -(0)} '�3
0;

where conditions (ii) and (iii) are meant on average over a uniformly random 0 ∈ {0, 1}< , and the last
over a uniformly random 0 such that 0 · 2 = 1. For any % ∈ {� , -, ., /}< let G% ∈ {0, 1}< be such that

(G%)8 = 1 if and only if %8 ∈ {., /}. Then there exists Hermitian �% , for % ∈ {� , -, ., /}< , on ℋÂ
such that

� '�1+�2

∑
%∈{� ,-}=

�% ⊗ �% , and � '�1+�3

∑
%∈{� ,-,.,/}< :

28=1 =⇒ %8∈{.,/}
28=0 =⇒ %8∈{� ,-}

�% ⊗ �% . (A.6)

(A similar claim holds with the roles of - and / exchanged.)

Proof. After application of the isometry, an arbitrary observable �̃ on (ℂ2)⊗< ⊗ ℋÂ has a

decomposition �̃ =
∑
%∈{� ,-,.,/}< �% ⊗ �% , for Hermitian operators �% on ℋÂ. Then the

analogue of (A.1) is

[�̃, �-(0) ⊗ Id] = 2

∑
%: 0·G%=1

�%�-(0) ⊗ �% .
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Using that any string G% which is not the 0
<
string satisfies 0 · G% = 1 with probability almost

1/2 for a uniform choice of 0, orthogonality of the �%�-(0) for distinct % lets us conclude the

proof of the first relation as in Lemma A.3. Similarly, the analogue of (A.2) gives

{�̃, �-(0) ⊗ Id} = 2

∑
%: 0·G%=0

�%�-(0) ⊗ �% .

Using that any string G% which is not 2 satisfies 0 · G% = 0 with probability almost 1/2 for a

uniform choice of 0 such that 0 · 2 = 1, orthogonality of the �%�-(0) for distinct % lets us conclude

the proof of the second relation. �

A.4.2 The parallel Bell test

Before we move on to a test for the full Pauli group, including not only -, / but also .

observables, we use the Pauli braiding test introduced in the previous section to develop a

multi-qubit version of the Bell test from Section A.3.

Let : ≥ 1 and < = 2:. Let � be a bĳection of {1, . . . , <}, which we interpret as a pairing

of the qubits: for 8 ∈ {1, . . . , <}, qubit �(28 − 1) is paired with qubit �(28). The test ParBell(�)
described in Figure 31 certifies that an<-qubit measurement performed by a prover is consistent

with a measurement of each pair of qubits (as specified by �) in the Bell basis.

The test has three components. In part (a) we execute the test pbt(-, /) in order to enforce an

<-qubit structure and the existence of tensor product observables - and / on them, from which

the Bell basis is defined as in Section A.3. In part (b) we introduce questions, such that each

pair of indices paired by � contains the same label, -- or //. Since such question labels have

exponentially small probability under the uniform distribution, part (b) checks for consistency

against a uniformly random question, for all those locations where the bases happen to match.

In part (c) we ask one prover to measure in the Bell basis and check their results against those

reported by the other prover when asked to perform a measurement of the same type as in

part (b). Since the Bell basis is characterized as the joint eigenstates of -- and // operators,

checking consistency of these outcomes is enough the characterize the measurement.
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Test ParBell(�). � is a permutation on {1, . . . , <} where < = 2:.

Execute each of the following with equal probability:

(a) Execute pbt(-, /).

(b) Select , ∈ {-, /}< uniformly at random conditioned on ,�(28−1) = ,�(28) for each

8 ∈ {1, . . . , <}. Let, ′ ∈ {-, /}< be such that, ′
�(28−1) =,�(28−1) and,

′
�(28) is uniformly

random in {-, /} for each 8. Similarly, let, ′′ be such that, ′′
�(28) =,�(28) and,

′′
�(28−1) is

uniformly random. Send, to one prover and either, ′ or, ′′ (with probability half each)

to the other. Receive 0 ∈ {0, 1}< from the first prover and 1 ∈ {0, 1}< from the second.

Accept if and only if for each 8 ∈ {1, . . . , :}, 0�(28−1) = 1�(28−1) in case , ′ was sent, and

0�(28) = 1�(28) in case, ′′ was sent.

(c) Select , ∈ {-, /}< uniformly at random conditioned on ,�(28−1) = ,�(28) for each

8 ∈ {1, . . . , <}. Send , to a prover and (Φ, �) to the other, where Φ is a label that

means “measure in the Bell basis” with the qubits being paired according to �. Receive
0 ∈ {0, 1}< from the first prover and 1 ∈ {00, 01, 10, 11}: from the second. Accept if

and only if, whenever,�(28−1),�(28) = -- then 0�(28−1) ⊕ 0�(28) = 1�(28−1) and whenever

,�(28−1),�(28) = // then 0�(28−1) ⊕ 0�(28) = 1�(28).

Figure 31: The parallel bell test, ParBell(�).

Lemma A.7. Let : ≥ 1 and � a permutation on {1, . . . , :}. Suppose given a strategy for the provers

that succeeds with probability at least 1 − � in test ParBell(�). Let +� and +� be the isometries obtained

from Lemma A.5. Then ∑
1∈{00,01,10,11}:



(Φ1 −+†�(⊗8�18Φ,8)+�) ⊗ IdB |#〉


2

= $(
√
�),

where {Φ1}1 is the POVM applied by a prover upon question (Φ, �) and �18
Φ,8

denotes the projection on

the joint eigenvector of �-,�(28−1)�-,�(28) and �/,�(28−1)�/,�(28) with associated eigenvalues 18 .

Proof sketch. For ease of notation we give the proof when � is the identity, the general case being

similar. Isometries +� and +� satisfying the conclusions of Lemma A.5 are obtained from part

(a) of the test. Using the conclusion of Lemma A.5 it follows that on average over, ∈ {-, /}< ,∑
2∈{0,1}<



(,2 −+†�(�
2
, ⊗ Id)+�

)
⊗ Id� |#〉



2

= $(
√
�) . (A.7)

Part (b) of the test allows us to claim the same consequence, on average over, ∈ {--, //}: .
This can be seen as follows. For , ∈ {-, /}< and 2 ∈ {0, 1}: let , (1)2 be the sum of all ,2′

over 2′ ∈ {0, 1}< such that 2′
28−1

= 28 for each 8 ∈ {1, . . . , :}, and define,
(2)
2 analogously, using

the condition 2′
28
= 28 . Using that both , ′ and , ′′ in part (b) are uniformly distributed,

THEORY OF COMPUTING, Volume 20 (3), 2024, pp. 1–87 77

http://dx.doi.org/10.4086/toc


ANDREA COLADANGELO, ALEX B. GRILO, STACEY JEFFERY AND THOMAS VIDICK

applying (A.7) and marginalizing over half the outcomes we get that on average over the choice

of, ′ ∈ {-, /}< , ∑
2∈{0,1}:



(, ′(1)
2 −+†�(�

(1),2
,
⊗ Id)+�

)
⊗ Id� |#〉



2

= $(
√
�) . (A.8)

A similar relation holds for,
′′(2)
2 . Recall that measurement operators used by the provers are

always assumed projective. Thus for,,, ′,, ′′ chosen as in part (b) it holds that,2 =,
(1)
2′ ,

(2)
2′′

where 2′ and 2′′ are the odd and even substrings of 2, respectively. Using this relation and (A.8)

for both ,
′(1)

and for ,
′′(2)

we deduce that success in part (b) implies that on average over

, ∈ {--, //}: , ∑
2∈{0,1}<



(,2 −+†�(�
2
, ⊗ Id)+�

)
⊗ Id� |#〉



2

= $(
√
�) . (A.9)

To conclude the proof of the lemma we note that in the honest case

�1
Φ
=

:⊗
8=1

( ∑
2⊕2′=128−1

�2-,28−1
⊗ �2′-,28

)
·
( ∑
3⊕3′=128

�3/,28−1
⊗ �3′/,28

)
. (A.10)

This is precisely the relation checked in part (c). Thus the conclusion of the lemma follows

from (A.9), (A.10) and success in part (c). �

A.4.3 The <-qubit Pauli group

We will use an extended version of the Pauli braiding test introduced in Section A.4.1 which

self-tests a third observable, .8 , on each system. Ideally we would like to enforce the relation

.8 =
√
−1-8/8 . Unfortunately, the complex phase cannot be tested from classical correlations

alone: complex conjugation leaves correlations invariant, but does not correspond to a unitary

change of basis (see [38, Appendix A] for a discussion of this issue).

We represent the “choice” of complex phase,

√
−1 or its conjugate −

√
−1, by an observable

Δ that the prover measures on a system that is in a tensor product with all other systems on

which the prover acts. Informally, the outcome obtained when measuring Δ tells the prover to

use . = 8-/ or . = −8-/. While strategies determining the complex phase in such a way can

certainly not be prevented, the goal of the test is to ensure that the provers have exactly that

much freedom, and no more.

We first introduce . and test that the triple {-,., /} pairwise anticommute in each

coordinate. This corresponds to the following set of relations:

P(<){-,., /} =
{
,(0) ∈ Obs : , ∈ {� , -, ., /}< , 0 ∈ {0, 1}<

}
∪

{
,(0), ′(0′) = (−1)|{8:,8≠,

′
8
∧08 0′8=1}|, ′(0′),(0) : ,,, ′ ∈ {� , -, ., /}< , 0, 0′ ∈ {0, 1}<

}
∪

{
,(0),(0′) =,(0 + 0′) : , ∈ {� , -, ., /}< , 0, 0′ ∈ {0, 1}<

}
.
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Test pbt(-,., /):

• Inputs: , ∈∏<
8=1
{�8 , -8 , .8 , /8}

• Relations: P(<){-,., /}.

• Test: Perform the following with equal probability:

(a) Execute test pbt(-, /).
(b) Let, ∈ {-, /}< be chosen uniformly at random. Let, ′ = .< .

(i) Let 2, 2′ ∈ {0, 1}< be chosen uniformly at random. If 2 · 2′ = 0 then execute

com((,, 2), (, ′, 2′)). If 2 · 2′ = 1 then execute ac((,, 2), (, ′, 2′)).
(ii) Select (0, 0′) ∈ {0, 1}< . Execute test prod((, ′, 0), (, ′, 0′), (, ′, 0 + 0′)).
(iii) Select, ′′ ∈ {� , .}< uniformly at random. Let 2 be the indicator of the positions

in, ′′ such that, ′′
8
= 1. Send one prover the string, ′′ and the other the pair

(, ′, 2). Let 3 be the string reported by the first prover and 4 the bit reported by

the second. Accept if and only if 4 = 2 · 3.
(c) Select, ∈ {-, /}< and 2 ∈ {0, 1}< uniformly at random. Let, ′ ∈ {� , -, ., /} be

such that, ′
8
=,8 whenever 28 = 1, and, ′

8
is uniform in {� , .} otherwise. Let, ′′

be equal to, ′ with the positions in which, ′ equals - or / replaced by a uniformly

random entry in {� , .}. Send one of,,, ′,, ′′ at random to a prover, and another

one to the other. Accept if and only if the prover’s answers associated with identical

coordinates are identical.

(d) Select a random permutation � ∈ S</2, and, ∈ {� , .}< uniformly at random. Write

, = ,1,2, where ,1 ,,2 ∈ {� , .}</2. Let ,�
1
be the string ,1 with its entries

permuted according to �. Do the following with equal probability:

(i) Send one prover ,1,
�
1

and the other either ,1,2 or ,2,
�
1

(chosen with

probability 1/2), and check consistency of the first or second half of the provers’

answer bits, respectively.

(ii) Execute the test ParBell(�), where for 8 ∈ {1, . . . , </2}, �(28 − 1) = 8 and

�(28) = �(8).
(iii) Send one prover ,1,

�
1
, and the other (Φ, �). The first prover replies with

0 ∈ {0, 1}< and the second with 1 ∈ {00, 01, 10, 11}</2. For each 8 ∈ {1, . . . , </2}
such that 18 = 00, check that 08 = 0</2+�(8).

(iv) Let , ′ ∈ {-, /}< be chosen uniformly at random. Send one prover , ′ and
the other (Φ, �). The first prover replies with 0 ∈ {0, 1}< and the second with

1 ∈ {00, 01, 10, 11}</2. For each pair (8 , </2 + �(8)) such that, ′
8
=, ′

</2+�(8) and

18 = 00 check that 08 = 0</2+�(8).

Figure 32: The extended Pauli braiding test, pbt(-,., /).
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The test is described in Figure 32. It has four components. Part (a) of the test executes test

pbt(-, /), which gives us multi-qubit Pauli - and / observables. Part (b) of the test introduces

.<(2) observables, and uses commutation and anti-commutation relations with - and / to

force .< to respect the qubit structure obtained from part (a); the analysis of this part is based

on Lemma A.6. Part (c) of the test, while not strictly necessary for our applications, justifies

the test’s name, by introducing an observable associated with any tensor product of Paulis and

testing it for consistency against the observables tested in parts (a) and (b).

Part (d) of the test is meant to control the “phase” ambiguity in the definition of .(2) that
remains after the analysis of part (b). Indeed, from that part it will follow that.(2) ' �.(2)⊗Δ(2),
where Δ(2) is an arbitrary observable acting on the ancilla system produced by the isometry

obtained in part (a). We would like to impose Δ(2) ' Δ|2 |
.

for a fixed observable Δ. which

represents the irreducible phase degree of freedom in the definition of ., as discussed above. To

obtain this, part (c) of the test performs a form of SWAP test between different .(2) observables,
enforcing, e. g., that .(1, 0, 1) is consistent with .(1, 0, 0) after an appropriate Bell measurement

has “connected” registers 1 and 2. The Bell basis measurements are tested using ParBell(�)
from the previous section.

ClaimA.8. Let� ∈ Obs(ℂ2

A1

⊗· · ·⊗ℂ2

A:
⊗ℋ) and � ∈ Obs(ℂ2

B1

⊗· · ·⊗ℂ2

B:
⊗ℋ) be :-qubit observables

acting on distinct registers A9 , B9 , as well as a common spaceℋ , and ΦA’B’ =
∏:

9=1
|EPR〉〈EPR|A’9 ,B’9 the

projector on : EPR pairs across registers A’9 and B’9 . Then(⊗
9

〈EPR|A9A’9 〈EPR|B9B’9 ⊗ Idℋ
) ( (

�Aℋ ⊗ IdB
) (

IdA ⊗�Bℋ
)
⊗ ΦA’B’

)
·
(⊗

9

|EPR〉A9A’9 |EPR〉B9B’9 ⊗ Idℋ
)
=

1

2
2:

∑
8

Tr

(
�8�8

)
�′8�

′
8 , (A.11)

where we write � =
∑
8 �8 ⊗ �′8 and � =

∑
8 �8 ⊗ �′8 , for �8 onℋA, �8 onℋB, and �

′
8
, �′

8
onℋ .

Proof. We do the proof for : = 1, as the general case is similar. Using that for any operators -AB
and .A’B’,

〈EPR|AA’〈EPR|BB’
(
-AB ⊗ .A’B’

)
|EPR〉AA’ |EPR〉BB’ =

1

4

Tr(-.)),

the left-hand side of (A.11) evaluates to

4
−1

TrAB
( (
�Aℋ ⊗ IdB

) (
IdA ⊗�Bℋ

) (
Φ)A’B’ ⊗ Idℋ

) )
,

which using the same identity again gives the right-hand side of (A.11). �

Lemma A.9. Suppose |#〉 ∈ ℋA ⊗ℋB and,(0) ∈ Obs(ℋA), for, ∈ {� , -, ., /}< and 0 ∈ {0, 1}< ,
specify a strategy for the provers that has success probability at least 1 − � in the extended Pauli braiding

test pbt(-,., /) described in Figure 32. Then there exist isometries +� : ℋD → ((ℂ2)⊗<)D’ ⊗ ℋ̂D̂, for

� ∈ {�, �}, such that 

(+� ⊗ +�)|#〉AB − |EPR〉⊗<A′B′ |aux〉ÂB̂



2

= $(
√
�),
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and on expectation over, ∈ {� , -, ., /}< ,

E

0∈{0,1}<



(,(0) −+†�(�, (0) ⊗ Δ, (0))+�) ⊗ Id� |#〉


2

= $(
√
�), (A.12)

where Δ, (0) =
∏

8 Δ
08
,8
∈ Obs(ℋÂ) are observables with Δ- = Δ/ = Id and Δ. an arbitrary observable

on ℋ̂ such that 

Δ. ⊗ Δ. |aux〉 − |aux〉


2

= $(
√
�).

Proof sketch. The existence of the isometries +� and +� follows Lemma A.5 and part (a) of

pbt(-,., /). Under this isometry we have,(0) '√� �, (0), on average over uniformly random

, ∈ {-, /}< and 0 ∈ {0, 1}< , and moreover ,2 ' �2
,

on average over uniformly random

, ∈ {-, /}< .
Applying Lemma A.6, the anti-commutation relations between .<(2) and,(2) verified in

part (b)(i) of the test imply that under the same isometry,

.(2) ' �.(2) ⊗ Δ(2) , (A.13)

for some observable Δ(2) onℋÂ. Here .(2) is shorthand for .<(2). This is because, for any 2,
the test verifies that condition (iv) in Lemma A.6 is satisfied, where - in the lemma is replaced

by any, ∈ {-, /}= (more precisely, the condition holds on the average, for, ∈ {-, /}< and

0 ∈ {0, 1}< both chosen uniformly at random). Thus the second centered equation in (A.6)

holds, where by varying the choice of - in the lemma (corresponding to varying, here) we get

that if 28 = 1 then %8 ∈ {., /} ∩ {., -} = {.} and if 28 = 0 then %8 ∈ {� , -} ∩ {� , /} = {�}. Thus
the lemma implies the claimed form (A.13), where Δ(2) here is �% in the lemma for % = .(2).

Using the linearity relations that are verified in part (b)(ii) we may in addition express

Δ(2) = ∏
8 Δ

28
8
for (perfectly) commuting observables Δ8 .

Using part (b)(iii) it follows that on average over uniformly random 2, .(2) ' ∑
3(−1)3·2, (2)

3

where, (2) ∈ {� , .}< is the string that has a . exactly at those positions 8 such that 28 = 1.

Using Claim A.8, success probability at least 1 − $(�) in part (d) of the test implies that on

average over a random permutation � ∈ S</2,

E

�
E

2∈{0,1}</2
2
−<

Tr

(
�.(2, 2�)

)
〈aux|

( </2∏
8=1

(
Δ8Δ</2+�(8)

) 28 ) |aux〉 = 1 − $(
√
�), (A.14)

where we wrote (2, 2�) for the <-bit string (21 , . . . , 2</2 , 2�(1) , . . . , 2�(</2)). Defining

Δ. = E

8∈{ <
2
+1,...,<}

Δ8

| E8 Δ8 |
, (A.15)
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We show that Eq. (A.14) implies that Δ(2) ≈√� Δ
|2 |
.
. Towards this we first observe that

E

2∈{0,1}</2




( </2∏
8=1

Δ
28
8
−

(
E

8∈{ <
2
+1,...,<}

Δ8
) |2 |) |aux〉




2

(A.16)

≤ E

2
E

,:{1,..., <
2
}→{ <

2
+1,...,<}



( </2∏
8=1

Δ
28
8
−

∏
8

Δ
28
,(8)

)
|aux〉



2

. (A.17)

where the first inequality is by convexity, with the expectation taken over a random function ,.
We would like to relate this last term to the expectation over a random permutation � ∈ S</2.
We do this by observing that with probability 1−$(1/<) over the choice of a uniformly random

, it is possible to write ∏
8

Δ
28
,(8) =

(∏
8

Δ
2′
8

</2+�′(8)

) (∏
8

Δ
2′′
8

</2+�′′(8)

)
,

where 2′
8
+ 2′′

8
= 28 for all 8, �′, �′′ are permutations such that </2 + �′(8) = ,(8) if 2′

8
= 28 , and

</2 + �′′(8) = ,(8) if 2′′
8
= 28 ; this is possible because , might have two-element collisions, but

is unlikely to have any three-element collisions. Moreover, for uniformly random 2 and , we

can ensure that the marginal distribution on (2′, �′) and (2′′, �′′) is uniform. Using this we can

apply (A.14) twice to bound the right-hand side of (A.17) by $(
√
�) (after having expanded

the square). Thus the action of E8 Δ8 on |aux〉 is close to the action of an observable. It is then

relatively routine work to show that Δ. defined in (A.15) satisfies Δ(2) ≈√� Δ
|2 |
.
, on average over

a uniformly random 2.

The last condition in the lemma follows from the consistency relations, which imply that

-(0) ⊗ -(0), /(1) ⊗ /(1) and .(2) ⊗ .(2) all approximately stabilize |#〉; then Δ|0 |
.
⊗ Δ|0 |

.
≈

-(0)/(0).(0) ⊗ -(0)/(0).(0) also does. �
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