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Abstract. For 5 : {0, 1}= → {0, 1} and ( ⊂ {1, 2, , . . . , , =}, let �+
(
( 5 ) be the probability

that, for G uniform from {0, 1}= , there is some H ∈ {0, 1}= with 5 (H) = 1 and G ≡ H
outside (. We are interested in estimating, for given �( 5 ) (:= E( 5 )) and <, the least

possible value of max{�+
(
( 5 ) : |( | = <}.

A theorem of Kahn, Kalai, and Linial (KKL) gave some understanding of this

issue and led to several stronger conjectures. Here we disprove a pair of conjectures

from the late 80s, as follows.

(1) The KKL Theorem implies that there is a fixed 
 > 0 so that if �( 5 ) ≈ 1/2, and
2 > 0, then there is a set ( of size at most 
2= with �+

(
( 5 ) ≥ 1 − =−2 . We show that

for every � > 0 there is an 5 with �( 5 ) ≈ 1/2 and �+
(
( 5 ) ≤ 1 − =−� for every ( of size

(1/2 − �)=, where � = ��. This disproves a conjecture of Benny Chor from 1989.

(2) We also show that for fixed � > 0 there are 2, 
 > 0 and Boolean functions 5 such

that �( 5 ) > exp[−=1−2] and �+
(
( 5 ) ≤ exp[−=
] for each ( of size (1/2 − �)=. This

disproves a conjecture of the third author from the late 80s.
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1 Introduction

For a set)weuseΩ()) for thediscrete cube {0, 1}) and�) for theuniformprobabilitymeasure

onΩ()). In this paper 5 will always be a Boolean function onΩ([=]) (that is, 5 : Ω([=]) → {0, 1},
where, as usual, [=] = {1, . . . , =}). We write � for �[=] and �( 5 ) = �({G : 5 (G) = 1})). We reserve

G, H for elements of Ω([=]) and set |G | = ∑
G8 .

Following Ben-Or and Linial [3] we define, for a given 5 and ( ⊂ [=], the influence of ( toward
one to be

�+( ( 5 ) = �[=]\(({D ∈ Ω([=]\() : ∃E ∈ Ω((), 5 (D, E) = 1}) − �( 5 ). (1.1)

Similarly, the influence of ( toward zero is

�−( ( 5 ) = �[=]\(({D ∈ Ω([=]\() : ∃E ∈ Ω((), 5 (D, E) = 0}) − (1 − �( 5 )) (1.2)

and the (total) influence of ( is

�(( 5 ) = �+( ( 5 ) + �
−
( ( 5 ).

Suppose �( 5 ) = 1/2. It then follows from a theorem of Kahn, Kalai and Linial [12]

(Theorem 2.2 below, henceforth “KKL”) that for every 0 ∈ (0, 1) there is an ( ⊂ [=] of size 0=
with �+

(
( 5 ) ≥ 1/2 − =−2 , where 2 > 0 depends on 0. (See Theorem 2.3.) Benny Chor conjectured

in 1989 [7] that one can in fact achieve �+
(
( 5 ) ≥ 1/2 − 2= (where, again, 2 < 1 depends on 0). The

conjecture has been “in the air” since that time, though as far as we know it has appeared in

print only in [13, 14].

In this paper we disprove Chor’s conjecture and another, similar conjecture from the same

period. In the subsequent part II, we improve the preceding consequence of KKL.

For our purposes the subtracted terms in equations (1.1) and (1.2) are mostly a distraction,

and it sometimes seems clearer to speak of �+
(
( 5 ) := �+

(
( 5 ) + �( 5 ) and �−

(
( 5 ) := �−

(
( 5 ) + (1 − �( 5 )).

Thus, for example, �+
(
( 5 ) is the probability that a uniform setting of the variables in [=] \ (

doesn’t force 5 = 0, and Chor’s conjecture predicts an ( with �+
(
( 5 ) ≥ 1 − 2= . The following

statement shows that this need not be the case.

Theorem 1.1. For any fixed 
, � ∈ (0, 1) there exists � ∈ ℝ such that for all large enough = there

exists an 5 such that �( 5 ) = 
 and �+
(
( 5 ) < 1 − =−� for every ( ⊆ [=] of size at most (1/2 − �)= .

We should note that one cannot expect to go much beyond |( | = (1/2 − �)=; for example if

�( 5 ) = 1/2, then it follows from the “Sauer–Shelah Theorem” (Theorem 2.5) that there is an ( of

size =/2 with �+
(
( 5 ) = 1.

Another consequence of KKL (see Theorem 2.4 below) is that there is a � > 0 such that for

any 5 with �( 5 ) > =−� there is an ( of size (say) 0.1= with influence 1− >(1). A conjecture of the

third author, again from the late 80s, asserts that the same conclusion holds even assuming only

�( 5 ) > (1 − �)= for sufficiently small �. This conjecture turns out to be false as well.

Theorem 1.2. For any fixed �, � > 0 there exists 
 > 0 such that for all large enough = there

exists an 5 such that �( 5 ) > (1 − �)= and no set of size at most (1/2 − �)= has influence toward 1

more than exp[−=
].
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This can be strengthened a bit to require �( 5 ) > exp[−=1−2] for some fixed 2 = 2� > 0.

The examples proving Theorems 1.1 and 1.2 are given in Section 3. Each of these is of

the form 5 =
∧<
8=1
�8 , where the �8 are random disjunctions of : literals using : distinct

variables (henceforth “:-clauses”). These 5 ’s, which may be thought of as variants of the “tribes”

construction of Ben-Or and Linial (see below), were inspired by a paper of Ajtai and Linial [1]

and share with it the following curious feature. It is easy to see that any 5 can be converted to a

monotone (i. e., increasing) 5 ′ with E( 5 ′) = �( 5 ) and each influence (�+
(
and so on) for 5 ′ no larger

than the corresponding influence for 5 ; thus it is natural to look for 5 ’s with small influences

among the increasing functions. But the present random examples, like those of [1], do not do

this, and it is not easy to see what one gets by monotonizing them.

Improving the consequences of KKL

While the preceding, rather optimistic conjectures turn out to be false, in part II we show that

the first of the aforementioned consequences of KKL can be improved. (The results and proofs

of both parts were given together in the arXiv publication [6].)

Theorem 1.3. For each � > 0, there is a � > 0 such that for any 5 with �( 5 ) > =−� , there is an
( ⊂ [=] of size at most (1/2 − �)= with �+

(
( 5 ) > .9.

(Of course, as elsewhere in this discussion, “.9” could be any preset � < 1.)

Note that the gap between Theorems 1.2 and 1.3 is substantial and our modest progress is

likely not the final word on the problem. For example, could it be that there is some fixed �
such that there are 5 ’s with �( 5 ) > =−� for which no ( of size 0.1= has influence Ω(1)? We will

discuss this question further in the next section.

The Proof of Theorem 1.3 ([6]) goes roughly as follows. We employ two strategies, both

variants of the analysis in [12]. The first uses the total influence, assumed sufficiently large.

If at some point this total influence becomes “small,” we switch to a different procedure that

combines the incremental argument from [12] with the Sauer–Shelah theorem.

2 Background and perspective

Influence

We write �ℓ ( 5 ) for �{ℓ }( 5 ). A form of the classic edge isoperimetric inequality for Boolean

functions is

Theorem 2.1. For any (Boolean function) 5 with �( 5 ) = C,

�( 5 ) :=

=∑
:=1

�ℓ ( 5 ) ≥ 2C log
2
(1/C). (2.1)

(This convenient version is easily derived from the precise statement, due to Hart [9]; see also

[11, Sec. 7] for a simple inductive proof.)
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While (2.1) is exact or close to exact (depending on C), it typically gives only a weak lower bound

on the maximum of the �ℓ ( 5 )’s, namely

max

ℓ
�ℓ ( 5 ) ≥ 2C log

2
(1/C)/=. (2.2)

For C not too close to 0 or 1, the following statement from [12] gives better information.

Theorem 2.2 (KKL). There is a fixed 2 > 0 such that for any 5 with �( 5 ) = C, there is an ℓ ∈ [=]
with

�ℓ ( 5 ) ≥ 2C(1 − C) log =/=. (2.3)

Recall that �ℓ ( 5 ) = �( 5 ) + �ℓ ( 5 ). Repeated application of Theorem 2.2 gives the following two

corollaries.

Theorem 2.3. For all 0, C ∈ (0, 1) there is a c such that for any 5 with �( 5 ) = C there is an ( ⊆ [=]
with |( | ≤ 0= and

�+( ( 5 ) ≥ 1 − =−2

(that is, �+
(
( 5 ) ≥ (1 − C) − =−2).

Similarly (either by the same argument or by applying Theorem 2.3 to the function 1 − 5 (G))
there is a small (′ with �−

(′( 5 ) ≥ 1− =−2 (i. e., �−
(′( 5 ) ≥ C − =−2), and combining these observations

we find that there is in fact a small (′′ (e. g., ( ∪ (′) with �(′′( 5 ) ≥ 1 − =−2 .

Theorem 2.4. For every �, & > 0, there is an 
 > 0 such that for large enough = and any 5 with

�( 5 ) ≥ =−
, there is an ( ⊆ [=]with |( | = �= and

�+( ( 5 ) ≥ 1 − &.

The conjecture of Chor stated in Section 1 asserts that the =−2 in Theorem 2.3 can be replaced by

something exponential in =, and the conjecture stated before Theorem 1.2 proposes a similar

weakening of the =−
 lower bound on �( 5 ) in Theorem 2.4. As already noted, we will show

below that these conjectures are incorrect.

Tribes

The original “tribes” examples of Ben-Or and Linial [3] are Boolean functions of the form

5 =
∨<
8=1
�8 , where the “tribes” �8 are conjunctions of : (distinct) variables and each variable

belongs to exactly one tribe. The dual of such an 5 (so “dual tribes”) is , =
∧<
8=1
�8 , where �8 is

the disjunction of the variables in �8 (so again, each variable belongs to exactly one �8).

When : = log = − log log = − log ln(1/C), we have 1 − �( 5 ) = E(,) ≈ C (where log = log
2
and

5 , , are as above). For fixed C ∈ (0, 1) both constructions show that Theorem 2.2 is sharp (up to

the value of 2).

On the other hand, when C = $(=−2) for a fixed 2 > 0, 5 shows that (2.2) is tight up to a

multiplicative constant, depending on 2; for example, : = 2 log = − log log = gives �( 5 ) ≈ 1/(2=)
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and �ℓ ( 5 ) ≈ 2 log =/=2 = Θ(�( 5 ) log(1/�( 5 ))/=) for each ℓ . (In contrast, for E(,) ≈ 1/=, we

should take : = log = − 2 log log = − 1, in which case �ℓ (,) = Θ(log
2 =/=2) and (2.2) is off by a

log.)

For 5 (again, as above) with �( 5 ) ∈ (Ω(1), 1 − Ω(1)), there are sets of size log = with

large influence toward 1, while no set of size >(=/log =) has influence Ω(1) toward 0. (The

corresponding statement with the roles of 0 and 1 reversed holds for ,.) The Ajtai-Linial

construction mentioned in the introduction shows that there are Boolean functions ℎ with

E(ℎ) ≈ 1/2 and �((ℎ) < >(1) for every ( of size >(=/log
2 =).

Trace

Wenowbriefly consider influences from adifferent point of view. For a set- let 2
- = {( : ( ⊂ -},(-

:

)
= {( ⊂ - : |( | = :},

( -
<:

)
= {( ⊂ - : |( | < :} and

( =
<:

)
=

∑:−1

8=0

(=
8

)
. For ℱ ⊂ 2

-
and . ⊂ -,

the trace of ℱ on . is

ℱ|. = {( ∩ . : ( ∈ ℱ }.
Let - = [=]. The “Sauer–Shelah Theorem” (below) determines, for every = and <, the

minimum ) such that for each ℱ ⊆ 2
-
of size ) there is some . ∈

(-
<

)
on which the trace of ℱ

is complete, meaning ℱ|. = 2
.
. Such a . is said to be shattered by ℱ .

Theorem 2.5 (The Sauer–Shelah Theorem). If ℱ ⊂ 2
-
and |ℱ | >

( =
<A

)
, then ℱ shatters some

. ∈
(-
A

)
.

That this is sharp is shown by ℱ =
( -
<A

)
, the Hamming ball of radius A − 1 about ∅ with respect to

the usual Hamming metric on 2
- ≡ Ω(-).

Theorem 2.5 was proved around the same time by Sauer [15], Shelah and Perles [16],

and Vapnik and Chervonenkis [17]. It has many connections, applications and extensions in

combinatorics, probability theory, model theory, analysis, statistics and other areas.

We identify Ω([=]) and 2
[=]

in the usual way. The connection between traces and influences

is as follows. Let 5 be a Boolean function on Ω([=]) and ℱ = 5 −1(1). It is easy to see that for

( ⊆ [=] and ) = [=]\(,
�+( ( 5 ) = 2

−|) | |ℱ|) |.
Thus, in the language of traces, we are interested in the effect of relaxing “ℱ shatters .” to

require only that ℱ|. contain a large fraction of 2
.
.

The following arrow notation (e. g., [5, 8, 2]) is convenient. Write (#, =) → (", A) if every
ℱ ⊆ 2

[=]
of size # has a trace of size at least " on some ( ∈

([=]
A

)
; for example the Sauer–Shelah

Theorem says (
( =
<A

)
+ 1, =) → (2A , A).

One might hope that Hamming balls would again give the best examples in our relaxed

setting, which would say, for example, that for < ≤ =,
(
( =
<A

)
+ 1, =) → (

(<
<A

)
+ 1, <). (2.4)

But (2.4), which was first considered by Bollobás and Radcliffe [4] and would have implied both

of the conjectures disproved here, was shown in [4] to be false for fixed A and (large) < = =/2.
(For A = =/2 and < = = − 1, it fails for the original tribes example discussed above.)
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Two problems

Question 2.1. For fixed 
, � > 0, what is the largest C ∈ (0, 1/2) for which one can find Boolean

functions 5 with �( 5 ) = C and �+
(
( 5 ) < 
 for every ( ⊆ [=] of size at most (1/2 − �)=?

As far as we know C > =−� (with � depending on 
, �) is possible. The influence of sets of half
the variables is of special interest:

Question 2.2. Given �( 5 ) = >(1) what can be said about the maximum of the �+
(
( 5 )’s for

|( | = =/2? What is the smallest C such that for each 5 with �( 5 ) = C there is some ( of size =/2
with �+

(
( 5 ) ≥ 1/2? (Here we assume that = is even.)

3 Boolean functions without influential coalitions

In each construction we consider, for suitable : and <, 5 =
∧<
8=1
�8 , where the �8 are random

disjunctions of : literals using : distinct variables (henceforth “:-clauses”) and show that 5 is

likely to have the desired properties. Every �8 can be regarded as a list of specifications for the

values of : variables. We use ,8 for the specification associated with �8 , and write �8 ∼ G if

some entry of G agrees with ,8 . We say �8 misses ( ⊆ [=] if the indices of all variables in �8 lie in
[=] \ (.

Let B = (1/2 − �)=. We will always use ( for an B-subset of [=] and (for such an () set

<( = |{8 : �8 misses (}|. (Following common practice we omit irrelevant floor and ceiling

symbols, pretending all large numbers are integers. As in the case of :, < and B, parameters not

declared to be constants are assumed to be functions of =.) We use log for log
2
.

Both constructions will make use of the next two observations, with Theorem 1.1 following

immediately from these and Theorem 1.2 requiring a little more work.

Lemma 3.1. If : = >(
√
=) and (1/2 + �):< = $(=) then w. h. p.

<( ∼ (1/2 + �):< for all ( ∈
([=]
B

)
. (3.1)

(where, as usual, 0= ∼ 1= means 0=/1= → 1 and with high probability (w. h. p.) means with

probability tending to 1, both as = →∞).

Proof. For a given (, <( has the binomial distribution �(<, ?), with ? =
(=−B
:

)
/
(=
:

)
∼ (1/2 + �):

(using : = >(
√
=) for the “∼”). Thus E<( = <? and, by “Chernoff’s Inequality”

∗
(e. g., [10,

Theorem 2.1]),

Pr(<( ∉ ((1 − �)<?, (1 + �)<?)) < exp[−Ω(�2<?)], (3.2)

for � ∈ (0, 1). Applying this with a � which is both $(
√
=/(<?)) and >(1) gives Pr(<( / <?) <

2
−$(=)

, and the union bound then gives (3.1). �

The next lemma is stated to cover both applications, though nothing so precise is needed for

Theorem 1.1.

∗
Though now commonly called a “Chernoff bound," this and related inequalities essentially go back to Sergei

Natanovich Bernstein in the early part of the 20th century; see [18].
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Lemma 3.2. If there is a � for which

exp[−�2=] = >((1 − 2
−:)<) (3.3)

and
[(1 + 2�)/4]: = >(1/<), (3.4)

then w. h. p.
�( 5 ) ∼ (1 − 2

−:)< . (3.5)

Proof. This is a simple second moment method calculation (similar to what is done in [1], though

described differently there).

Recalling that G, H always denote elements of {0, 1}= , write �G for the event { 5 (G) = 1} and
1G for its indicator, and set - =

∑
1G = 2

=�( 5 ). Then Pr(�G) = (1− 2
−:)< and E- = (1− 2

−:)<2
=
;

so we just need to show E-2 ∼ E2- (equivalently, E-2 < (1 + >(1))E2-), since Chebyshev’s

Inequality then gives Pr(|- − E- | > �E-) = >(1) for any fixed � > 0.

We have

E-2 =
∑
G

∑
H

E1G1H =
∑
G

Pr(�G)
∑
H

Pr(�H |�G),

so will be done if we show that for a fixed G,∑
H

Pr(�H |�G) < (1 + >(1))(1 − 2
−:)<2

= .

Since the sum is the same for all G, it is enough to prove this when G = 0. Set / = {H : |H | <
(1/2 − �)=} and recall that by Chernoff’s Inequality (3.2), |/ | < exp[−2�2=]2= . It is thus enough
to show that (for G = 0)

H ∉ / ⇒ Pr(�H |�G) < (1 + >(1))(1 − 2
−:)< , (3.6)

since then, using (3.3), we have∑
H

Pr(�H |�G) < |/ | +
∑
H∉/

Pr(�H |�G) < (1 + >(1))(1 − 2
−:)<2

= .

Now since G = 0, we have �G = {,8 ≠ 1 for all 8}; so if, for a given H ∉ /, we set

� = �H = Pr(�8 ∼ H |,8 ≠ 1) (a function of |H |), then Pr(�H |�G) = �< . Aiming for a bound on �,
we have

1 − 2
−: = Pr(�8 ∼ H)
= Pr(,8 = 1)Pr(�8 ∼ H |,8 = 1) + Pr(,8 ≠ 1)Pr(�8 ∼ H |,8 ≠ 1)
= 2
−:

Pr(�8 ∼ H |,8 = 1) + (1 − 2
−:)�

and

Pr(�8 ∼ H |,8 = 1) > 1 − (1 − |H |/=): ≥ 1 − (1/2 + �): =: 1 − �
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(using the fact that if ,8 = 1, then ,8 / H iff all indices of variables in �8 belong to { 9 : H 9 = 0}).
Combining, we have

� < (1 − 2
−:)−1[1 − 2

−: − 2
−:(1 − �)] = (1 − 2

−:)
[
1 + 2

−: (�−2
−: )

(1−2
−: )2

]
,

which with (3.4) gives �< < (1 + >(1))(1 − 2
−:)< (which is (3.6)). �

Proof of Theorem 1.1. Notice that it is enough to prove this with �( 5 ) ∼ 
 (rather than “= 
”); for
then, since 5 −1(1) ⊆ ,−1(1) trivially implies �+

(
( 5 ) ≤ �+

(
(,) for all (, we can choose � ∈ (
, 1) and

a , with E(,) ∼ � possessing the desired small influences, and shrink ,−1(1) to produce 5 .

Let : = � log =, with � = �� chosen so that (1 + 2�): = $(=) (e. g., � = 1/� does this), and

< = 2
:

ln(1/
) = =� ln(1/
). Here all we use from Lemma 3.1 (whose hypotheses are satisfied

for our choice of : and <) is the fact that w. h. p. <( ≠ 0 for all (, whence each �+
(
( 5 ) is at most

1 − 2
−: = 1 − =−� . On the other hand, by Lemma 3.2 (with, for example, � = 0.1), we have

�( 5 ) ∼ 
 w.h. p. So w. h. p. 5 meets our requirements. �

Proof of Theorem 1.2. . Here, intending to recycle =, < and 5 , we rename these quantities n, m
and f. Wemay of course assume � is fairly small. Let (for example) � = �/3, fix �with 0 < � < �2

,

and set : = (1 + �) log n and m = �2
:n. These values are easily seen to give the hypotheses of

Lemmas 3.1 and 3.2. In particular, we can say that w. h. p. the supports of the �8 are chosen so

(3.1) holds (note this says nothing about the values specified by the ,8) and

E(f) ∼ (1 − 2
−:)m ∼ e

−�n. (3.7)

Set = = (1/2 + �)n. Fix ( ∈
([n]
B

)
, set < = <(, and let 5 = 5( be the conjunction of the <

clauses �8—w.l.o.g. �1 , , . . . , , �<—that miss (. Thus 5 is the conjunction of < ∼ (1/2 + �):m =

�(1 + 2�):n random :-clauses from a universe of = variables. Theorem 1.2 (with 
 = �) thus
follows from

Claim A. Pr(�( 5 ) > exp[−=�]) < >(2−n)
(since then w. h. p. we have E( 5() ≤ exp[−=�] for every ().
Remarks. The actual bound in Claim A will be exp[−Ω(<)], so much smaller than 2

−n
. Note that

here it does not matter whether we take � to be our original measure (i. e., � uniform on {0, 1}n)
or uniform measure on & := {0, 1}= ; but it is now more natural to think of the latter—and we

will do so in what follows—since our original universe plays no further role in this discussion.

It may also be worth noting that, unlike in the proof of Lemma 3.2, the second moment method

is not strong enough to give the exponential bound in Claim A.

Claim B. If - ⊆ &, �(-) = � > exp[−>(=/log
2 =)] and � = >(2−:), then for a random :-clause �,

Pr(�(� ∧ -) > (1 − �)�(-)) < 1/2

(where � ∧ - = {G ∈ - : � ∼ G}).
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Remark. This is probably true for � greater than something like exp[−=/:]. The bound in the

claim is just what the proof gives, and is more than enough for us since we are really interested

in much larger �.

To see that Claim B implies Claim A, set 59 =
∧9

8=1
�8 and notice that �( 5 ) ≥ � implies (for

example) ���{8 : E( 58) <
(
1 − 5 ln(1/�)

<

)
E( 58−1)

}��� < </5 (3.8)

(and, of course, E( 58) ≥ � for all 8). But if we take � = exp[−=�] then our choice of parameters

gives

� := 5<−1

ln(1/�) = >(2−:)

(using </ln(1/�) = Θ(=(1+�) log(1+2�)+1−�) and 2
: = =1+�

), so Claim B bounds the probability of

(3.8) by ( <
</5

)
2
−4</5 = >(2−n). �

Proof of Claim B. Let � be the bipartite graph on& ∪, , where, is the set of (=− :)-dimensional

subcubes of& and, for (G, �) ∈ &×, , we take G ∼ � if G ∈ �. (Sowe have gone to complements:

for a clause � the corresponding subcube is � = {H : � / H}, so � ∧ - = - \ �.)

Assuming Claim B fails at -, fix ) ⊆ , with |) | = |, |/2 and

� ∈ ) ⇒ �(� ∩ -) < ��(-),

and set ' =, \ ).
Consider the experiment: (i) choose G uniformly from -; (ii) choose � uniformly from the

members of, containing G; (iii) choose H uniformly from �.

Claim C. Pr(H ∈ -) > (2 − >(1))�.

Proof. Since each triple (G, �, H)with G ∈ - and G, H ∈ � is produced by (i)-(iii) with probability

|- |−1 · 2: |, |−1 · 2:−= , we just need to show that the number of such triples with H ∈ - is at least

(2 − >(1))� |- | |, |2=2
−2: = (2 − >(1))|- |2 |, |2−2: .

Writing 3 for degree in �, we have∑
G∈-

3)(G) =
∑
�∈)

3-(�) < |) |� |- |,

implying ∑
�∈'

3-(�) =
∑
G∈-
(3(G) − 3)(G))

> |- | |, |2−: − � |) | |- | = (1 − >(1))|- | |, |2−: .
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The number of triples (G, �, H) as above is thus∑
�∈,

32

-(�) ≥
∑
�∈'

32

-(�) ≥
(∑
�∈'

3-(�)
)

2

/|' |

> (1 − >(1))|- |2 |, |2 |' |−1

2
−2: = (2 − >(1))|- |2 |, |2−2: . �

Let )(G) be the random element of & obtained from G by choosing  uniformly from

([=]
:

)
and randomly (uniformly, independently) resampling the G8 for 8 ∉  . Then H obtained from

G by (ii) and (iii) above is just )(G), so the next assertion contradicts Claim C, completing the

proof of Claim B (and Theorem 1.2).

ClaimD. If�(-) > exp[−>(=/log
2 =)] and G is uniform from-, thenPr()(G) ∈ -) < (1+>(1))�(-).

Remark. If - is a subcube of codimension =/:, say - = {G : G ≡ 0 on !} with |!| = =/:, then for

any G ∈ -,

Pr()(G) ∈ -) =
∑
C

Pr(| ∩ !| = C)2−(|!|−C) = �(-)
∑
C

Pr(| ∩ !| = C)2C ,

and, since | ∩ !| is essentially Poisson with mean 1, the sum is approximately e
−1

∑
C 2

C/C! = e.

So Claim D fails for �(-) = 2
−=/:

and, as earlier, it is natural to guess that it holds if �(-) is
much greater than this.

Proof of Claim D. Let &A = {H ∈ & : |H | ≤ A}. The assumption on �(-) implies that �(&A−1) <
�(-) ≤ �(&A) for some A > (1/2 − >(1/:))=, so Claim D follows from

Claim E. If ! = >(1/:) and A > (1/2 − !)=, then for any G ∈ & and - ⊆ & with

�(-) ≤ �(&A), (3.9)

we have

Pr()(G) ∈ -) < (1 + >(1))�(&A). (3.10)

Proof. We may assume G = 0, so that Pr()(G) = H) is a decreasing function of |H |. We thus

maximize Pr()(G) ∈ -) subject to (3.9) by taking - = &A , and (3.10) is then a routine calculation

using

�(-) = Pr(Bin(=, 1/2) ≤ A)
and

Pr()(G) ∈ -) = Pr(Bin(= − :, 1/2) ≤ A)
(where Bin(·, ·) denotes a binomially distributed r.v.). �
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