
THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23
www.theoryofcomputing.org

On a Generalization of Iterated and

Randomized Rounding

Nikhil Bansal
∗

Received April 24, 2019; Revised November 18, 2022; Published December 5, 2024

Abstract. We give a general method for rounding linear programs, that combines

the commonly used iterated rounding and randomized rounding techniques. In

particular, we show thatwhenever iterated rounding can be applied to a problemwith

some slack, there is a randomized procedure that returns an integral solution that

satisfies the guarantees of iterated rounding and also has concentration properties.

We use this to give new results for several classical problems such as rounding

column-sparse LPs, makespan minimization on unrelated machines and degree-

bounded spanning trees.

1 Introduction

A powerful approach in approximation algorithms is to formulate the problem at hand as a

0-1 integer program and consider some efficiently solvable relaxation for it. Then, given some

fractional solution G ∈ [0, 1]= to this relaxation, apply a suitable rounding procedure to G to

An extended abstract of this paper appeared in the Proceedings of the 51st Annual ACM Symposium on Theory

of Computing (STOC’19) [7].

∗
Supported by the ERC Consolidator Grant 617951 and the NWO VICI grant 639.023.812.

ACM Classification: F.2.2, G.1.6

AMS Classification: 68W25, 68W20

Key words and phrases: approximation, randomized rounding, scheduling, discrepancy,

semidefinite programming, random walks

© 2024 Nikhil Bansal
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2024.v020a006

http://dx.doi.org/10.4086/toc
https://doi.org/10.1145/3313276.3316313
https://doi.org/10.1145/3313276.3316313
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2024.v020a006

NIKHIL BANSAL

obtain an integral 0-1 solution. Arguably, the two most basic and extensively studied techniques

for rounding such relaxations are randomized rounding and iterated rounding.

Randomized rounding. Here, the fractional values G8 ∈ [0, 1] are interpreted as probabilities,

and used to round the variables independently to 0 or 1. A key property of this rounding is that

each linear constraint is preserved in expectation, and its value is tightly concentrated around

its mean as given by Chernoff bounds, or more generally Bernstein’s inequality. Randomized

rounding is well-suited to problems where the constraints do not have much structure, or when

they are soft and some error can be tolerated. Sometimes these errors can be fixed by applying

problem-specific alteration steps. We refer to [36, 35] for various applications of randomized

rounding.

Iterated rounding. This technique is quite different from randomized rounding and is useful

for problems that may have some hard combinatorial constraints that must be maintained, e. g.,

if the final solution must be a spanning tree or a matching. It is also useful for problems where

the constraints may have some other interesting structural property such as column-sparsity

that we may wish to exploit.

The rounding is based on linear algebra and it proceeds in several iterations : = 1, 2, . . .,

until all variables are eventually rounded to 0 or 1. More specifically, we start with G(0) = G

initially, and let G(:−1) ∈ ℝ=
be the solution at the beginning of iteration : and =: denote the

number of fractional variables in G(:−1)
(i. e., those strictly between 0 and 1). Then one cleverly

chooses some collection of linear constraints on these =: fractional variables, say specified by

rows of the matrix, (:) with rank(, (:)) ≤ =: − 1, and updates the solution as G(:) = G(:−1) + H(:)
by some non-zero vector H(:) satisfying, (:)H(:) = 0, so that some fractional variable reaches 0

or 1. Such a H(:) exists as the null space of, (:) has dimension =: − rank(, (:)) ≥ 1. Notice that

once a variable reaches 0 or 1 it stays fixed.

Despite its simplicity, this method is extremely powerful and most fundamental results

in combinatorial optimization such as the integrality of matroid, matroid-intersection and

non-bipartite matching polytopes follow very cleanly using this approach. Similarly, several

breakthrough results for problems such as degree-bounded spanning trees, survivable network

design and rounding for column-sparse LPs were obtained by this method. An excellent

reference is [23].

1.1 Need for combining the approaches

In many problem settings, however, one needs a rounding that combines the features of both

randomized and iterated rounding [15, 16, 19, 3]. We give several examples in Section 1.3, but a

typical scenario is where the problem involves finding an object with specific combinatorial

constraints that cannot be violated, e. g., a spanning tree to connect nodes in a network, or

a one-sided matching (assignment) of jobs to machines; and additionally a list of other soft

side-constraints, e. g., a bound on the maximum degree of the spanning tree to prevent any

particular node from being overloaded, or perhaps edges are of several types and we wish to

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 2

http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

purchase a certain minimum number of each type due to fairness considerations, or there may

be multiple budget constraints for various subsets of edges.

As the soft constraints are typically arbitrary and lack structure, essentially the best one can

hope for is to satisfy them fractionally and then apply randomized rounding. On the other

hand, randomized rounding can be quite bad at satisfying the hard combinatorial constraints,

and iterated rounding is the right approach to handle them. So given a problem with both hard

and soft constraints, either technique by itself does not suffice and one would like a rounding

that simultaneously does as well as iterated rounding on the hard constraints and as well as

randomized rounding on the soft constraints.

Dependent rounding. Motivated by such problems, there has been extensive work on devel-

oping dependent rounding techniques. Roughly speaking, these techniques round the fractional

solution in some random but correlated way to satisfy the hard constraints and also ensure some

concentration properties for the soft constraints. Some examples of such methods include swap

rounding [15, 16], randomized pipage rounding [2, 33, 19, 20], maximum-entropy sampling

[3, 32, 4], rounding via discrepancy [26, 29, 11] and Gaussian random walks [28].

A key idea here is that the weaker property of negative dependence (instead of independence)

also suffices to get concentration. There is a rich and deep theory of negative dependence

and various notions such as negative correlation, negative cylinder dependence, negative

association, strongly Rayleigh property and determinantal measures, that imply interesting

concentration properties [27, 13, 17]. This insight has been extremely useful and for many

general problems such as those involving assignment or matroid polytopes, one can exploit

the underlying combinatorial structure to design rounding approaches that ensure negative

dependence between all or some suitable collection of random variables.

Limitations. Even though these dependent rounding methods are powerful and ingenious,

they are also limited by the fact that requiring negative dependence substantially restricts the

kinds of rounding steps that can be designed, and the type of problems that they can be applied

to. Moreover, even when such a rounding is possible, it typically requires a lot of creativity and

careful understanding of the problem structure to come up with the rounding for the problem

at hand.

1.2 Our results

Our main result is a new and general dependent rounding approach that we call sub-isotropic
rounding. In particular, it combines iterated and randomized rounding in a completely generic

way and significantly extends the scope of previous dependent rounding techniques. Before

describing our result, we need some definitions.

Let -1 , . . . , -= be independent 0-1 random variables with means G8 = E[-8] and 01 , . . . , 0=
be arbitrary reals (possibly negative). It is well known [14] that the sum (=

∑
8 08-8 satisfies the

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 3

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL

following tail bound for any C ≥ 0:

(Bernstein’s inequality) Pr[(− E[(] ≥ C] ≤ exp

(
− C2

2

∑
8 0

2

8
(G8 − G2

8
) + 2"C/3

)
(1.1)

where " = max8 |08 |. The lower tail follows by applying the above to −08 , and the standard

Chernoff bounds correspond to (1.1) when 08 ∈ [0, 1] for 8 ∈ [=].
The following relaxation of Bernstein’s inequality will be highly relevant for us.

Definition 1.1 (�-concentration). Let � ≥ 1. For a vector-valued random variable - =

(-1 , . . . , -=) where -8 are possibly dependent 0-1 random variables, we say that - is �-
concentrated around its mean G = (G1 , . . . , G=) where G8 = E[-8], if for every 0 ∈ ℝ=

, the

real-valued random variable 〈0, -〉 satisfies Bernstein’s inequality up to a factor of � in the

exponent, i. e.,

Pr[〈0, -〉 − E[〈0, G〉] ≥ C] ≤ exp

(
− C2/�

2

∑
8 0

2

8
(G8 − G2

8
) + 2"C/3

)
(1.2)

where " = max8 |08 |.

Main result. We show that whenever iterated rounding can be applied to a problem such

that in iteration :, there is some slack in the sense that rank(, (:)) ≤ (1 − �)=: for some fixed

� > 0, then $(1/�)-concentration can be achieved for free. More precisely, we have the following

result.

Theorem 1.2. For any fixed � ∈ (0, 1), let us formalize an iterated rounding algorithm as follows. Given
a starting solution G, initialize G(0) = G. In each step :, for : ≥ 1, the algorithm selects a matrix, (:) with
rank(, (:)) ≤ (1 − �)=: . Now it can pick any H(:) satisfying, (:)H(:) = 0 and set G(:) = G(:−1) + H(:),
and iterate until G(final) is in {0, 1}= . Let + ⊂ {0, 1}= be the set of outcomes that can be reached by the
iterated rounding algorithm.

Then the sub-isotropic rounding algorithm outputs a random vector - satisfying

1. - ∈ + with probability 1, and

2. E[-] = G and - is �-concentrated around G with � = 20/�.

Remark 1.3. A simple example shows that the dependence � = Ω(1/�) in Theorem 1.2 cannot

be improved. Let � = 1/C for some integer C, and consider = variables G1 , . . . , G= , partitioned

into =/C blocks �1 , . . . , �=/C where block �8 = {G(8−1)C+1
, . . . , G8C}. For each �8 there are C − 1

constraints G(8−1)C+1
= G(8−1)C+2

= · · · = G8C , and hence there are (C − 1)(=/C) = =(1 − �) constraints
in total. Consider the starting solution with all G 9 = 1/2. Now, no matter what random choices

the algorithmmakes, the variables within a block evolve identically and all reach the same value

0 or 1. So the linear function (= G1 + · · · + G= will only be 1/�-concentrated.

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 4

http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

The generality of Theorem 1.2 directly gives new results for several problems where iterated

rounding gives useful guarantees. All one needs to show is that the original iterated rounding

argument for the problem can be applied with some slack, which is often straightforward and

only worsens the approximation guarantee slightly. In particular, note that Theorem 1.2 makes

no assumption about the combinatorial structure of the problem and by working with the more

relaxed notion of �-concentration, we can completely avoid the need for negative dependence.

1.3 Motivating problems and applications

We now describe several applications of our result and also briefly discuss why they seem

beyond the reach of current dependent rounding methods.

1.3.1 Rounding for column-sparse LPs

Let G ∈ [0, 1]= be some fractional solution satisfying �G = 1, where � ∈ ℝ<×=
is an < × =

matrix. The celebrated Beck–Fiala algorithm [12] (see also [21] for a related result) uses iterated

rounding to produce an integral solution - satisfying ‖�(- − G)‖∞ < C, where C is the maximum

ℓ1 norm of the columns of �. This is substantially better than randomized rounding for small C,

where the error for any row is typically its ℓ2 norm which can be substantially larger than C.

Many problems, however, involve both some column-sparse constraints that come from the

underlying combinatorial problem, and some general arbitrary constraints which might not

have much structure. This motivates the following natural question.

Question 1.4. Let " be a linear system with two sets of constraints given by matrices � and �,

where � is column-sparse, while � is arbitrary. Given some fractional solution G, can we round

it to get error $(C) for the rows of �, while doing no worse than randomized rounding for the

constraints in �?

Remark 1.5. Note that simply applying iterated rounding on the rows of � gives no control on

the error for �. Similarly, just doing randomized rounding will not give $(C) error for �. Also

as � and � are arbitrary, negative dependence based techniques do not seem to apply.

We show that a direct modification of the Beck–Fiala argument gives slack �, for any

� ∈ [0, 1), while worsening the error bound slightly to C/(1 − �). Setting, say � = 1/2 and

applying Theorem 1.2 gives - ∈ {−1, 1}= that (i) has error at most 2C for rows of �, (ii) satisfies

E[-8] = G8 and is $(1)-concentrated, thus giving similar guarantees as randomized rounding

for the rows of �. In fact, the solution produced by the algorithm will satisfy concentration for

all linear constraints and not just for the rows of �.

We also consider an extension to the Komlós setting, where the error depends on the

maximum ℓ2 norm of columns of �. These results are described in Section 4.1.

1.3.2 Makespan minimization on unrelated machines

The classical problem of makespan minimization on unrelated machines is the following. Given

= jobs and < machines, where each job 9 ∈ [=] has arbitrary size ?8 9 on machine 8 ∈ [<], assign

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 5

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL

the jobs to machines to minimize the maximum machine load. In a celebrated result, [24] gave

a rounding method with additive error at most ?max := max8 9 ?8 9 , i. e., it gives an assignment

with makespan at most Opt + ?max where Opt is the value of an optimum LP solution. In

many practical problems, however, there are other soft resource constraints and side constraints

that are added to the fractional formulation. So it is useful to find a rounding that satisfies

these approximately but increases the makespan by only $(?max). This motivates the following

natural problem.

Question 1.6. Given a fractional assignment G, find an integral assignment - with additive

error $(?max) and that also satisfies E[-8 9] = G8 9 and concentration for all linear functions of G8 9 ,

i. e., for all {08 9}8 9 , with high probability it holds that

∑
8 9 08 9-8 9 ≈

∑
8 9 08 9G8 9 .

Questions related to finding a good assignment with some concentration properties have

been studied before [19, 2, 16], and several methods such as randomized pipage rounding and

swap rounding have been developed for this. However, these methods crucially rely on the

underlying matching structure and round the variables alternately along cycles, which limits

them in various ways: either they give partial assignments, or only get concentration for edges

incident to a vertex.

We show that the iterated rounding proof of the result of [24] can be easily modified

to work for any slack � ∈ [0, 1/2) while giving additive error ?max/(1 − 2�). Theorem 1.2

(say, with � = 1/4), thus gives a solution that has additive error at most 2?max and satisfies

$(1)-concentration. The result also extends naturally to the :-resource setting, where ?8 9 is a

:-dimensional vector. These results are described in Section 4.2.

1.3.3 Degree-bounded spanning trees and thin trees

In the minimum cost degree-bounded spanning tree problem, we are given an undirected graph

� = (+, �)with edge costs 24 ≥ 0 for 4 ∈ �, and integer degree bounds 1E for E ∈ + , and the goal

is to find a minimum cost spanning tree satisfying the degree bounds. In a breakthrough result,

Singh and Lau [31] gave an iterated rounding algorithm that given any fractional spanning tree

G, finds a spanning tree) with cost at most 〈2, G〉 and a degree violation of plus one.

The celebrated thin-tree conjecture asks1 if given a fractional spanning tree G, there is a

spanning tree) satisfying Δ)(() ≤ �ΔG(() for every (⊂ + , where � = $(1). Here Δ)(() is
the number of edges of) crossing (, and ΔG(() is the G-value crossing (. This conjecture has
received a lot of attention recently, due to its connection to the asymmetric travelling salesman

problem (ATSP) [3, 1]. Despite the recent breakthrough on ATSP [34], the thin-tree conjecture

remains open.

If one only considers single vertex sets (= {E}, the result of [31] implies that Δ)(E) ≤ 2ΔG(E)
for each vertex E (as ΔG(E) ≥ 1 in any fractional spanning tree G). On the other hand for general

sets (, the best known algorithmic results give � = $(log =/log log =) [3, 15, 32, 20]. These

algorithms crucially rely on the negative dependence properties of spanning trees, which do

1Equivalently, any :-edge-connected graph � has a spanning tree satisfying Δ) (() = $(1/:)Δ�(() for every
(⊂ + .

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 6

http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

not give anything better for single vertex cuts (e. g., even if 1E = 2 for all E, by a balls-and-bins

argument a random tree will have maximum degree Θ(log =/log log =)).
The motivates the following natural question as a first step toward the thin-tree conjecture.

Question 1.7. Can we find a spanning tree that achieves � = $(1) for single vertex cuts and

� = $(log =/log log =) for general cuts?

We show that the iterated rounding algorithm of [31] can be easily modified to create slack

� ∈ (0, 1/2) while violating the degree bounds additively by less than 2/(1 − 2�). Applying

Theorem 1.2 with � = 1/6, the degree violation is strictly below 3 and this gives a distribution

supported on trees with a degree violation of plus 2 and satisfies $(1)-concentration. By a

standard cut counting argument [3], the concentration property implies $(log =/log log =)-
thinness for every cut. We describe these results in Section 4.3. In fact, we consider the more

general setting of the minimum cost degree-bounded matroid-basis problem.

1.4 Overview of techniques

We now give a high level overview of our algorithm and analysis. The starting observation is

that randomized rounding can be viewed as an iterative algorithm by doing a discrete version

of the standard Brownian motion on the cube as follows. Given G(0) as the starting fractional

solution, consider a random walk in the [0, 1]= cube starting at G(0), with tiny step size ±�
chosen independently for each coordinate, where upon reaching a face of the cube (i. e., some

G8 reaches 0 or 1) the walk stays on that face. The process stops upon reaching some vertex

- = (-1 , . . . , -=) of the cube. By the martingale property of random walks, the probability

that -8 = 1 is exactly G
(0)
8

and as the walk in each coordinate is independent, - has the same

distribution on {0, 1}= as under randomized rounding.

Afirst attempt. Now consider iterated rounding, and recall that here the update H(:) at iteration
: must lie in the nullspace of, (:). So a natural first idea to combine this with randomized

rounding, is to do a randomwalk in the null space of, (:) until some variable reaches 0 or 1. The

slack condition rank(, (:)) ≤ (1 − �)=: implies that the nullspace has at least �=: dimensions,

which could potentially give “enough randomness" to the random walk.

It turns out, however, that doing a standard random walk in the null space of, (:) does
not work. The problem is that as the constraints defining, (:) can be completely arbitrary in

our setting, the random walk can lead to very high correlations between certain subsets of

coordinates causing the �-concentration property to fail. For example, suppose � = 1/2 and, (0)

consists of the constraints G8 = G8+1 for 8 = 1, . . . , =/2 − 1. Then the random walk will update

G=/2 , . . . , G= independently, but for G1 , . . . , G=/2 the updates must satisfy ΔG1 = . . . = ΔG=/2, and
hence will be completely correlated. So the linear function G1 + . . . + G=/2 will not have any

concentration (as all the variables will simultaneously rise by −� or by +�).

A different random walk. To get around this problem, we design a different random walk

in the null space of, (:), which looks similar to an independent walk in every direction even

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 7

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL

though the coordinates are correlated. More formally, consider a random vector. = (.1 , . . . , .=),
where .8 are mean-zero random variables. For a parameter � ≥ 1, we say that . is �-weakly

pairwise independent if for every 0 = (01 , . . . , 0=) ∈ ℝ=
,

E[〈0, .〉2] = E
[
(
∑
8

08.8)2
]
≤ �

∑
8

02

8 E[.
2

8].

If .1 , . . . , .= are pairwise independent, note that the above holds as equality with � = 1, and

hence this can be viewed as a relaxation of pairwise independence. We show that whenever

rank(, (:)) ≤ (1 − �)=: , there exist �-weakly pairwise independent random updates H(:) that
lie in the null space of, (:) (which has dimension at least �=:) with � ≈ 1/�. Moreover these

updates can be found by solving a semidefinite program (SDP).

Next, using a variant of Freedman’s martingale analysis [18], we show that applying these

�-weakly pairwise independent random updates (with small increments) until all the variables

reach 0-1, gives an integral solution that satisfies $(�)-concentration.
These techniques are motivated by our recent works on algorithmic discrepancy [8, 9]. While

discrepancy is closely related to rounding [25, 29], a key difference in discrepancy is that the

error for rounding a linear system �G = 1 depends on the ℓ2 norms of the coefficients of the

constraints and not on 1. E. g., suppose G ∈ [0, 1]= satisfies G1 + . . . + G= = log =, then the

sum stays $(log =) upon randomized rounding with high probability, while using discrepancy

methods directly gives Ω(
√
=) error, which would be unacceptably large in this setting. So our

results can be viewed as using techniques from discrepancy theory to obtain bounds that are

sensitive to G. Recently, this direction was explored in [11] but their method gave much weaker

results and applied to very limited settings.

2 Technical preliminaries

2.1 Tail bounds for supermartingales

We will need the following tail bound for supermartingales with a strong negative drift.

Theorem 2.1. Let
 ∈ (0, 1). Let {/: : : = 0, 1, . . . , } be a sequence of random variables with
.: := /: − /:−1, such that /0 is constant and .: ≤ 1 for all : ≥ 1. If

E:−1[.:] ≤ −
 E:−1[.2

:
]

for all : ≥ 1, where E:−1[·] denotes E[· |/1 , . . . , /:−1], then for C ≥ 0,

Pr[/: − /0 ≥ C] ≤ exp(−
C).

Before proving Theorem 2.1, we first need a simple lemma.

Lemma 2.2. Let - be a random variable satisfying - ≤ 1. Then for any � > 0,

E[e�-] ≤ exp

(
�E[-] + (e� − � − 1)E[-2]

)
.

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 8

http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

Proof. Let 5 (�, G) = (e�G − �G − 1)/G2
, where we set 5 (�, 0) = �2/2. By standard integration, it

is easily verified that 5 (�, G) =
∫ �

0

∫ B

0

e
CG3C 3B. As e

CG
is non-decreasing in G for all C ≥ 0, this

implies that 5 (�, G) is non-decreasing in G. In particular, 5 (�, G) ≤ 5 (�, 1) for any G ≤ 1 and

hence

e
�G = 1 + �G + 5 (�, G)G2 ≤ 1 + �G + 5 (�, 1)G2 = 1 + �G + (e� − � − 1)G2.

Taking expectations and using that 1 + G ≤ e
G
for all G ∈ ℝ gives,

E[e�-] ≤ 1 + �E[-] + (e� − � − 1)E[-2] ≤ exp

(
�E[-] + (e� − � − 1)E[-2]

)
. �

Proof of Theorem 2.1. By Markov’s inequality,

Pr[/: − /0 ≥ C] = Pr[exp(
(/: − /0)) ≥ exp(
C)] ≤
E[exp(
(/: − /0))]

exp(
C)

so it suffices to show that E[exp(
(/: − /0))] ≤ 1. As /0 is deterministic, this is same as

E[exp(
/:)] ≤ exp(
/0). Now,

E:−1

[
e

/:

]
= e

/:−1E:−1

[
e

(/:−/:−1

)
]
= e

/:−1E:−1

[
e

.:

]
≤ e

/:−1
exp

(

E:−1[.:] + (e
 −
 − 1)E:−1

[
.2

:

])
(Lemma 2.2)

≤ e

/:−1

exp

(
(e
 −
2 −
 − 1)E:−1

[
.2

:

])
≤ e

/:−1
(as e

 ≤ 1 +
 +
2

for 0 ≤
 ≤ 1).

As this holds for all :, the result follows by the property of Iterated Expectations. �

2.2 Semidefinite matrices

Let "= denote the class of all symmetric = × = matrices with real entries. For two matrices

�, � ∈ ℝ=×=
, the trace inner product of � and � is defined as 〈�, �〉 = tr(�)�) = ∑=

8=1

∑=
9=1

08 918 9 .

Amatrix* ∈ "= is positive semidefinite (PSD) if all its eigenvalues are non-negative and we

denote this by* � 0. Equivalently,* � 0 iff 0)*0 = 〈00) , *〉 ≥ 0 for all 0 ∈ ℝ=
.

For,* � 0 let*1/2 =
∑
8 �

1/2
8
D8D

)
8
, where* =

∑
8 �8D8D

)
8
is the spectral decomposition of*

with orthonormal eigenvectors D8 . Then*
1/2

is PSD and* = +)+ for+ = *1/2
. For ., / ∈ "= ,

we say that . � / if / − . � 0.

2.3 Approximate independence and sub-isotropic random variables

Let . = (.1 , . . . , .=) be a random vector with .1 , . . . , .= possibly dependent.

Definition 2.3 ((�, �) sub-isotropic random vector). For � ∈ (0, 1] and � ≥ 1, we say that . is

(�, �) sub-isotropic if it satisfies the following conditions.

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 9

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL

1. E[.8] = 0 and E[.2

8
] ≤ 1 for all 8 ∈ [=], and ∑=

8=1
E[.2

8
] ≥ �=.

2. For all 2 = (21 , . . . , 2=) ∈ ℝ=
it holds that

E
[
(
=∑
8=1

28.8)2
]
≤ �

=∑
8=1

22

8 E[.8]
2. (2.1)

Note that if .1 , . . . , .= are pairwise independent then (2.1) holds with equality for � = 1.

Let* ∈ "= be the = × = covariance matrix of .1 , . . . , .= , i. e.,*8 9 = E[.8.9]. Every covariance

matrix is PSD as 2)*2 = E[(∑8 28.8)2] ≥ 0 for all 2 ∈ ℝ=
. Let diag(*) denote the diagonal = × =

matrix with entries *88 , then (2.1) can be written as 2)(� diag(*) −*)2 ≥ 0 for every 2 ∈ ℝ=
,

and hence equivalently expressed as

* � � diag(*).

Generic construction. We will use the following generic way to produce (�, �) sub-isotropic
vectors. Let * be a = × = PSD matrix satisfying: *88 ≤ 1, tr(*) ≥ �= and * � � diag(*). Let
A ∈ ℝ=

be a random vector where each coordinate is independently and uniformly ±1. Then the

random vector . = *1/2A has covariance E[..)] = *1/2E[AA)](*))1/2 = * , and the properties

of* imply that . is (�, �) sub-isotropic.

Remark 2.4. In other similar constructions, A is often chosen as a random Gaussian, but we

prefer to choose it as random ±1 as it is bounded, and this makes some technical arguments

easier later on.

We will need the following result from [9], about finding sub-isotropic random vectors

orthogonal to a subspace.

Theorem 2.5 ([9], Theorem 6). Let� ⊂ ℝ= be an arbitrary subspace with dimension dim(�) = ℓ = �=.
Then for any � > 0 and � > 1 satisfying 1/� + � ≤ �, there is a = × = PSD matrix* , that is computable
in polynomial time, and satisfies the following properties:

(i) 〈ℎℎ) , *〉 = 0 for all ℎ ∈ �⊥, where �⊥ is the subspace orthogonal to �.
(ii)*88 ≤ 1 for all 8 ∈ [=].
(iii) tr(*) ≥ �=.
(iv)* � � diag(*).

The first condition gives that the range space of * is contained in the subspace �, as

〈ℎℎ) , *〉 = 0 implies that ‖*1/2ℎ‖2 = 0 and hence ℎ)*1/2 = 0. So, for any vector A ∈ ℝ=
the

vector . = *1/2A lies in � (as for every ℎ ∈ �⊥, ℎ). = ℎ)*1/2A = 〈0, A〉 = 0). So this gives a

polynomial time algorithm to generate a (�, �) sub-isotropic random vector . ∈ �.

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 10

http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

3 The algorithm and analysis

Recall that by iterated rounding we refer to any procedure that given some starting fractional

solution G, sets G(0) = G, and applies a sequence of updates as follows. Given the vector G(:−1)
at

the beginning of iteration :, call a variable 8 ∈ [=] frozen if G
(:−1)
8

is 0 or 1, and alive otherwise.

Let =: denote the number of alive variables. Based on G(:−1)
, the algorithm picks a set of

constraints of rank at most =: − 1, given by the rows of some matrix , (:), and finds some

non-zero vector H(:) satisfying, (:)H(:) = 0 and H
(:)
8
= 0 for 8 frozen. The solution is updated as

G(:) = G(:−1) + H(:).
Let � > 0 be the slack parameter. We assume that the problem to be solved has an

iterated rounding procedure where in each iteration : one can choose some matrix, (:) with

rank(, (:)) ≤ (1 − �)=: . We now describe the rounding algorithm.

3.1 The algorithm

Initialize G(0) = G, where G in the starting fractional solution given as input. For each iteration

: = 1, . . . , repeat the following until all the variables reach 0 or 1.

Iteration :. Let G(:−1)
be the solution at the beginning of iteration :, and let �: ⊂ [=] denote the

set of alive coordinates 8 with G
(:−1)
8
∈ (0, 1). Only the variables in �: will be updated henceforth.

So for ease of notation we assume that �: = [=:].

1. Apply Theorem 2.5, with = = =: , � the nullspace of, (:), � = �/10 and � = 10/(9�) to find

the covariance matrix* .

2. Let � = 1/(2=3/2). Let A: ∈ ℝ=:
be a random vector with independent ±1 entries. Set

G(:) = G(:−1) + H(:) with H(:) = �:*
1/2A: ,

where �: is the largest value such that (i) �: ≤ � and (ii) both G(:−1) + H(:) and G(:−1) − H(:)
lie in [0, 1]=: .

3.2 Analysis

Let - = (-1 , . . . , -=) denote the final 0-1 solution returned by the algorithm. The property that

E[-8] = G8 follows directly as the update H(:) at each time step has mean zero in each coordinate.

As the algorithm always moves in the nullspace of, (:), clearly it will also satisfy the iterated

rounding guarantee with probability 1.

To analyze the running time, we note that whenever �: < �, there is at least 1/2 probability

that some new variable will reach 0 or 1 after the update (as the new solution is either G(:) + H(:)
or G(:) − H(:) with probability half each). So, in expectation there are at most 2= such steps. So

let us focus on the iterations where �: = �.

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 11

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL

Let us define the energy of G(:) as �(:) :=
∑
8(G
(:)
8
)2. During the update, conditioned on all

the randomness up to time : − 1, �(:) rises in expectation by at least �2=:� as,

E:−1

[
�(:) − �(:−1)] = �2E:−1

[∑
8

(2G(:−1)
8

H
(:)
8
+ (H(:)

8
)2)

]
= �2

∑
8

E:−1

[
(H(:)
8
)2
]
= �2

tr(*) ≥ �2�=: .

where the second equality uses that E:−1

[
H
(:)
8

]
= 0 for each 8. As the final energy can be at most

=, standard arguments [6, 26] imply that, with constant probability, the algorithm terminates in

$(= log = + log =/�2) time steps.

It remains to show that the rounding satisfies the concentration property, which we do next.

3.2.1 Isotropic updates imply concentration

Let - = (-1 , . . . , -=) denote the final 0-1 solution returned by the algorithm. Fix any 0 =

(01 , 02 , . . . , 0=) ∈ ℝ=
. We will show that

Pr[〈0, G〉 − E[〈0, G〉] ≥ C] ≤ exp

(
−

C2/�
2(∑8 0

2

8
(G8 − G2

8
) +"C/3)

)
with � = 18� which equals 20/� by our choice of the parameters, and " = max8 |08 |.

Proof. By scaling 08’s and C, we can assume that " = 1. Let us define the random variable

/: =
∑
8

08G
(:)
8
+ �

∑
8

02

8 G
(:)
8
(1 − G(:)

8
),

where the parameter � ≤ 1 will be optimized later.

It is useful to think of /: as �: + �E: , where �: = 〈0, G(:)〉 and E: =
∑
8 0

2

8
G
(:)
8
(1 − G(:)

8
) are

the mean and variance if we would randomly round the coordinates of G(:) to 0-1. Initially,

/0 = � + �E where � =
∑
8 08G8 and E =

∑
8 0

2

8
(G8 − G2

8
).

We will show that /: satisfies the conditions of Theorem 2.1 for an appropriate
, and use

it to show the required tail bound. Roughly speaking, as the algorithm proceeds, /: has a

strong negative drift as the energy term E: decreases in expectation and �: does not change in
expectation. In the proof of Theorem 2.1, this negative drift offsets the positive terms that arise

while bounding the exponential moment of /: .

We now give the details. We first compute .: := /: − /:−1 and show that it is bounded.

Using G(:) = G(:−1) + H(:), we have

.: = /: − /:−1

=
∑
8

08(G(:)8 − G
(:−1)
8
) +

∑
8

(
�02

8 (G
(:)
8
(1 − G(:)

8
) − G(:−1)

8
(1 − G(:−1)

8
))
)

=
∑
8

08H
(:)
8
+

∑
8

(
�02

8 H
(:)
8
(1 − 2G

(:−1)
8
− H(:)

8
)
)
. (3.1)

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 12

http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

Claim 3.1. For all :, the update H(:) satifies ‖H(:)‖2 ≤ � = = 1

2

√
=
.

Proof. Recall that H(:) = �*1/2A: . Let*1/2(8) denote the 8-th column of*1/2
. As

〈*1/2(8), *1/2(8)〉 = *88 ≤ 1,

the columns of*1/2
have length at most 1. Let A:(8) denote the 8-th entry of A: . Applying the

triangle inequality to the columns of*1/2
,

‖*1/2A: ‖2 ≤
∑
8

|A:(8)|‖*1/2(8)‖2 ≤ ‖A: ‖1 ≤ =.

This gives that ‖H(:)‖2 ≤ �=. �

Claim 3.2. For all :, |.: | ≤ 1.

Proof. First we note that the second term in (3.1) is at most

∑
8 |08H

(:)
8
|. This follows as |08 |2 ≤ |08 |

(as " = 1), � ≤ 1 by our assumption, and 1 − 2G
(:−1)
8
− H(:)

8
∈ [−1, 1] (as 1 − G(:−1)

8
∈ [0, 1] and

G
(:−1)
8
+ H(:)

8
= G
(:)
8
∈ [0, 1]). As ‖0‖∞ ≤ 1 and using the bound on ‖H(:)‖2 in Claim 3.1, we have

|.: | ≤
∑
8

08H
(:)
8
+

∑
8

|08H(:)8 | ≤ 2

∑
8

|H(:)
8
|

= 2‖H(:)‖1 ≤ 2=1/2‖H(:)‖2 ≤ 2�=3/2 = 1. �

We now upper bound the negative drift of /: .

Claim 3.3. E:−1[.:] ≤ −(�/8�)E:−1

[
.2

:

]
Proof. As E:−1

[
H
(:)
8

]
= 0 for all 8, and as G

(:−1)
8

is deterministic conditioned on the randomness

until : − 1, taking expectations E:−1[·] in (3.1) gives

E:−1[.:] = −�
∑
8

02

8 E:−1

[
(H(:)
8
)2
]
. (3.2)

We now upper bound E:−1[.2

:
]. Using (0 + 1)2 ≤ 202 + 212

twice for the expression in (3.1),

.2

:
≤ 2(

∑
8

08H
(:)
8
)2 + 2�2

(∑
8

02

8 H
(:)
8
(1 − 2G

(:−1)
8
− H(:)

8
)
)

2

≤ 2(
∑
8

08H
(:)
8
)2 + 4�2

©­«
(∑

8

02

8 H
(:)(1 − 2G

(:−1)
8
)
)

2

+
(∑

8

02

8 (H
(:)
8
)2
)

2ª®¬ (3.3)

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 13

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL

Taking expectations E:−1[·] in (3.3), we now upper bound the terms on the right. As H(:) is (�, �)
sub-isotropic, by (2.1), the first term satisfies

E:−1

[
(
∑
8

08H
(:)
8
)2
]
≤ �

∑
8

02

8 E:−1

[
(H(:)
8
)2
]
.

Similarly, by the sub-isotropic property, the second term satisfies

E:−1

[
(
∑
8

02

8 H
(:)
8
(1 − 2G

(:−1)
8
))2

]
≤ �

∑
8

04

8 (1 − 2G
(:−1)
8
)2E:−1

[
(H(:)
8
)2
]
≤

∑
8

02

8 E:−1

[
(H(:)
8
)2
]
,

where the last step uses that |08 | ≤ 1 and |1 − 2G
(:−1)
8
| ≤ 1.

Finally, as |08 | ≤ 1 and

∑
8(H
(:)
8
)2 ≤ �= ≤ 1/2 by Claim 3.1, the third term can be bounded as(∑

8

02

8 (H
(:)
8
)2
)

2

≤ (1/2)
∑
8

02

8 (H
(:)
8
)2. (3.4)

Plugging these bounds and using that � ≤ 1, (3.3) gives that,

E:−1

[
.2

:

]
≤ 8�

∑
8

02

8 E:−1

[
(H(:)
8
)2
]
= −(8�/�)E[.:].

where the last equality uses (3.2). �

By Claim 3.3, we can apply Theorem 2.1 with
 = �/8�, provided that the conditions for

Theorem 2.1 hold. Indeed,
 ≤ 1 holds as � ≤ 1 and � ≥ 1, and |.: | < 1 holds by Claim 3.1.

Applying Theorem 2.1 now gives that Pr[/) −/0 ≥ C′] ≤ exp(−�C′/8�). As /0 = �+�E, this
gives

Pr[/) − � − �E ≥ C′] ≤ exp(−C′�/4�). (3.5)

Setting � = C′/(C′+2E) (note that this satisfies our assumption � ≤ 1), so that �E = C′E/(C′+2E) ≤
C′/2, (3.5) implies that

Pr[/) − � ≥ 3C′/2] ≤ exp(−C′�/4�).
Setting C = 3C′/2 and plugging the value of � gives the desired result that

Pr[/) − � ≥ C] ≤ exp

(
− C2/(18�)

2(E + C/3)

)
. �

4 Applications

4.1 Rounding column-sparse LPs

Let G ∈ [0, 1]= be a fractional solution to �G = 1, where � ∈ ℝ<×=
is an arbitrary < × = matrix.

Let C = max9∈[=](
∑
8∈[<] |08 9 |) be the maximum ℓ1-norm of the columns of �. Beck and Fiala [12]

gave a rounding method to find - ∈ {0, 1}= so that the maximum rounding error for any row

satisfies ‖�- − 1‖∞ = ‖�(- − G)‖∞ < C.

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 14

http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

Beck–Fiala rounding. We first recall the iterated rounding algorithm in [12]. The algorithm

starts with G0 = G and proceeds in iterations. Consider some iteration :, and let �: denote the

matrix � restricted to the alive coordinates. Call a row big if its ℓ1-norm in �: is strictly more

than C. The key point is that by an averaging argument, the number of big rows is strictly less

than =: as each column has ℓ1-norm at most C and thus the total ℓ1-norm of all entries �: is at

most C=: . The algorithm chooses, (:) to be matrix consisting of the big rows of �: and applies

the iterated rounding update.

Let us now analyze the error. Fix some row 8. As long as this row 8 is big, its rounding error

is 0 during the update steps. Consider the first iteration when this row is no longer big. Then,

no matter how the remaining alive variables are rounded in subsequent iterations, the error

incurred will be (strictly) less than its ℓ1-norm, which is at most C.

Introducing slack. To apply Theorem 1.2, we can easily introduce �-slack for any 0 ≤ � < 1,

as follows. In iteration :, call a row big if its ℓ1 norm exceeds C/(1 − �), and by the argument

above the number of big rows is strictly less than =:(1 − �). Theorem 1.2 now directly gives the

following result.

Theorem 4.1. Given a matrix � with maximum ℓ1-norm of any column at most C, and any G ∈ [0, 1]= ,
then for any 0 ≤ � < 1 the algorithm returns - ∈ {0, 1}= such that ‖�(- − G)‖∞ ≤ C/(1 − �),
E[-8] = G8 and - satisfies $(1/�)-concentration.

This implies the following useful corollary.

Corollary 4.2. Let" be a matrix, and � be some subset of rows of" so that the columns of" restricted
to � have ℓ1-norm at most C. Setting � = 1/2, the rounding error is at most 2C for rows of �, while the
other rows of " have error similar to that as under randomized rounding.

Komlós setting. For a < × = matrix �, let C = max9∈[=](
∑
8∈[<] 0

2

8 9
)1/2 denote the maximum

ℓ2-norm of the columns of �. The long-standing Komlós conjecture (together with a connection

between hereditary discrepancy and rounding due to [25]) states that any G ∈ [0, 1]= can be

rounded to - ∈ {0, 1}= so that ‖�(- − G)‖∞ = $(C). Currently, the best known bound on this

rounding error is $(C
√

log<) [5, 8].
An argument similar to that for Theorem 4.1 gives the following result in this setting.

Theorem 4.3. If � has maximum column ℓ2-norm C, then given any G ∈ [0, 1]= , the algorithm returns
an - ∈ {0, 1}= satisfying ‖�(- − G)‖∞ = $(C

√
log<) and the $(1)-concentration property.

Proof. We will apply Theorem 1.2 with � = 1/2. During any iteration :, call row 8 big if its

squared ℓ2 norm in �: exceeds 2C2. As the sum of squared entries of �: is at most C2=: , the

number big rows is at most =:/2 and we set, (:) to �: restricted to the big rows.

The $(1)-concentration follows directly from Theorem 1.2. To bound the error for rows of �,

we argue as follows. Fix a row 8. Clearly, row 8 incurs zero error while it is big. Let : be the first

iteration when row 8 is not big, and condition on the randomness up to this point. Call an (alive)

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 15

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL

coordinate 9 large if |08 9 | ≥ C/
√

log<, and let !8 denote the set of large coordinates in row 8. Let

0̃8 denote the row 08 with the coordinates in ! removed. As

∑
9 0

2

8 9
≤ 2C we have |!8 | ≤ 2 log<

and so the rounding error due to the coordinates in !8 can be at most∑
9∈!8
|08 9 | ≤ |!8 |1/2(

∑
9∈!8
|08 9 |2)1/2 = $(C

√
log<).

Applying the$(1)-concentration property of the rounded solution -, the error due to the entries

of 0̃8 satisfies

Pr


∑
9∉!

08 9(-9 − G(:)9) ≥ 2C
√

log<

 = exp

©­«−2′ 22C2 log<∑
9∉! 0

2

8 9
+"2C

√
log<

ª®¬
for some fixed constant 2′.

As

∑
9∉! 0

2

8 9
≤ 2C2 and " ≤ C/

√
log<, the right hand side is exp(−Ω(22′ log<)). Choosing 2

large enough so that this is� 1/<, the result follows by a union bound over the rows. �

4.2 Makespan minimization on unrelated machines

In the unrelated machine setting, there are A jobs and < machines, and each job 9 ∈ [A] has
size ?8 9 on a machine 8 ∈ [<]. The goal is to assign all the jobs to machines to minimize the

maximum machine load.

LP formulation. The standard LP relaxation has fractional assignment variables G8 9 ∈ [0, 1]
for 9 ∈ [A] and 8 ∈ [<]. Consider the smallest target makespan) for which the following LP is

feasible. ∑
9∈[A]

?8 9G8 9 ≤) ∀8 ∈ [<] (load constraints)∑
8∈[<]

G8 9 = 1 ∀9 ∈ [A] (assignment constraints)

G8 9 = 0 ∀8 , 9 such that ?8 9 >)

The last constraint is valid for any integral solution, and so we can assume that ?max := max8 9 ?8 9
is at most). In a celebrated result, [24] gave a rounding procedure that produces an integral

solution with makespan at most) + ?max. We now sketch the iterated rounding based proof of

this result from [23].

Iterated rounding proof. As always, we start with G(0) = G and fix the variables that get

rounded to 0 or 1. Consider some iteration :. Let =: denote the number of fractional variables,

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 16

http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

and let ': denote the set of jobs that are still not integrally assigned to some machine. For a

machine 8, define the excess as

48 :=
∑

9∈': : G
(:)
8 9
>0

(1 − G(:)
8 9
), (4.1)

and note that 48 is simply the maximum (fractional) number of extra jobs that can be possibly

assigned to 8 if all the non-zero variables are rounded to 1. An elegant counting argument in

[23] shows that if, (:) consists of load constraints for machines with 48 > 1, and assignment

constraints for jobs in ': , then rank(, (:)) < =: .

Introducing slack. We now extend the argument of [23] to introduce some slack so that we

can apply Theorem 1.2. This will give the following result.

Theorem 4.4. Given any � ∈ [0, 1/2), and a fractional solution G to the problem, there is a rounding
where the integral solution - increases the load on any machine by ?max/(1 − 2�), satisfies E[-8 9] = G8 9
for all 8 , 9 and has $(1/�)-concentration.

Proof. Consider some iteration :, and let =: denote the number of fractional variables G
(:)
8 9
∈ (0, 1),

and let ': denote the jobs that are still not integrally assigned. Let A: = |': |. For a machine 8,

we define the excess 48 as in (4.1). Let ": denote the set of machines with 48 > 1/(1 − 2�).
, (:) will consist of load constraints for machines in ": and assignment constraints for jobs

in ': . More precisely, the update H
(:)
8 9

will satisfy the following two conditions: (i)

∑
9 ?8 9H

(:)
8 9
= 0

for all 8 ∈ ": and (ii)

∑
8 H
(:)
8 9
= 0, for all 9 ∈ ': . We say that machine 8 is protected in iteration : if

8 ∈ ": . For a protected machine, the fractional load does not change after an update. When a

machine ceases to be protected for the first time, the definition of excess ensures that its extra

load in subsequent iterations can be at most ?max/(1 − 2�).
It remains to show that rank(,:) ≤ (1 − �)=: . As each job in ': contributes at least two

fractional variables to =: , we first note that

2A: ≤ =: . (4.2)

Let <: = |": |. Then we also have the following.

Claim 4.5. <: ≤ (1 − 2�)(=: − A:).

Proof. Clearly <:/(1 − 2�) ≤ ∑
8∈":

48 as each 8 ∈ ": has excess more than 1/(1 − 2�). Next,∑
8∈":

48 =
∑
8∈":

∑
9∈': :G(:)8 9 >0

(1 − G(:)
8 9
) ≤

∑
8∈"

∑
9∈': :G(:)8 9 >0

(1 − G(:)
8 9
) = =: − A: ,

where the first equality uses the definition of 48 and second uses the definition of =: and that∑
8∈" G

(:)
8 9
= 1 for each job 9 ∈ ': . Together this gives <: ≤ (1 − 2�)(=: − A:). �

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 17

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL

Multiplying (4.2) by � and adding to the inequality in Claim 4.5 gives <: + A: ≤ (1 − �)=: ,
which implies the result as rank(,:) ≤ A: + <: . �

Remark 4.6. Setting � = 0 recovers the additive ?max result of [24]. Theorem 4.4 also generalizes

directly to @ resources, where job 9 has load vector ?8 9 = (?8 9(1), . . . , ?8 9(@)) on machine 8, and

the goal is to find an assignment � of jobs to machines to minimize maxℎ,8(
∑
9:�(9)=8 ?8 9(ℎ)). A

direct modification of the proof above gives an additive @?max/(1 − 2�) error and the $(1/�)-
concentration property.

4.3 Minimum cost degree-bounded matroid basis

Instead of just the degree-bounded spanning tree problem, we consider the more general

matroid setting as all the arguments apply directly without additional work.

Minimum cost degree-bounded matroid-basis problem (DegMat). The input is a matroid "

defined on elements + with costs 2 : + → ℝ+ and < degree constraints specified by ((9 , 1 9) for
9 ∈ [<], where (9 ⊂ + and 1 9 ∈ ℤ+. The goal is to find a minimum-cost base � in " satisfying

the degree bounds, i. e., |� ∩ (9 | ≤ 1 9 for all 9 ∈ [<]. The matroid " is given implicitly, by an

independence oracle (which given a query �, returns whether � is an independent set or not).

Iterated rounding algorithm. The natural LP formulation for the problem has the variables

G8 ∈ [0, 1] for each element 8 ∈ + and the goal is to minimize the cost

∑
8 28G8 , subject to the

following constraints.∑
8∈)

G8 ≤ A()) ∀) ⊂ + (rank constraints)∑
8∈+

G8 = A(+) (matroid base constraint)∑
8∈(9

G8 ≤ 1 9 ∀9 ∈ [<] (degree constraints)

Here A(·) is the rank function of ".

Given a feasible LP solution with cost 2∗, [22, 10] gave an iterated rounding algorithm that

finds a solution with cost at most 2∗ and an additive degree violation of at most @ − 1. Here

@ = max8 |{ 9 : 8 ∈ (9} is the maximum number of sets that contain any element 8. Note that

@ = 2 for the degree bounded spanning tree problem, as the elements here are edges and the

sets (9 consist of edges incident to a vertex, so that each edges can lie in at most two such sets.

We briefly sketch the argument in [22, 10]. The algorithm starts with G(0) = G and applies

iterated rounding as follows. Consider some iteration :. Let �: denote the set of fractional

variables and let =: = |�: |. For a set (9 , define the excess as

4 9 :=
∑

8∈�:∩(9
(1 − G(:)

8
), (4.3)

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 18

http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

the maximum degree violation for (9 even if all current fractional variables are rounded to 1.

Let �: be the set of indices 9 of degree constraints with excess 4 9 ≥ @. The algorithm chooses

, (:) to consist of the degree constraints in �: (call these protected constraints) and some

basis for the tight matroid rank constraints. An elegant counting argument then shows that

rank(,:) ≤ =: − 1. The correctness follows since if a degree constraint is no longer protected,

then its excess is strictly below @, and by integrality of 1 9 and the final rounded solution, the

degree violation can be at most @ − 1.

Introducing slack. We will extend the argument above in a straightforward way to introduce

some slack, and then apply Theorem 1.2 to obtain the following result.

Theorem 4.7. For any 0 < � < 1, there is an algorithm for the DegMat problem that produces a basis
with additive degree violation strictly less than @/(1 − 2�) and satisfies $(1/�)-concentration.

Setting � = 1/6 so that 2/(1 − 2�) = 3, and noting that the degree violation is strictly less

than this bound, gives the following.

Corollary 4.8. For the minimum cost degree bounded spanning tree problem, given a fractional
solution G there is an algorithm to find a spanning tree with degree violation of plus two and satisfying
$(1)-concentration.

We now describe the argument. Consider iteration :. Let �: be the set of fractional variables

and =: = |�: |. We need to specify how to choose, (:) and show that rank(, (:)) ≤ (1 − �)=: .
Let �: denote the set of indices 9 of degree constraints with excess 4 9 ≥ @/(1− 2�). Let ℱ denote

the family of the tight matroid constraints that hold with equality, i. e.,

∑
8∈(∩�: G8 = A:((), where

A: is the rank function of the matroid ": obtained from " by deleting elements with G8 = 0

and contracting those with G8 = 1. It is well-known [30] that there is a chain family of tight sets

C = {�1 , . . . , �ℓ }, with �1 ⊂ �2 ⊂ · · · ⊂ �ℓ , such that the rank constraint of every (∈ ℱ lies in

the linear span of the constraints for sets in C. Let 2: = |C| and 3: = |�: |. We set, (:) to be the

degree constraints in �: and the rank constraints in C.

Claim 4.9. rank(, (:)) ≤ (1 − �)=: .

Proof. It suffices to show that 2: + 3: ≤ (1 − �)=: . As each G8 is fractional and as the ranks

A:(�) are integral, it follows that any two sets in chain family differ by at least two elements,

i. e., |�8+1 \ �8 | ≥ 2. This implies that 2: ≤ =:/2. We also note that A:(�1) < A:(�2) · · · < and in

particular the rank A(�2:) of the largest set in C is at least 2: . This gives that
∑
8∈�: G8 ≥ 2: .

Next, as 4 9 ≥ @/(1 − 2�) for each 9 ∈ �: , we have that @3: ≤ (1 − 2�)∑9∈�:
4 9 . Moreover, by

definition of 4 9 , ∑
9∈�:

4 9 =
∑
9∈�:

∑
8∈�:∩(9

(1 − G8) =
∑
8∈�:

@8(1 − G8)

where @8 = |{ 9 : 8 ∈ (9 , 9 ∈ �:}| is the number of tight degree constraints in �: that contain

element 8. As @8 ≤ @, the above is at most @
∑
8∈�: (1 − G8) ≤ @=: − @2: , where we use that∑

8∈�: G8 ≥ 2: , and
∑
8∈�: 1 = |�: | = =: .

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 19

http://dx.doi.org/10.4086/toc

NIKHIL BANSAL

Together this gives that 3: ≤ (1 − 2�)(=: − 2:), and adding 2� times the inequality 2: ≤ =:/2
to this gives that 3: + 2: ≤ (1 − �)=: , which proves the desired claim. �

The degree violation property follows as before, since if a degree constraint is no longer

protected, then its excess is strictly below @/(1 − 2�).
Finally, we remark that as the underlying LP has exponential size, some care is needed in

implementing the rounding algorithm, in particular in maintaining the chain family and in

computing the step size of the walk. These issues are discussed in [11].

Acknowledgements

We thank the referees for their extremely thorough reading of the manuscript, catching various

errors, and for several useful comments and suggestions that significantly improved the

presentation.

References

[1] Nima Anari and Shayan Oveis Gharan: Effective-resistance-reducing flows, spectrally

thin trees, and asymmetric TSP. In Proc. 56th FOCS, pp. 20–39. IEEE Comp. Soc., 2015.

[doi:10.1109/FOCS.2015.11] 6

[2] Sanjeev Arora, Alan M. Frieze, and Haim Kaplan: A new rounding procedure for the

assignment problem with applications to dense graph arrangement problems. Math.
Programming, 92(1):1–36, 2002. [doi:10.1007/s101070100271] 3, 6

[3] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan, and

Amin Saberi: An $(log =/log log =)-approximation algorithm for the asymmetric traveling

salesman problem. INFORMS, 65(4):1043–1061, 2017. Preliminary version in SODA’10.

[doi:10.1287/opre.2017.1603] 2, 3, 6, 7

[4] Arash Asadpour and Amin Saberi: An approximation algorithm formax-min fair allocation

of indivisible goods. SIAM J. Comput., 39(7):2970–2989, 2010. [doi:10.1137/080723491] 3

[5] Wojciech Banaszczyk: Balancing vectors and Gaussian measures of =-dimensional

convex bodies. Random Struct. Algor., 12(4):351–360, 1998. [doi:10.1002/(SICI)1098-

2418(199807)12:4<351::AID-RSA3>3.0.CO;2-S] 15

[6] Nikhil Bansal: Constructive algorithms for discrepancy minimization. In Proc. 51st FOCS,
pp. 3–10. IEEE Comp. Soc., 2010. [doi:10.1109/FOCS.2010.7] 12

[7] Nikhil Bansal: On a generalization of iterated and randomized rounding. In Proc. 51st
STOC, pp. 1125–1135. ACM Press, 2019. [doi:10.1145/3313276.3316313] 1

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 20

http://dx.doi.org/10.1109/FOCS.2015.11
http://dx.doi.org/10.1007/s101070100271
https:/doi.org/10.1137/1.9781611973075.32
http://dx.doi.org/10.1287/opre.2017.1603
http://dx.doi.org/10.1137/080723491
http://dx.doi.org/10.1002/(SICI)1098-2418(199807)12:4<351::AID-RSA3>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1098-2418(199807)12:4<351::AID-RSA3>3.0.CO;2-S
http://dx.doi.org/10.1109/FOCS.2010.7
http://dx.doi.org/10.1145/3313276.3316313
http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

[8] Nikhil Bansal, Daniel Dadush, and Shashwat Garg: An algorithm for Komlós

Conjecture matching Banaszczyk’s bound. SIAM J. Comput., 48(2):534–553, 2019.

[doi:10.1137/17M1126795] 8, 15

[9] Nikhil Bansal and Shashwat Garg: Algorithmic discrepancy beyond partial coloring. In

Proc. 49th STOC, pp. 914–926. ACM Press, 2017. [doi:10.1145/3055399.3055490] 8, 10

[10] Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan: Additive guarantees

for degree-bounded directed network design. SIAM J. Comput., 39(4):1413–1431, 2010.
[doi:10.1137/080734340] 18

[11] Nikhil Bansal and Viswanath Nagarajan: Approximation-friendly discrepancy rounding.

In Proc. 18th Integer Prog. Combinat. Optim. (IPCO’16), volume 9682 of LNCS, pp. 375–386.
Springer, 2016. [doi:10.1007/978-3-319-33461-5_31] 3, 8, 20

[12] József Beck and Tibor Fiala: “Integer-making” theorems. Discr. Appl. Math., 3(1):1–8, 1981.
[doi:10.1016/0166-218X(81)90022-6] 5, 14, 15

[13] Julius Borcea, Peter Brändén, and Thomas M. Liggett: Negative dependence and the

geometry of polynomials. J. AMS, 22(2):521–567, 2009. [doi:10.1090/S0894-0347-08-00618-8]
3

[14] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart: Concentration In-
equalities: A Nonasymptotic Theory of Independence. Oxford Univ. Press, 2013.

[doi:10.1093/acprof:oso/9780199535255.001.0001] 3

[15] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen: Dependent randomized rounding

via exchange properties of combinatorial structures. In Proc. 51st FOCS, pp. 575–584. IEEE
Comp. Soc., 2010. [doi:10.1109/FOCS.2010.60] 2, 3, 6

[16] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen: Multi-budgeted matchings and

matroid intersection via dependent rounding. In Proc. 22nd Ann. ACM–SIAM Symp. on
Discrete Algorithms (SODA’11), pp. 1080–1097. SIAM, 2011. [doi:10.1137/1.9781611973082.82]

2, 3, 6

[17] Devdatt P. Dubhashi and Alessandro Panconesi: Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge Univ. Press, 2009. [doi:10.1017/CBO9780511581274] 3

[18] David A. Freedman: On tail probabilities for martingales. Ann. Probab., 3(1):100–118, 1975.
[doi:10.1214/aop/1176996452] 8

[19] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan: Depen-

dent rounding and its applications to approximation algorithms. J. ACM, 53(3):324–360,

2006. [doi:10.1145/1147954.1147956] 2, 3, 6

[20] Nicholas J. A. Harvey and Neil Olver: Pipage rounding, pessimistic estimators andmatrix

concentration. In Proc. 25th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’14), pp.
926–945. SIAM, 2014. [doi:10.1137/1.9781611973402.69] 3, 6

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 21

http://dx.doi.org/10.1137/17M1126795
http://dx.doi.org/10.1145/3055399.3055490
http://dx.doi.org/10.1137/080734340
http://dx.doi.org/10.1007/978-3-319-33461-5_31
http://dx.doi.org/10.1016/0166-218X(81)90022-6
http://dx.doi.org/10.1090/S0894-0347-08-00618-8
http://dx.doi.org/10.1093/acprof:oso/9780199535255.001.0001
http://dx.doi.org/10.1109/FOCS.2010.60
http://dx.doi.org/10.1137/1.9781611973082.82
http://dx.doi.org/10.1017/CBO9780511581274
http://dx.doi.org/10.1214/aop/1176996452
http://dx.doi.org/10.1145/1147954.1147956
http://dx.doi.org/10.1137/1.9781611973402.69
http://dx.doi.org/10.4086/toc

NIKHIL BANSAL

[21] Richard M. Karp, Frank Thomson Leighton, Ronald L. Rivest, Clark D. Thompson,

Umesh V. Vazirani, and Vijay V. Vazirani: Global wire routing in two-dimensional arrays.

Algorithmica, 2:113–129, 1987. [doi:10.1007/BF01840353] 5

[22] Tamás Király, Lap Chi Lau, and Mohit Singh: Degree bounded matroids and submodular

flows. Combinatorica, 32(6):703–720, 2012. [doi:10.1007/s00493-012-2760-6] 18

[23] Lap-Chi Lau, R. Ravi, and Mohit Singh: Iterative Methods in Combinatorial Optimization.
Cambridge Univ. Press, 2011. [doi:10.1017/CBO9780511977152] 2, 16, 17

[24] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos: Approximation algorithms

for scheduling unrelated parallel machines. Math. Programming, 46:259–271, 1990.

[doi:10.1007/BF01585745] 6, 16, 18

[25] László Lovász, Joel H. Spencer, and Katalin Vesztergombi: Discrepancy of set-systems

and matrices. Europ. J. Combinat., 7(2):151–160, 1986. [doi:10.1016/S0195-6698(86)80041-5]
8, 15

[26] Shachar Lovett and Raghu Meka: Constructive discrepancy minimization by walking on

the edges. SIAM J. Comput., 44(5):1573–1582, 2015. [doi:10.1137/130929400] 3, 12

[27] Robin Pemantle: Towards a theory of negative dependence. J. Math. Phys., 41(3):1371–1390,
2000. [doi:10.1063/1.533200] 3

[28] Yuval Peres, Mohit Singh, and Nisheeth K. Vishnoi: Random walks in poly-

topes and negative dependence. In Proc. 8th Innovations in Theoret. Comp. Sci.
Conf. (ITCS’17), pp. 50:1–10. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[doi:10.4230/LIPIcs.ITCS.2017.50] 3

[29] Thomas Rothvoß: The entropy rounding method in approximation algorithms. In Proc.
23rd Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’12), pp. 356–372. SIAM, 2012.

[doi:10.1137/1.9781611973099.32] 3, 8

[30] Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Volume B.

Springer, 2003. Springer. 19

[31] Mohit Singh and Lap Chi Lau: Approximating minimum bounded degree spanning trees

to within one of optimal. J. ACM, 62(1):1:1–19, 2015. [doi:10.1145/2629366] 6, 7

[32] Mohit Singh and Nisheeth K. Vishnoi: Entropy, optimization and counting. In Proc. 46th
STOC, pp. 50–59. ACM Press, 2014. [doi:10.1145/2591796.2591803] 3, 6

[33] Aravind Srinivasan: Distributions on level-sets with applications to approxima-

tion algorithms. In Proc. 42nd FOCS, pp. 588–597. IEEE Comp. Soc., 2001.

[doi:10.1109/SFCS.2001.959935] 3

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 22

http://dx.doi.org/10.1007/BF01840353
http://dx.doi.org/10.1007/s00493-012-2760-6
http://dx.doi.org/10.1017/CBO9780511977152
http://dx.doi.org/10.1007/BF01585745
http://dx.doi.org/10.1016/S0195-6698(86)80041-5
http://dx.doi.org/10.1137/130929400
http://dx.doi.org/10.1063/1.533200
http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.50
http://dx.doi.org/10.1137/1.9781611973099.32
https://link.springer.com/book/9783540443896
http://dx.doi.org/10.1145/2629366
http://dx.doi.org/10.1145/2591796.2591803
http://dx.doi.org/10.1109/SFCS.2001.959935
http://dx.doi.org/10.4086/toc

ON A GENERALIZATION OF ITERATED AND RANDOMIZED ROUNDING

[34] Ola Svensson, Jakub Tarnawski, and László A. Végh: A constant-factor approximation

algorithm for the asymmetric traveling salesman problem. J. ACM, 67(6):37:1–53, 2020.

[doi:10.1145/3424306] 6

[35] Vijay V. Vazirani: Approximation Algorithms. Springer, 2001. ACM DL. 2

[36] David P. Williamson and David B. Shmoys: The Design of Approximation Algorithms. Cam-

bridge Univ. Press, 2011. CUP. 2

AUTHOR

Nikhil Bansal

Department of Computer Science

University of Michigan, Ann Arbor

bansal gmail com

https://bansal.engin.umich.edu/

ABOUT THE AUTHOR

Nikhil Bansal is a professor in the Department of Computer Science at University of

Michigan, Ann Arbor. He attended the Indian Institute of Technology, Mumbai

for his B. Tech. degree, and received his Ph.D. from Carnegie Mellon University,

Pittsburgh. He got fascinated by algorithms after taking an undergraduate class

by Ajit A. Diwan, and has worked on various algorithmic questions since then.

During his free time, he enjoys reading, hiking and doing Yoga.

THEORY OF COMPUTING, Volume 20 (6), 2024, pp. 1–23 23

http://dx.doi.org/10.1145/3424306
https://dl.acm.org/doi/book/10.5555/1965254
https://www.designofapproxalgs.com/
https://bansal.engin.umich.edu/
http://www.umich.edu
http://www.umich.edu
http://www.iitb.ac.in/
http://www.cmu.edu/
https://www.cse.iitb.ac.in/~aad/
http://dx.doi.org/10.4086/toc

	Introduction
	Need for combining the approaches
	Our results
	Motivating problems and applications
	Rounding for column-sparse LPs
	Makespan minimization on unrelated machines
	Degree-bounded spanning trees and thin trees

	Overview of techniques

	Technical preliminaries
	Tail bounds for supermartingales
	Semidefinite matrices
	Approximate independence and sub-isotropic random variables

	The algorithm and analysis
	The algorithm
	Analysis
	Isotropic updates imply concentration

	Applications
	Rounding column-sparse LPs
	Makespan minimization on unrelated machines
	Minimum cost degree-bounded matroid basis

	References

