
THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62
www.theoryofcomputing.org

Lower Bound Techniques in the

Comparison-Query Model and

Inversion Minimization on Trees

Ivan Hu Dieter van Melkebeek Andrew Morgan

Received March 18, 2023; Revised July 1, 2024; Published December 7, 2024

Abstract. Given a rooted tree and a ranking of its leaves, what is the minimum

number of inversions of the leaves that can be attained by ordering the tree? This

variation of the well-known problem of counting inversions in arrays originated in

mathematical psychology. It has the evaluation of the Mann–Whitney statistic for

detecting differences between distributions as a special case.

We study the complexity of the problem in the comparison-query model, the

standard model for problems like sorting, selection, and heap construction. The

complexity depends heavily on the shape of the tree: for trees of unit depth, the

problem is trivial; for many other shapes, we establish lower bounds close to the

strongest known in the model, namely the lower bound of log
2
(=!) for sorting =

items. For trees with = leaves we show, in increasing order of closeness to the sorting

lower bound:

A conference version of this paper appeared in the Proceedings of the 34th ACM-SIAM Symposium on Discrete

Algorithms (SODA’23) [14].

ACM Classification: Theory of computation→ Computational complexity and cryptography

AMS Classification: 68Q17, 68Q25

Keywords and phrases: query complexity, comparison-querymodel, lower bounds, permutahe-

dron, sensitivity, connectivity, inversions, trees, Mann–Whitney, Gaussian binomial coefficients,

Gaussian polynomials

© 2024 Ivan Hu, Dieter van Melkebeek, and Andrew Morgan
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2024.v020a007

http://dx.doi.org/10.4086/toc
https://doi.org/10.1137/1.9781611977554.ch107
https://doi.org/10.1137/1.9781611977554.ch107
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2024.v020a007

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

(a) log
2
((
(1 −
)=)!) − $(log =) queries are needed whenever the tree has a

subtree that contains a fraction
 of the leaves. This implies a lower bound of

log
2
((:
(:+1)2 =)!) − $(log =) for trees of degree :.

(b) log
2
(=!) − $(log =) queries are needed in case the tree is binary.

(c) log
2
(=!) − $(: log :) queries are needed for certain classes of trees of degree :,

including perfect trees with even :.

The lower bounds are obtainedbydeveloping twonew techniques for anyproblem

Π in the comparison-query model and applying them to inversion minimization on

trees. Both techniques can be described in terms of the Cayley graph of the symmetric

group with adjacent-rank transpositions as the generating set, or equivalently,

in terms of the edge graph of the permutahedron, the polytope spanned by all

permutations of the vector (1, 2, . . . , =). Consider the subgraph consisting of the

edges between vertices with the same value under Π. We show that the size of any

decision tree for Πmust be at least

(i) the number of connected components of this subgraph, and

(ii) the factorial (or Γ function) of the average degree of the complementary

subgraph, divided by =.

Lower bounds on query complexity then follow by taking the base-2 logarithm.

Technique (i) represents a discrete analog of a classical technique in algebraic

complexity and allows us to establish (c) and a tight lower bound for counting cross

inversions, as well as unify several of the known lower bounds in the comparison-

query model. Technique (ii) represents an analog of sensitivity arguments in Boolean

complexity and allows us to establish (a) and (b).

Along the way to proving (b), we derive a tight upper bound on the maximum

probability of the distribution of cross inversions, which is the distribution of the

Mann–Whitney statistic in the case of the null hypothesis. Up to normalization, the

probabilities appear in the literature as the coefficients of polynomials formed by the

Gaussian binomial coefficients, also known as Gaussian polynomials.

1 Overview

The result of a hierarchical cluster analysis on a set - of items can be thought of as an unordered

rooted tree) with leaf set -. To visualize the tree, or to spell out the classification in text,

one needs to decide for every internal node of) in which order to visit its children. Figure 1a

represents an example of a classification of eight body parts from the psychology literature

[6]. It is obtained by repeatedly clustering nearest neighbors where the distance between two

items is given by the number of people in a survey who put the items into different classes [22].

The ordering of the resulting binary tree in Figure 1a is the output produced by a particular

implementation of the clustering algorithm.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 2

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

knee thigh

toe chest waist cheek mouth

ear

(a) Initial tree ordering

ear

cheek mouth chest waist

thigh knee

toe

(b) Optimal tree ordering

Figure 1: Classification of body parts

Another ordering is given in Figure 1b; black marks the nodes whose children have been

swapped from the ordering in Figure 1a. Figure 1b has the advantage over Figure 1a that the

leaves now appear in an interesting global order, namely head-to-toe: ear, cheek, mouth, chest,

waist, thigh, knee, toe. Indeed, Figure 1b makes apparent that the anatomical order correlates

perfectly with the clustering. In general, given a tree) and a ranking � of its leaves, one might

ask “how correlated” is) with �? Degerman [6] suggests evaluating the orderings of) in terms

of the number of inversions of the left-to-right ranking � of the leaves with respect to the given

ranking �, and use the minimum number over all orderings as a measure of (non)correlation.

For further reference, we collect the formal definitions of the underlying notions.

Definition 1.1 (tree ordering, ranking, inversion, Inv·(·)). An ordering of a rooted tree) consists

of an ordering, for every non-leaf E of), of the children of E. A ranking � of a set - of = items is

a bĳection from - to [=]. Given two rankings � and �, an inversion of � with respect to � is a

pair of items G1 , G2 ∈ - such that �(G1) < �(G2) but �(G1) > �(G2). The number of inversions

is denoted by Inv�(�). An inversion in an array � of distinct values is an inversion of � with

respect to � where � denotes the ranking by array index and � the ranking by value; in this

setting we write Inv(�) for Inv�(�).

Theminimumnumber of inversions over all tree orderings can be used to compare the quality

of different trees) for a given ranking �, or of different rankings � for a given tree). This mimics

the use of the number of inversions in applications like collaborative filtering in recommender

systems, rank aggregation for meta searching the web, and Kendall’s test for dependencies

between two random variables. In particular, the Mann–Whitney test for differences between

random variables can be viewed as a special case of our optimization problem. The test is

widely used because of its nonparametric nature, meaning that no assumptions need to be made

about the distribution of the two variables; the distribution of the statistic in the case of the null

hypothesis (both variables have the same distribution) is always the same. The test achieves

this property by only considering the relative order of the samples. It takes a sequence � of 0

samples from a random variable ., a sequence � of 1 samples from another random variable /,

and computes the statistic* � min(XInv(�, �),XInv(�, �)) that is the minimum of the number

XInv(�, �) of cross inversions from � to �, and vice versa, defined as follows.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 3

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Definition 1.2 (cross inversions, XInv·(·, ·)). Let � be a ranking of -, and �, � ⊆ -. A cross
inversion from � to � with respect to � is a pair (G1 , G2) ∈ � × � that is out of order with respect

to �, i. e., such that �(G1) > �(G2). The number of cross inversions is denoted by XInv�(�, �).
For two arrays � and � of distinct values, a cross inversion from � to � is a cross inversion from

the set of entries in � to the set of entries in � where � denotes the ranking by value; in this

setting we write XInv(�, �) for XInv�(�, �).

The statistic* coincides with the optimum value of our optimization problem with the tree

) in Figure 2 as input. The leftmost 0 leaves correspond to the samples �, the rightmost 1 leaves

to the samples �, and the ranking � to the value order of the combined 0 + 1 samples.

· · · · · ·
0 leaves 1 leaves

Figure 2: Mann–Whitney instance

Wemainly study the value version of our optimization problem, which we denote by MinInv.

Definition 1.3 (inversion minimization on trees, MinInv(·, ·), Π·). Inversion minimization on

trees is the computational problem with the following specification:

Input: A rooted tree) with leaf set - of size =, and a ranking � of -.

Output: MinInv(), �), theminimumof Inv�(�) over all possible orderings of), where � denotes

the left-to-right ranking of - induced by the ordering of).

For any fixed tree) with leaf set -, we use the short-hand Π) to denote the computational

problem that takes as input a ranking � of - and outputs MinInv(), �).

Degerman [6] observes that theordering at each internal node canbeoptimized independently

in a greedy fashion. In the setting of binary trees, for each node E, we can count the cross

inversions from the leaves in the left subtree of E to the leaves in the right subtree of E. Between

the two possible orderings of the children of a node E, we choose the one that yields the smaller

number of cross inversions. Based on his observation, Degerman presents a polynomial-time

algorithm for the case of binary trees). A more refined implementation and analysis yields

a running time of $(3avg()) · =), where 3avg()) denotes the average depth of a leaf in). For

balanced binary trees the running time becomes $(= log =). All of this can be viewed as variants

of the well-known $(= log =) divide-and-conquer algorithm for counting inversions in arrays of

length =.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 4

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

For trees of degree deg()) > 2, the local greedy optimization at each internal node becomes

more complicated, as there aremanyways to order the children of each internal node. Exhaustive

search results in a running time of $((deg())! + deg()) · 3avg())) · =), which can be improved to

$((deg())22
deg()) + deg()) · 3avg())) · =) using dynamic programming. The problem is closely

related to the classical problem of minimum arc feedback set, and becomes NP-hard without

any constraints on the degree. We refer to Section 10 for more details.

Query complexity. Rather than running time in the Turing machine model, our focus lies

on query complexity in the comparison-query model. There we can only access the ranking

� : - → [=] via queries of the form: Is �(G1) < �(G2)? For any fixed tree), we want to determine

the minimum number of queries needed to solve the problem.

The comparison-query model represents the standard model for analyzing problems like

sorting, selection, and heap construction. Sorting represents the hardest problem in the

comparison-query model as it is tantamount to knowing the entire ranking �. Its query

complexity has a well-known information-theoretic lower bound of log
2
(=!) = = log

2
(=/e) +

1

2
log

2
(=) + $(1). Standard algorithms such as mergesort and heapsort yield an upper bound of

log
2
(=!) + $(=), which has been improved to log

2
(=!) + >(=) recently [26]. We refer to Section 2

for an overview of results and techniques for lower bounds in the model.

Information theory only yields a veryweak lower bound on the query complexity of inversion

minimization on trees: log
2

(=
2

)
= 2 log

2
(=) − $(1). The complexity of the problem critically

depends on the shape of the tree) and can be significantly lower than the one for sorting. For

starters, the problem becomes trivial for trees of depth one as their leaves can be arranged freely

in any order. More precisely, the trees) for which the answer is identically zero, irrespective of

the ranking �, are exactly those such that all root-to-leaf paths have only the root in common.

Arguably, the simplest nontrivial instances of inversion minimization are for trees) of the

Mann–Whitney type in Figure 2 with 0 = 1 and 1 = = − 1. Depending on the rank A of the

isolated leaf, an optimal ordering of) is either the left or the right part in Figure 3, where the

label of each leaf is its rank under �.

A 1 2

. . .
= A1 2

. . .
=

Figure 3: Rank instance

As the ordering on the left has A − 1 inversions and the one on the right = − A, the answer is

min(A − 1, = − A). Thus, this instance of inversion minimization on trees is essentially equivalent

to rank finding, which has query complexity exactly = − 1.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 5

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

1.1 Main results

We prove that for many trees), inversion minimization on) is nearly as hard as sorting. First,

we exhibit a common structure that guarantees high complexity, namely a subtree that contains

a fairly balanced fraction of the leaves. We make use of the following notation.

Definition 1.4 (leaf set, L(·), and subtree). For a tree), the leaf set of), denoted L()), is the set
of leaves of). For a node E to),)E denotes the subtree of) rooted at E.

The quantitative statement references the gamma function Γ, which is a proxy for any convex

real function that interpolates the factorial function on the positive integers. More precisely, we

have that Γ(= + 1) = =! for every integer = ≥ 1.

Theorem 1.5 (lower bound for general trees). Let) be a tree with = leaves, and E a node with
|L()E)| = ℓ . The query complexity of inversion minimization on) is at least log

2
(Γ(ℓ (=−ℓ)= + 1)). In

particular, the complexity is at least log
2
(Γ(:
(:+1)2 · = + 1)) where : denotes the degree of).

For trees of constant degree, Theorem 1.5 yields a lower bound that is as strong as the one

for sorting up to a constant multiplicative factor. For the important case of binary trees (like

the classification trees from the motivating example), we obtain a lower bound that is only a

logarithmic additive term shy of the lower bound for sorting.

Theorem 1.6 (lower bound for binary trees). For binary trees) with = leaves, the query complexity
of inversion minimization on) is at least log

2
(=!) − $(log =).

The logarithmic loss can be reduced to a constant for certain restricted classes of trees. The

full statement is somewhat technical. First, it assumes that the tree has no nodes of degree 1. This

is without loss of generality, as we can short-cut all degree-1 nodes in the tree without affecting

the minimum number of inversions. For example, trivial trees for inversion minimization have

depth 1 without loss of generality. Second, the strength of the lower bound depends on the

maximum size of a leaf child set, defined as follows.

Definition 1.7 (leaf child set, LC(·)). The leaf child set LC(E) of a vertex E in a tree) is the set

LC(E) of all the children of E that are leaves in).

Most importantly, the result requires certain fragile parity conditions to hold. That said,

there are interesting classes satisfying all requirements, and the bounds are very tight.

Theorem 1.8 (lower bound for restricted classes). Let) be a tree without nodes of degree 1 such that
the leaf child sets have size at most :, at most one of them is odd, and if there exists an odd one, say LC(E∗),
then all ancestors of E∗ have empty leaf child sets. The query complexity of inversion minimization on)
is at least log

2
(=!) − $(: log :). In particular, the lower bound applies to:

• perfect trees of even degree :, and

• full binary (: = 2) trees with at most one leaf without a sibling leaf.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 6

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

Recall that a tree of degree : is full if every node has degree 0 or :. It is perfect if it is full

and all leaves have the same depth.

For the Mann–Whitney statistic, Theorem 1.5 provides an Ω(= log =) lower bound for

balanced instances, i. e., when 0 and 1 are Θ(=). For unbalanced instances there is a more

efficient way to count cross inversions and thus evaluate the statistic: Sort the smaller of the two

sides, and then do a binary search for each item of the larger side to find its position within the

sorted smaller side so as to determine the number of cross inversions that it contributes. For

0 ≤ 1 the approach makes 1 log
2
(0) + $(0 log 0) comparisons. We establish a lower bound that

shows the approach is optimal up to a constant multiplicative factor.

Theorem 1.9 (lower bound for counting cross inversions). Counting cross inversions from a set �
of size 0 to a set � of size 1 ≥ 0 with respect to a ranking � of - � � t � requires Ω((0 + 1) log(0))
queries in the comparison-query model, as does inversion minimization on the tree of Figure 2.

1.2 Techniques

We obtain our results by developing two new query lower bound techniques for problems Π

in the comparison-query model, and then instantiating them to the problem Π) of inversion

minimization on a fixed tree). Although some of our techniques extend to relations, we restrict

attention to computational problemsΠ that are functions, just like the problemΠ) that we focus

on.

Definition 1.10 (computational problem and algorithm in the comparison-query model). A
computational problem in the comparison-query model is a total function on the rankings of a

set -. An algorithm in the comparison-query model can access an input ranking � : - → [=]
using comparison queries: For given G1 , G2 ∈ -, test if �(G1) < �(G2).

Both of our techniques follow the common pattern of lower bounding the number of distinct

execution traces that any algorithm for Π needs to have.

Definition 1.11 (execution trace, complexity measures D(·) and Q(·)). Consider an algorithm �

for a problem Π in the comparison-query model. An execution trace of � is the sequence of

comparisons that �makes on some input �, as well as the outcomes of the comparisons. The

complexity D(Π) is the minimum over all possible algorithms for Π of the number of distinct

traces the algorithm has over the set of all inputs �. The complexity Q(Π) is the minimum, over

all possible algorithms forΠ of the maximum number of comparisons that the algorithm makes

over the set of all inputs �.

The complexity measure Q is what we refer to as query complexity. Since the maximum

number of queries that an algorithm � makes is at least the base-2 logarithm of the number

of execution traces, we have that Q(Π) ≥ log
2
(D(Π)). Note that, in order to avoid confusion

with the tree) specifying an instance of inversion minimization, we refrain from the common

terminology of decision trees in the context of the complexity measure D. In those terms, we

lower bound the number of leaves of any decision tree for Π, and use the fact that the depth of

this binary decision tree is at least the base-2 logarithm of the number of leaves.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 7

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Both techniques proceed by considering the effect on the output of perturbations to the input

ranking � that are hard for queries to observe. More specifically, we consider the following

perturbations:

Definition 1.12 (adjacent-rank transposition, affected items). An adjacent-rank transposition is

a permutation � of [=] of the form � = (A, A + 1), where A ∈ [= − 1] and = denotes the number

of items. Given � and a ranking � : - → [=], the affected items are the two elements G ∈ - for

which �(�(G)) ≠ �(G), i. e., the items with ranks A and A + 1 under �.

As with any permutation of the set of ranks, the effect of � on a ranking � is the ranking ��.
Adjacent-rank transpositions are the least noticeable perturbations one can apply to a ranking

in the following sense: If two rankings differ by an adjacent-rank transposition, then the only

query that distinguishes them is the query that compares the affected items.

Sensitivity. Our first technique turns this observation around to obtain a lower bound on

query complexity. We adopt the terminology of sensitivity from Boolean query complexity.

Definition 1.13 (sensitivity, average sensitivity, B(·)). Let Π be a computational problem in

the comparison-query model on a set - of items. For a fixed ranking � and adjacent-rank

transposition �, we say that Π is sensitive to � at � if Π(�) ≠ Π(��). The sensitivity of Π at �
is the number of adjacent-rank transpositions � such that Π is sensitive to � at �. The average
sensitivity of Π, denoted B(Π), is the average sensitivity of Π at � when � is drawn uniformly at

random from all rankings of -.

On input a ranking �, any algorithm for Π needs to make a number of queries that is at

least the sensitivity of Π at �. Indeed, consider an adjacent-rank transposition � to which Π is

sensitive at �. If the algorithm does not make the query that compares the affected items, then it

must output the same answer on input �� as on input �. Since the value of Π differs on both

inputs, this means the algorithm makes a mistake on at least one of the two. It follows that the

average number of queries that any algorithm for Π makes is at least the average sensitivity

B(Π). A fortiori, Q(Π) ≥ B(Π).
As sensitivity cannot exceed = − 1, the best lower bound on query complexity that we can

establish based on the above basic observation alone, is = − 1. The following improvement

yields a the lower bound D(Π) ≥ =!/= = (= − 1)!, and therefore Q(Π) ≥ log
2
(=!) − log

2
(=) for

problems Π of maximum average sensitivity B(Π) = = − 1. The argument hinges on an efficient

encoding of rankings that share the same execution trace. See Section 3 for more details.

Lemma 1.14 (Sensitivity Lemma). For any problem Π in the comparison-query model with = items,
D(Π) ≥ Γ(B(Π) + 2)/=.

The lower bound for general trees) in Theorem 1.5 and the strengthening for binary trees

in Theorem 1.6 follow from corresponding lower bounds on the average sensitivity B(Π)).
Theorem 1.5 only requires a short analysis to establish the sensitivity lower bound needed for

the application of the Sensitivity Lemma; this illustrates the power of the lemma and of the

lower bound technique. Theorem 1.6 requires a more involved sensitivity analysis, but then

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 8

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

yields a very tight lower bound. Owing to the average-case nature of the underlying measure,

the technique also exhibits some degree of robustness. For the particular problem of inversion

minimization on trees, we show that small changes to the tree) do not affect the average

sensitivity B(Π)) by much. See Section 4 and Section 5.

For sorting, counting inversions, and inversion parity, the average sensitivity reaches its

maximum value of = − 1, and Lemma 1.14 recovers the standard lower bounds up to a small

loss. In contrast, for selection, the average sensitivity equals 1 for ranks 1 and =, and 2 for other

ranks, so the bound from Lemma 1.14 is no good. This reflects that, just like in the Boolean

setting, (average) sensitivity is sometimes too rough of a measure and not always capable of

proving strong lower bounds. Our second technique looks at a more delicate structural aspect,

which enables it to sometimes yield stronger lower bounds.

Permutahedron graph. Before introducing our second technique, we cast our first technique

in graph theoretic terms. In fact, both our techniques can be expressed naturally in subgraphs

of the graph with the rankings as vertices and adjacent-rank transpositions as edges. The

latter graph can be viewed as the Cayley graph of the symmetric group with adjacent-rank

transpositions as the generating set. It is also the edge graph of the permutahedron, the convex

polytope spanned by all permutations of the vertex (1, 2, . . . , =) in ℝ=
. The permutahedron

resides inside the hyperplane where the sum of the coordinates equals

(=
2

)
, has positive volume

inside that hyperplane, and can thus be represented naturally in dimension = − 1; see Figure 4

for a rendering of the instance with = = 4 [9].

(4,1,2,3)
(4,2,1,3)

(3,2,1,4)

(3,1,2,4)

(2,1,3,4)

(1,2,3,4)

(1,2,4,3)

(1,3,2,4)

(2,1,4,3)

(2,3,1,4)

(3,1,4,2)

(4,1,3,2)

(4,2,3,1)

(3,2,4,1)
(2,4,1,3)

(1,4,2,3)

(1,3,4,2)

(2,3,4,1)

(1,4,3,2)

(2,4,3,1)

(3,4,2,1)

(4,3,2,1)

(4,3,1,2)

(3,4,1,2)

Figure 4: Permutahedron for = = 4 items

We think of coloring the vertices of the

permutahedronwith their values underΠ and

makeuse of the subgraphwith the samevertex

set but only containing the monochromatic

edges, i. e., the edges whose end points have

the same value underΠ. We also consider the

the complementary subgraph containing all

bichromatic edges.

Definition 1.15 (permutahedron graph, �(·),
�(·)). Let Π be a computational problem in

the comparison-query model on a set - of

items. The permutahedron graph of Π, denoted

�(Π), has the rankings of - as vertices, and

an edge between two rankings �1 and �2 if

Π(�1) = Π(�2) and there exists an adjacent-

rank transposition such that �2 = ��1. The

complementary permutahedron graph of Π, denoted �(Π), is defined similarly by replacing the

condition Π(�1) = Π(�2) by its complement, Π(�1) ≠ Π(�2).

Our first technique looks at degrees in the complementary permutahedron graph �(Π), and
more specifically at the average degree deg

avg
(�(Π)) � E(deg

�(Π)(�)), where the expectation is

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 9

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

with respect to a uniform choice of the ranking �. Our second technique looks at the connected

components of the permutahedron graph �(Π).

Connectivity. Our second technique is reminiscent of a result in algebraic complexity theory,

where the number of execution traces of an algorithm for a problem Π in the algebraic

comparison-query model is lower bounded in terms of the number of connected components

thatΠ induces in its input spaceℝ=
[1]. In the comparison-query setting, we obtain the following

lower bound.

Lemma 1.16 (Connectivity Lemma). For any problem Π in the comparison-query model, D(Π) is at
least the number of connected components of �(Π).

The Connectivity Lemma allows for a simple and unified exposition of many of the known

lower bounds. For counting inversions and inversion parity the argument goes as follows. Every

adjacent-rank transposition changes the number of inversions by exactly one (up or down), and

therefore changes the output of Π, so all =! vertices in �(Π) are isolated. This means that any

algorithm forΠ actually needs to sort and has to make at least log
2
(=!) queries. See Section 7 for

a proof of the Connectivity Lemma and more applications to classical problems, including the

Ω(=) lower bound for median finding.

The Connectivity Lemma also enables us to establish strong lower bounds for inversion

minimization on special types of trees), namely those of Theorem 1.8 and the Mann–Whitney

instances in Theorem 1.9, closely related to counting inversions. Both theorems involve an

analysis of the size of the connected component of a random ranking � in�(Π)), and Theorem 1.8

uses the delicate parity conditions of its statement to keep �(Π)) as sparse as possible. See

Section 8 for more details, including a more general property that guarantees the required

sparseness (the partition property from Definition 8.1) and the resulting lower bound for any

problem Π that satisfies the property (Lemma 8.4).

The Mann–Whitney setting illustrates well the relative power of our techniques. In the

Mann–Whitney instances of inversion minimization, the leaves are naturally split between

a subtree containing 0 of them and a subtree containing 1 of them. The argument behind

Theorem 1.5 yields a lower bound of
01
0+1 on the sensitivity B(Π)). The true sensitivity is just

$(1) below the one for counting cross inversions, which is
201
0+1 . The resulting lower bounds on

the query complexity in case 0 ≤ 1 are Θ(0 log 0), which roughly account for sorting the smaller

side but not for the 1 log
2
(0) comparisons used in the subsequent binary searches for counting

cross inversions. Our approach based on the Connectivity Lemma yields a lower bound that

includes both terms. On the other hand, it is easier to estimate and obtain the lower bound via

the Sensitivity Lemma than to argue the query lower bound via the Connectivity Lemma or

from scratch.

1.3 Other results

Other modes of computation. We stated our lower bounds for the standard, deterministic

mode of computation. Both of our techniques provide lower bounds for the number of distinct

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 10

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

execution traces that are needed to cover all input rankings, irrespective of whether these

execution traces derive from a single algorithm. Such execution traces can be viewed as

certificates or witnesses for the value of Π on a given input �, or as valid execution traces of a

nondeterministic algorithm for Π. We define the minimum number of traces needed to cover all

input rankings for a problem Π as the nondeterministic complexity of Π and denote it by N(Π),
along the lines of the Boolean setting [15]. All of our lower bounds on D(Π) actually hold for

N(Π). See Remark 3.4 and Remark 7.2 for further discussion.

Since randomized algorithms with zero error are also nondeterministic algorithms, all of our

lower bounds apply verbatim to the former mode of computation, as well. As for randomized
algorithms with bounded error, we argue in Section 6 that our lower bounds on the query complexity

of inversion minimization on trees that follow from the Sensitivity Lemma carry over modulo a

small loss in strength. We do so by showing in general that high average sensitivity implies

high query complexity against such algorithms (see Lemma 6.5).

The fact that our techniques yield lower bounds on N(Π) and not just D(Π) also explains

why our approaches sometimes fail. For example, for the problem Π of finding the minimum

of = items, a total of = certificates suffice and are needed, namely one for each possible item

being the minimum. This means that our techniques cannot give a lower bound on the query

complexity of Π that is better than log
2
(=). In contrast, as reviewed in Section 2, D(Π) = 2

=−1

and the number of queries needed is = − 1.

Cross-inversion distribution. As a technical result in the sensitivity analysis for inversion

minimization on binary trees (Theorem 1.6), we need a strong upper bound on the probability

that the number of cross inversions XInv�(�, �) takes on any particular value when the ranking �
of the set- = �t� is chosen uniformly at random. This is the distribution of theMann–Whitney

statistic under the null hypothesis. Mann and Whitney [20] argued that it converges to a normal

distribution with mean � = 01/2 and variance �2 = 01(0 + 1 + 1)/12 as 0 � |�| and 1 � |�| grow
large. Since the normal distribution has a maximum density of 1/(

√
2��), their result suggests

that the maximum of the underlying probability distribution is $(1/�) = $(1/
√
01(0 + 1 + 1)).

Takács [28]managed to formally establish such a bound for all pairs (0, 1)with |0−1 | = $(
√
0 + 1),

Stanley and Zanello [27] for all pairs (0, 1)with min(0, 1) bounded, and Melczer, Panova, and

Pemantle [21] for all pairs (0, 1)with |0 − 1 | ≤
 · (0 + 1) for some constant
 < 1. However, these

results do not cover all regimes and leave open a single bound of the same form that applies to

all pairs (0, 1), which is what we need for Theorem 1.6. We establish such a bound in Section 9.

The counts of the rankings � with a particular value for XInv�(�, �) appear as the coefficients of

the Gaussian polynomials. Our bound can be stated equivalently as a bound on those coefficients.

1.4 Organization

We have organized the material so as to provide a shortest route to a full proof of Theorem 1.5.

Here are the sections needed for the different main results:

• Theorem 1.5 (lower bound for general trees): 3, 4.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 11

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

• Theorem 1.6 (lower bound for binary trees): 3, 5, 9.

• Theorem 1.8 (lower bound for restricted classes): 7, 8 up to 8.3 inclusive.

• Theorem 1.9 (lower bound for counting cross inversions): 7, 8 but not 8.2 nor 8.3.

In Section 2, we provide some background on known lower bounds in the comparison-query

model, several of which are unified by the Sensitivity Lemma and Connectivity Lemma. In

Section 6, we present our lower bounds against randomized algorithms with bounded error.

The tight bound on maximum probability of the cross-inversion distribution is covered in

Section 9. For completeness, we end in Section 10 with proofs of the results we stated on the

Turing complexity of inversion minimization on trees.

2 The comparison-query model

In this section we provide an overview of known results and techniques for lower bounds in the

comparison-query model. This section can be skipped without a significant loss in continuity.

Tight bounds have been established for problems like sorting, selection, and heap construc-

tion.

• We already discussed the central problem of sorting in Section 1.

• In selection we are told a rank A, and must identify the item with rank A. The query

complexity is known to be Θ(=) [2, 7, 8]. There is also multiple selection, in which one is

given multiple ranks A1 , . . . , A: , and must identify each of the corresponding items. The

query complexity of multiple selection is likewise known up to a Θ(=) gap between the

upper and lower bounds [16].

• In heap constructionwe must arrange the items as nodes in a complete binary tree such that

every node has a rank no larger than its children. The query complexity is known to be

Θ(=) [5, 11].

All the problems above can be cast as instantiations of a general framework known as partial
order production [25]. Here, in addition to query access to the ranking � of the items, we are given

= slots and regular access to a partial order <slot on the slots. The objective is to put each item

into a slot, one item per slot, so that whenever two slots, B1 and B2, are related by B1 <slot B2, we

also have �(B1) < �(B2). Sorting coincides with the case where <slot is a total order. In selection

of rank A, there is a designated slot B∗, and there are exactly A − 1 slots B with B <slot B
∗
and

exactly = − A slots B with B∗ <slot B; there are no other relations in <slot (see the example at the

end of Section 7 for more details). Multiple selection is similar. For heap construction, <slot

matches the complete binary tree arrangement.

Partial order production for a given <slot naturally decomposes into the same problem for

each of the connected components of the undirected graph underlying <slot. In the case of a

single connected component, an elementary adversary argument shows that Q(Π) ≥ = − 1: Any

combination of less than = − 1 queries to � leaves some pair of slots in <slot undetermined with

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 12

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

respect to �. Another lower bound is the information-theoretic limit. For each way of putting

items into slots, the number of input rankings � for which that way is a correct answer is bounded

by 4(<slot), the number of ways to extend <slot to a total order. Therefore, there must be at least

=!/4(<slot) distinct execution traces. Since each execution trace is determined by the outcomes of

its queries, and each query has only two outcomes, we conclude that �(<slot) � log
2
(=!/4(<slot))

queries are necessary to solve partial order production. Complementing these lower bounds

there exists an upper bound of (1+ >(1)) ·�(<slot) + 2 · (= − 1) queries for some universal constant

2 [4]. For any instanceΠwith partial order <slot it follows that Q(Π) = Θ(�(<slot) + = − �(<slot)),
where �(<slot) denotes the number of connected components of the undirected graph underlying

<slot.

Not every problem of interest in the comparison model is an instance of partial order

production. Here are a few examples.

• In rank finding there is a designated item G∗, and we have to compute its rank. The rank can

be computed by comparing G∗ with each of the = − 1 other items. A similar elementary

adversary argument as above shows that the query complexity is at least = − 1.

• In counting inversions the items are arranged in some known order � and the objective is

to count the number of inversions of � with respect to �. As we reviewed in Section 1,

counting inversions has exactly the same query complexity as sorting.

• The problem of inversion parity is the same as counting inversions except that one need only

count the number of inversions modulo 2. This problem, as well as counting inversions

modulo < for any integer < > 1, also has exactly the same complexity as sorting.

For each of the three problems above, information theory does not provide a satisfactory

lower bound. For example, in the inversion parity problem there are only two possible outputs,

which yields a lower bound of log
2
(2) = 1. It so happens that for each of the preceding three

examples, the query complexity is known quite precisely; however, the known arguments are

rather problem-specific.

Inversion minimization on trees is another example that does not fit the framework of partial

order generation, and for which information theory only yields a weak lower bound: log
2

(=
2

)
=

2 log
2
(=) − Θ(1). In contrast to the above examples, a strong lower bound does not seem to

follow from a simple ad-hoc argument nor from a literal equivalence to sorting.

3 Sensitivity Lemma

In this section we develop Lemma 1.14. We actually prove a somewhat stronger version.

Lemma 3.1 (Strong Sensitivity Lemma). Consider an algorithm � in the comparison-based model
with = items, color each vertex of the permutahedron with its execution trace under �, and let � denote
the subgraph with the same vertex set but only containing the bichromatic edges. The number of distinct
execution traces of � is at least ,(deg

avg
(�) + 1)/=, where , : [1,∞) → ℝ is any convex function with

,(G) = G! for G ∈ [=].

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 13

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

The Sensitivity Lemma follows from Lemma 3.1 because the coloring with execution traces of

an algorithm � forΠ is a refinement of the coloring withΠ, so every edge of the permutahedron

that is bichromatic under Π is also bichromatic under �, and

B(Π) � E(deg
�(Π)(�)) ≤ E(deg

�
(�)) � deg

avg
(�).

Provided , is nondecreasing, it follows that D(Π) ≥ ,(deg
avg
(�) + 1)/= ≥ ,(B(Π) + 1)/=.

In the Sensitivity Lemma we set ,(G) = Γ(G + 1). An optimal (but less elegant) choice for , is

the piece-wise linear function that interpolates the prescribed values at the integral points in

[=], namely

,(G) � (G − bGc) · (dGe!) + (1 − (G − bGc)) · (bGc!).
For the proof of Lemma 3.1 we take intuition from a similar result in the Boolean setting [23,

Exercise 8.43], where the hypercube plays the role of the permutahedron in our setting.

Fact 3.2. Let � be a query algorithm on binary strings of length =. Color each vertex of the =-dimensional
hypercube by its execution trace under �, and let � denote the subgraph with the same vertex set but
only containing the bichromatic edges. Then the number of distinct execution traces is at least 2

deg
avg
(�).

One way to argue Fact 3.2 is to think of assigning a weight F(G) to each G ∈ {0, 1}= so as to

maximize the total weight on all inputs, subject to the constraint that the total weight on each

individual execution trace is at most 1. Then the number of distinct execution traces must be at

least the sum of all the weights. If the weight only depends on the degree, i. e., if we can write

F(G) = 5 (deg
�
(G)) for some function 5 : [0,∞) → ℝ, then we can lower bound the number : of

distinct execution traces as follows:

: ≥
∑
G

F(G) =
∑
G

5 (deg
�
(G)) ≥ 2

= · 5 (E(deg(G))) = 2
= · 5 (deg

avg
(�)), (3.1)

where the last inequality holds provided 5 is convex.

In the Boolean setting, the set ' of inputs G ∈ {0, 1}= with a particular execution trace forms

a subcube of dimension = − ℓ , where ℓ denotes the length of the execution trace, i. e., the number

of queries. Each G ∈ ' has degree ℓ in �; this is because a change in a single queried position

results in a different execution trace, and a change in an unqueried position does not. Therefore,

a natural choice for the weight of G ∈ ' is F(G) = 5 (ℓ) where 5 (G) = 1/2=−ℓ . It satisfies the

constraint that the total weight on ' is (at most) one, and 5 is convex. We conclude by (3.1) that

the number of distinct execution traces is at least 2
= · 5 (deg

avg
(�)) = 2

deg
avg
(�)

, as desired.

Proof of Lemma 3.1. Let : denote the number of distinct execution traces of �, and let '1 , . . . , ':
denote the corresponding sets of rankings. Following a similar strategy, we want to find a convex

function 5 : [0,∞) → ℝ such that the weight function F(�) = 5 (deg
�
(�)) does not assign weight

more than 1 to any one of the sets '8 . The following claim, to be proven later, is the crux of this.

Claim 3.3. Let ' denote the set of all rankings � that follow a particular execution trace on �, and let
3 ∈ {0, . . . , = − 1}. The number of rankings � ∈ ' with deg

�
(�) = 3 is at most =!

(3+1)! .

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 14

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

Based on Claim 3.3, a natural choice for 5 is any convex function that satisfies 5 (G) = 1

=
(G+1)!
=!

for G ∈ {0, . . . , = − 1}. The factor of 1

= comes from the fact that there are = terms to sum together

after the weights have been normalized. For every 8 ∈ [:]we then have∑
�∈'8

F(�) =
=−1∑
3=0

��{� ∈ '8 : deg
�
(�) = 3}

�� · 5 (3) ≤ =−1∑
3=0

1

=

(3 + 1)!
=!

· =!

(3 + 1)! =
=−1∑
3=0

1

=
= 1.

Similar to (3.1) we conclude

: ≥
:∑
8=1

∑
�∈'8

F(�) =
∑
�

F(�) =
∑
�

5 (deg
�
(�)) ≥ =! · 5 (E(deg

�
(�))) = =! · 5 (deg

avg
(�)). (3.2)

Setting 5 (G) = 1

=

,(G+1)
=!

turns the requirements for 5 into those for , in the statement of the

lemma, and yields that : ≥ =! · 5 (deg
avg
(�)) = ,(deg

avg
(�) + 1)/=. �

We now turn to proving Claim 3.3. The comparisons and outcomes that constitute a

particular execution trace of � can be thought of as directed edges between the items in -. We

refer to the resulting digraph on the vertex set - as the comparison graph �. Since the outcomes

of the comparisons are consistent with some underlying ranking, the digraph � is acyclic. The

rankings in ' are in one-to-one and onto correspondence with the linear orderings of the DAG

�. For a given ranking � ∈ ', the degree deg
�
(�) equals the number of A ∈ {2, . . . , =} such that

swapping ranks A − 1 and A in � results in a ranking �′ = �� that is not in ', where � denotes the

adjacent-rank transposition (A − 1, A). The ranking �′ not being in ' means that it is inconsistent

with the combined comparisons and outcomes of the underlying execution trace, which happens

exactly when there is a path in � from the item �−1(A − 1) of rank A − 1 in � to the item �−1(A)
with rank A in �. Thus, the degree deg

�
(�) equals the number of A ∈ {2, . . . , =} such that there

is a path from �−1(A − 1) to �−1(A) in �. See Figure 5 for an illustration, where a squiggly edge

D { E denotes that there exists a path from D to E in �. We only draw squiggly edges from one

position to the next, so deg
�
(�) equals the number of squiggly edges in Figure 5.

rank 1 2 3 4 5
. . . A − 1 A . . . =

�−1

Figure 5: Ranking encoding

Our strategy is to give a compressed encoding of the rankings in ' such that there is more

compression as the number of squiggly edges increases. Our encoding is based on the well-

known algorithm to compute a linear order of a DAG. Algorithm 1 provides pseudocode for the

algorithm, which we refer to as BuildRanking.

In our formulation, BuildRanking is nondeterministic: There is a choice to make in step 3

for each A = 1, . . . , =. The possible executions of BuildRanking are in one-to-one and onto

correspondence with the linear orders of �, and thus with the rankings in '.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 15

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Algorithm 1 BuildRanking(�)
Input: DAG � on vertex set -

Output: ranking of - that is a linear order of �

1:) ← ∅
2: for A = 1 to = do
3: G ← arbitrary element of (� {E ∈ - | there is no D ∈ - \) with D { E in �}
4: �−1(A) ← G

5:) ←) ∪ {G}

Our encoding is a compressed description of how to make the decisions in BuildRanking

such that the output is �. Note that if �−1(A − 1){ �−1(A), then the item G with rank A cannot

enter the set (before iteration A. This is because before �−1(A − 1) is removed from) at the end

of iteration A − 1, the edge �−1(A − 1) { �−1(A) prevents G from being in (. Thus, whenever

�−1(A − 1){ �−1(A), the item G = �−1(A) is lucky in the sense that it gets picked in step 3 as soon

as it enters the set (. In fact, the lucky items with respect to a ranking � ∈ ' are exactly those for

which �−1(A − 1) { �−1(A) for some A ∈ {2, . . . , =}, as well as the item �−1(1) with rank 1. In

Figure 5 the lucky items are marked black. Their number equals deg
�
(�) + 1.

In order to generate a ranking � using BuildRanking, it suffices to know:

(a) the lucky items (as a set, not their relative ordering), and

(b) the ordering of the non-lucky items (given which items they are).

This information suffices to make the correct choices in step 3 of Algorithm 1:

• If the set (contains a lucky item, there will be a unique lucky item in (; pick it as the

element G.

• Otherwise, pick for G the first item in the ordering of the non-lucky items that is not yet in

). Such an element will exist, and all the items that come after it in the ordering are not

yet in) either.

If � has degree 3 = deg
�
(�), then there are 3+1 lucky items, so there are at most

(=
3+1

)
choices for

(a), and at most (= − 3− 1)! choices for (b), resulting in a total of at most

(=
3+1

)
· (= − 3− 1)! = =!

(3+1)!
choices. This proves Claim 3.3.

Remark 3.4. Suppose we allow an algorithm � to have multiple valid execution traces on a

given input �, and let '8 denote the set of rankings on which the 8-th execution trace is valid.

The proof of Claim 3.3 carries over as it considers individually sets '8 , and only depends on the

DAG that the comparisons in '8 induce. The rest of the proof of Lemma 3.1 carries through

modulo the first equality in (3.2), which no longer holds as the sets '8 may overlap. However,

the equality can be replaced by the inequality ≥, which does hold and is sufficient for the

argument. This means that we can replace D(Π) in the statement of the Sensitivity Lemma by

its nondeterministic variant N(Π).

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 16

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

4 Sensitivity approach for general trees

In this section we analyze the average sensitivity of the problemΠ) of inversionminimization on

a tree) with a general shape. In Section 4.1 we show that the existence of a subtree containing

a fair fraction of the leaves implies high sensitivity. The lower bound on query complexity

for Π) in Theorem 1.5 then follows from the Sensitivity Lemma. In Section 4.3 we prove that

the average sensitivity measure is Lipschitz continuous. For the analysis, we make use of

the decomposition of the objective of inversion minimization on trees mentioned earlier. We

describe the decomposition in more detail in Section 4.2; it will be helpful in later parts of this

paper, as well.

4.1 Subtree-induced sensitivity

E

L()E)

L())

Figure 6: Subtree rooted at E

We first introduce a sensitivity bound for inversion

minimization based on the size of a subtree.

Lemma 4.1 (subtree-induced sensitivity). Consider a
tree) with = � |L())| leaves, and some node E in) with
ℓ � |L()E)| leaves. We have

B(Π)) ≥
ℓ (= − ℓ)

=
− 1.

Note that E is not necessarily a direct child of the

root, as shown in Figure 6.

We now prove Lemma 4.1. Let � be a ranking of

the leaves of), and let �min be a tree ordering that

minimizes the number of inversions with respect to �.

Claim 4.2. � is sensitive to the transposition � = (A, A + 1) if �min(�−1(A)) > �min(�−1(A + 1)).

Proof. If �min(�−1(A)) > �min(�−1(A + 1)), then Inv��(�min) = Inv�(�min) − 1. By definition,

Inv�(�min) = MinInv(), �), so this means that MinInv(), ��) < MinInv(), �), or that � is

sensitive to �. �

In the case of general trees, a tree ordering � that minimizes the number of inversions with

respect to � is difficult to find (see the discussion on NP-hardness in Section 10). Our strategy

is to find a lower bound on the number of A for which �(�−1(A)) > �(�−1(A + 1)) that applies
regardless of �.

Claim 4.3. For any ordering �, the number of A such that �(�−1(A)) > �(�−1(A + 1)) is at least one less
than the number of B such that �−1(B) ∈ L()E) and �−1(B + 1) ∉ L()E).

Proof. For all except at most one value of B (the maximum B for which �−1(B) ∈ L()E)), there exists
a minimal B′ > B such that �−1(B′) ∈ L()E). We claim that at least one value of A = B, . . . , B′ − 1

satisfies �(�−1(A)) > �(�−1(A + 1)). If not, then � would rank �−1(B), �−1(B + 1), . . . , �−1(B′) in

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 17

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

increasing order. Because � is a tree ordering, the leaves of L()E) must be mapped into a

contiguous range by �, as shown in Figure 7. However, we have �−1(B), �−1(B′) ∈ L()E) but
�−1(B + 1) ∉ L()E), which violates this property since � ranks a leaf outside L()E) between two

leaves inside L()E).
Because each value of A is found between consecutive pairs of values in L()E), the values of A

are distinct. �

2 7

E

1 5 4 6

8

3 9

(a) Leaves in �-order, labeled with �-ranks

�

�

L()E)

A1 A2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

B1 B′
1

B2 B′
2

(b) Corresponding plot of �, � for each leaf

Figure 7: � maps leaves of L()E) in a contiguous range.

Claim 4.4. Over a uniformly random �, the expected number of B such that �−1(B) ∈ L()E) and
�−1(B + 1) ∉ L()E) is ℓ (=−ℓ)= .

Proof. For B = 1, . . . , = − 1, the probability that �−1(B) ∈ L()E) is ℓ
= , and the probability that

�−1(B + 1) ∉ L()E) given that �−1(B) ∈ L()E) is =−ℓ
=−1

. Using linearity of expectation on the indicator

random variables for �−1(B) ∈ L()E) and �−1(B + 1) ∉ L()E), the expected number of B satisfying

this property is

(= − 1)
(
ℓ (= − ℓ)
=(= − 1)

)
=
ℓ (= − ℓ)

=
. �

Combining Claim 4.2, Claim 4.3, and Claim 4.4, we can conclude with Claim 4.1.

Bounded degree. We apply our analysis to the case of trees of degree :. Observe that for fixed

=, Lemma 4.1 is strongest when ℓ = =/2. Not every tree) has a subtree with exactly =/2 leaves,

but Lemma 4.1 still gives a useful bound for subtrees that do not contain too few or too many

leaves. In the case of trees of bounded degree, there always exists a subtree)E that contains a

fairly balanced fraction of the leaves. The following quantification is folklore, but we include a

proof for completeness.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 18

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

Fact 4.5. If) is a tree of degree : with = leaves, there exists a node E in) such that ℓ � |L()E)| =
 · =,
where 1

:+1
≤
 ≤ :

:+1
.

Proof. Let A be the root of) and construct a sequence E1 = A, E2 , E3 , . . . such that E8 is a child of

E8−1 that maximizes ℓ8 � |L()E8)|, with ties broken arbitrarily. Notice that {ℓ8} is a decreasing

sequence, and since) has degree :, ℓ8 ≤ :ℓ8+1 for all 8. We claim that some E8 in this sequence

satisfies the conditions of the claim. If not, then for some 8, ℓ8 > :
:+1
· = and ℓ8+1 < 1

:+1
· =, which

contradicts the fact that ℓ8 ≤ :ℓ8+1. �

By choosing a subtree satisfying Fact 4.5, we can apply Lemma 4.1 and conclude that

B(Π)) ≥ :
(:+1)2 · = − 1. The Sensitivity Lemma then gives the “in particular” part of Theorem 1.5.

4.2 Decomposition of the objective function

For use in this section as well as later parts of the paper, we now explain how the objective of

inversion minimization on trees decomposes. We introduce the notion of root inversion along

the way, and observe the effect of adjacent-rank transpositions on the decomposition.

The objective MinInv(), �) can be written as the sum of contributions from each of the

individual nodes. A node E contributes those inversions that reside in the subtree)E and go

through the root E of)E . We refer to them as the root inversions in)E .

Definition 4.6 (root inversions, RInv(·, ·, ·), MinRInv(·, ·)). Given a tree), a ranking � of the

leaves of), and an ordering � of), a root inversion of � with respect to � is an inversion (ℓ1 , ℓ2)
of � with respect to � for which the lowest common ancestor LCA(ℓ1 , ℓ2) is the root of). The
number of root inversions of � with respect to � in) is denoted by RInv(), �, �). The minimum

number of root inversions in) with respect to � is denoted

MinRInv(), �) � min

�
RInv(), �, �), (4.1)

where � ranges over all possible orderings of).

The only aspect of the ordering � of)E that affects RInv()E , �, �) is the relative order of the
children of E. For a node E with : children D1 , . . . , D: , by abusing notation and using � to also

denote the ranking of the children induced by the ordering of the tree, we have

RInv(), �, �) �
∑

1≤8< 9≤:
XInv�(!�(8) , !�(9)), (4.2)

where !8 is a short-hand for the leaf set !()D8). The contributions of the nodes can be optimized

independently:

MinInv(), �) =
∑
E

MinRInv()E , �), (4.3)

where E ranges over all nodes of) with degree deg)(E) > 1.

When we apply an adjacent-rank transposition � to a ranking �, at most one of terms in the

decomposition (4.3) can change, and the change is at most one unit. We capture this observation

for future reference as it will be helpful in several sensitivity analyses.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 19

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Proposition 4.7. Let � be a ranking of the leaf set - of a tree), � an adjacent-rank transposition, and ℓ1
and ℓ2 be the affected leaves. Then

MinRInv()E , �) = MinRInv()E , ��)

for all nodes E in) except possibly E = LCA(ℓ1 , ℓ2). Moreover, the difference is at most 1 in absolute
value.

Proof. Since the ranks of ℓ1 and ℓ2 under � are adjacent, for any leaf ℓ other than ℓ1 and ℓ2, the

relative order of ℓ under � is the same with respect to ℓ1 as it is with respect to ℓ2. This means

that the adjacent-rank transposition � does not affect whether a pair of leaves constitutes an

inversion unless that pair equals {ℓ1 , ℓ2}. As a result, the only term on the right-hand side of

(4.3) that can be affected by the transposition � is the one corresponding to the node E, and it

can change by at most one unit. �

4.3 Lipschitz continuity

E

E∗

ℓ1 ℓ2

-

.

Figure 8: Effects of changing)E∗

Average-case notions typically do not change much under

small changes to the input. This is indeed the case for the

average sensitivitywhen “small” is interpreted as affecting

few of the subtrees. The following lemma quantifies

the property and can be viewed as a form of Lipschitz

continuity.

Lemma 4.8. Given a tree), if a subtree)E∗ with ℓ leaves is
replaced with a tree)′E∗ with the same number of leaves, resulting
in the tree)′, then

|B(Π)) − B(Π)′)| ≤
ℓ (ℓ − 1)

=
.

Proof. We think of the leaf sets of) and)′ as being the

same set - = L()) = L()′), and fix a ranking � of -.

Consider an ordering of) and the ranking � of - that it induces. Outside of)′E∗ we can order)′

in the same way as). Irrespective of how we order)′ inside)′E∗ , the induced ranking �′ of -
agrees with � on all leaves in - except possibly those in . � L()E∗) = L()′E∗). Moreover, under

both � and �′, the set . gets mapped to the same contiguous interval. It follows that for all pairs

(ℓ1 , ℓ2) of distinct leaves of which at least one lies outside of ., (ℓ1 , ℓ2) constitutes an inversion of

� with respect to � if and only if (ℓ1 , ℓ2) constitutes an inversion of �′ with respect to �. For any
node E outside of)E∗ , root inversions in)E cannot involve leaves that are both in . � L()E∗). See
Figure 8 for an illustration. Thus, for such nodes E, RInv()E , �, �) = RInv()′E , �, �′). By taking

the minimum over all orderings, we conclude:

Claim 4.9. MinRInv()E , �) = MinRInv()′E , �) holds for every node E outside of)E∗ (or equivalently,
outside of)′E∗).

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 20

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

Consider a ranking � and an adjacent-rank transposition � = (A, A + 1). We claim that,

unless (ℓ1 , ℓ2) � (�−1(A), �−1(A + 1)) ∈ . × ., Π) is sensitive to � at � if and only if Π)′ is

sensitive to � at �. This is because by Proposition 4.7 the only term in the decomposition (4.3)

of MinInv(), �) that can be affected by � is the contribution MinRInv()E , �) for E = LCA(ℓ1 , ℓ2).
If at least one of ℓ1 or ℓ2 is not inside)E∗ , then E is not inside)E∗ either, so by Claim 4.9,

MinRInv()E , �) = MinRInv()′E , �). By the same token, MinRInv()E , ��) = MinRInv()′E , ��). It
follows that MinInv(), �) ≠ MinInv(), ��) if and only if MinInv()′, �) ≠ MinInv()′, ��).

We bound the expected number of values of A for which (�−1(A), �−1(A + 1)) ∈ . × . with

. � L()E)when � is chosen uniformly at random. For A ∈ [= − 1], the probability that �−1(A) ∈ .
is

ℓ
= , and the probability that �−1(A + 1) ∈ . given that �−1(A) ∈ . is

ℓ−1

=−1
. Using linearity of

expectation on the indicators, the expected number of said A is

(= − 1)
(
ℓ (ℓ − 1)
=(= − 1)

)
=
ℓ (ℓ − 1)

=
. �

Lemma 4.8 helps to extend query lower bounds based on average sensitivity to larger classes.

Suppose we have established a good lower bound on the sensitivity B(Π)) for a class � of trees.

Consider a class �′ obtained by taking a tree) in class � and replacing some of the subtrees)E
by other subtrees)′E on the same number of leaves. For this new class �′ the same lower bound

on the sensitivity of inversion minimization applies modulo the Lipschitz loss. For example,

Theorem 1.6 holds by virtue of a lower bound of the form B(Π)) ≥ (= − 1) − 2 log(=) for every
binary tree) with = leaves, where 2 is a universal constant. If we allow some of the subtrees of

) to be replaced by, say freely arrangeable ones on the same leaves, applying Lemma 4.8 for

each of the modified subtrees in sequence shows that the resulting new tree)′ has

B(Π)′) ≥ B(Π)) −

=(
= − 1)

=
≥ (= − 1) − 2 log(=) −
2(= − 1) = (1 −
2)(= − 1) − 2 log(=),

where
 denotes the fraction of leaves that belong to one of the replaced subtrees.

In fact, the notion of average sensitivity is robust with respect to the following, more refined

type of surgery. From any tree), let ' be a connected subset of) that includes no leaves. Let

)′ be the subtree rooted at the LCA of ' ()′ contains all of '), and let)′
1
, . . . ,)′

:
be the disjoint

maximal subtrees of)′ that are strictly below '. Let '′ be any tree that has : leaves. Replace)′

by '′, and then replace the leaves of '′ by)′
1
, . . . ,)′

:
.

The effect is that the region ' has been “reshaped" to look like '′, but the rest of) is

unaffected. The cost of such a surgery is at most (= − 1) times the probability that a uniformly

random pair of distinct leaves has their LCA in '. The bound follows from thinking of sensitivity

as (= − 1) times the probability that a uniformly random edge in the full permutahedron is

bichromatic. Provided the LCA of the affected leaves is outside ', then we get sensitivity before

the surgery if and only if we get it after the surgery. Surgeries can be iterated, and the costs

accumulate additively. In combination with our strong lower bound on the average sensitivity

of binary trees (Lemma 5.7), this allows for a robust sense in which “mostly-binary" trees have

high average sensitivity.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 21

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

5 Refined sensitivity approach for binary trees

In this section we show how to refine the sensitivity approach for lower bounds on the query

complexity of the problem Π) of inversion minimization on trees in the important special case

of binary trees). In Section 5.1 we first develop a criterion for when a particular ranking � is

sensitive to a particular adjacent-rank transposition �. We then analyze the root sensitivity of

binary trees in Section 5.2 and finally establish a strong lower bound on the average sensitivity

in Section 5.3. An application of the Sensitivity Lemma then yields Theorem 1.6.

5.1 Sensitivity criterion

Recall the decomposition of the objective function MinInv(), �) into contributions attributed to

each node E of degree deg)(E) > 1, as given by (4.3) in Section 4.2. In the case of binary trees,

the contribution of node E can be calculated simply as

MinRInv()E , �) = min(XInv�(!1 , !2),XInv�(!2 , !1)), (5.1)

where D1 and D2 denote the two children of E, and !1 � L()D1
) and !2 � L()D2

) their leaf sets.
This simplicity makes a precise analysis of sensitivity feasible, as we will see next.

For a given ranking � of) and a given adjacent-rank transposition �, we would like to figure

out the effect of � on the objectiveMinInv(), ·), in particular whenMinInv(), ��) = MinInv(), �).
Let ℓlo and ℓhi denote the two leaves that are affected by the transposition � on the ranking

�, where the subscript “lo” indicates the lower of the two leaves with respect to �, and “hi”

the higher of the two. Let E be the lowest common ancestor LCA(ℓlo , ℓhi). We use the same

subscripts “lo” and “hi” for the two children of E: Dlo denotes the child whose subtree contains

ℓlo, and Dhi its sibling. Similarly, we denote by !lo the leaf set of)D
lo
, and by !hi the leaf set of

)D
hi
. See Figure 9 for the subsequent analysis.

E

Dlo Dhi

ℓlo ℓhi

!lo !hi

!lo = {ℓlo} t �

� = �< t �>

�(�<) < �(ℓlo) < �(�>)

!hi � {ℓhi} t �

� = �< t �>

�(�<) < �(ℓhi) < �(�>)

Figure 9: Sensitivity analysis for binary trees

By Proposition 4.7, the situation before and after the application of � is as follows, where we

abbreviate G � XInv�(!lo , !hi) and H � XInv�(!hi , !lo).

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 22

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

ranking RInv()E , ·, �(ℓlo) < �(ℓhi)) RInv()E , ·, �(ℓhi) < �(ℓlo)) MinRInv()E , ·)
� G H min(G, H)
�� H − 1 G + 1 min(H − 1, G + 1)

The objective function remains the same iff min(G, H) = min(H − 1, G + 1), which happens iff

G − H = −1, or equivalently iff

DInv�(!lo , !hi) = DInv�({ℓlo}, {ℓhi}), (5.2)

where we introduce the following short-hand:

Definition 5.1 (cross inversion difference, DInv·(·, ·)). For a ranking � of a set -, and two subsets

�, � ⊆ -,

DInv�(�, �) � XInv�(�, �) − XInv�(�, �).

We can split !lo as !lo = {ℓlo} t � = �< t {ℓlo} t �>, where �< contains all leaves in !lo that

� ranks before ℓlo, and �> contains all the leaves in !lo that � ranks after ℓlo. We similarly split

!hi, as indicated in Figure 9. We have that

DInv�(!lo , !hi) = DInv�({ℓlo}, {ℓhi}) +DInv�({ℓlo}, �) +DInv�(�, {ℓhi}) +DInv�(�, �).

Since the ranks of ℓlo and ℓhi under � are adjacent, we have that DInv�({ℓlo}, �) = |�< | − |�> |
and DInv�(�, {ℓhi}) = |�> | − |�< |. Plugging everything into (5.2) we conclude:

Proposition 5.2. Let) be a binary tree, � a ranking of the leaves of), � an adjacent-rank transposition,
ℓlo and ℓhi the two leaves affected by � under � such that � ranks ℓlo before ℓhi. Referring to the notation
in Figure 9, we have that

MinInv(), �) = MinInv(), ��) ⇔ DInv�(!lo , !hi) = DInv�({ℓlo}, {ℓhi}) (5.3)

⇔ DInv�(�, �) = |�< | − |�> | + |�> | − |�< |. (5.4)

5.2 Root sensitivity

Given a ranking � and an adjacent-rank transposition �, we know by Proposition 4.7 that at

most one of the terms in the decomposition (4.3) of MinInv(), �) is affected by the transposition,

namely MinRInv()E , �) where E is the lowest common ancestor of the affected leaves ℓlo and ℓhi.

It follows that we can write the average sensitivity of Π) � MinInv(), ·) as the following convex

combination:

B(Π)) = (= − 1) · ℙ[MinInv(), �) ≠ MinInv(), ��)]
= (= − 1)

∑
E

ℙ[E = LCA(ℓlo , ℓhi)]ℙ[MinRInv()E , �) ≠ MinRInv()E , ��) | E = LCA(ℓlo , ℓhi)],

(5.5)

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 23

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

where the probability is over a uniformly random choice of the ranking � and the adjacent-rank

transposition �, and ℓlo and ℓhi denote the affected leaves. The conditional probability on the

right-hand side of (5.5) only depends on the subtree)E . The ranking � of all leaves induces a

ranking �′ of the leaves of)E that is uniform under the conditioning. Similarly, the adjacent-rank

transposition � for � induces an adjacent-rank transposition �′ for �′; the distribution of �′ under
the conditioning is independent of �′ and uniform among all adjacent-rank transpositions such

that the affected leaves live in subtrees of different children of E. Thus, the probability on the

right-hand side of (5.5) coincides with the following notion for the subtree)E .

Definition 5.3 (root sensitivity). Let) be a tree. The root sensitivity of) is the probability that

MinRInv()E , �) ≠ MinRInv()E , ��)

when � is a uniform random ranking of L()), and � a uniform random adjacent transposition

with the condition that the affected leaves are in subtrees of different children of the root of).

Note that the only nodes E that need to be considered in the sum on the right-hand side of

(5.5) are those that can appear as the lowest common ancestor of two leaves, and such that)E is

not freely arrangeable. In the case of binary trees, this means that we only need to consider

nodes E of degree 2 such that)E contains more than 2 leaves. In this section we prove a strong

lower bound on the root sensitivity of such trees)E .

Consider the binary tree) with root E in Figure 9. The distribution underlying Definition 5.3

can be generated as follows: Pick a leaf on each side of the root E uniformly at random, and let �
be a ranking of the leaves of) that is uniformly random on the condition that the selected leaves

receive adjacent ranks; � then is the adjacent-rank transposition that swaps the two selected

leaves. The root sensitivity of) is the complement of the probability that the right-hand side

of (5.4) holds under this distribution. Let us analyze the left-hand side of (5.4) further. As

� = �< t �> and � = �< t �>, we have that

DInv�(�, �) = DInv�(�< , �<) +DInv�(�< , �>) +DInv�(�> , �<) +DInv�(�> , �>).

By the defining properties of the sets involved (see Figure 9), we know that DInv�(�< , �>) =
−0< 1> and DInv�(�> , �<) = 0> 1<, where 0< � |�< |, 0> � |�> |, 1< � |�< |, and 1> � |�> |. Thus,
we can rewrite criterion (5.4) as:

DInv�(�< , �<) +DInv�(�> , �>) = 0< 1> − 0> 1< + 0< − 0> + 1> − 1< . (5.6)

A critical observation that helps us to bound the probability of (5.6) is that, conditioned on all

four values 0· and 1·, the right-hand side of (5.6) is fixed, but the left-hand side still contains a

lot of randomness. In fact, under the conditioning stated, the ranking that � induces on �< t �<
is still distributed uniformly at random, the same holds for the ranking that � induces on

�> t�>, and both distributions are independent. This means that, under the same conditioning,

the left-hand side of (5.6) has the same distribution as the sum XInv0< ,1< +XInv0> ,1> of two

independent random variables of the following type:

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 24

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

Definition 5.4 (cross inversion distribution, XInv·,·). For nonnegative integers 0 and 1, XInv0,1

denotes the random variable XInv(�, �) that counts the number of cross inversions from � to �,

where � is an array of length 0, � an array of length 1, and the concatenation �� is a uniformly

random permutation of [0 + 1].

In Section 9 we establish the following upper bound on the probability that the number of

cross inversions takes on any specific value.

Lemma 5.5. There exists a constant � such that for all integers 0, 1 ≥ 1 and 0 ≤ : ≤ 01,

ℙ[XInv0,1 = :] ≤
�√

01(0 + 1)
. (5.7)

Using Lemma 5.5 we can establish an upper bound of the same form as the right-hand side

of (5.7) for the probability that (5.6) holds: For some constant �′

ℙ[XInv0< ,1< +XInv0> ,1> = 0< 1> − 0> 1< + 0< − 0> + 1> − 1<] ≤
�′√

01(0 + 1)
, (5.8)

where 0 � 0< + 0> ≥ 1 and 1 � 1< + 1> ≥ 1. We consider several cases based on the relative

sizes of 0< vs 0>, and 1< vs 1>.

(i) In case both 0< ≥ �0 and 1< ≥ �1, the bound (5.8) follows from (5.7) as long as �′ ≥ �/�3/2
.

(ii) By switching the order in (i), the same holds true in case both 0> ≥ �0 and 1> ≥ �1.

(iii) In case 0> ≤ �0 and 1< ≤ �1, the left-hand side of (5.6) is at most 2�01, whereas the

right-hand side is at least

(1 − �)201 − �201 + (1 − �)0 − �0 + (1 − �)1 − �1 = (1 − 2�)(01 + 0 + 1).

As long as 2� ≤ 1 − 2�, or equivalently, � ≤ 1/4, this case cannot occur.

(iv) By switching the roles of � and � in (iii), the same holds true in case 1> ≤ �1 and 0< ≤ �0.

As long as � ≤ 1/2, it holds that either 0< ≥ �0 or 0> ≥ �0, and either 1< ≥ �1 or 1> ≥ �1.
Distributing the “and” over the “or”, we obtain the four cases we considered, which are therefore

exhaustive. We conclude that (5.8) holds for �′ = 4
3/2� whenever 0 � |�| ≥ 1 and 1 � |�| ≥ 1.

In the case where 0 = 0 and 1 ≥ 1, the right-hand side of (5.4) vanishes, as do |�< | and
|�> |, so (5.4) holds if and only if |�< | = |�> |, or equivalently, the leaf ℓhi is ranked exactly in the

middle of the leaf set !hi. As the ranking � is chosen uniformly at random, this happens with

probability 1/(1 + 1) where 1 � |�| = |!hi | − 1. The case where 0 ≥ 1 and 1 = 0 is symmetric.

The remaining case, 0 = 1 = 0, is one we do not need to consider as the tree) then only has two

leaves. In all other cases we obtain a strong upper bound on the probability that (5.4) holds, and

by complementation a strong lower bound on the root sensitivity. We capture the lower bound

in the following single expression that holds for all cases under consideration.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 25

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Lemma 5.6. There exists a constant 2 such that for every binary tree) with at leaves 3 leaves and a root
of degree 2, the root sensitivity of) is at least

1 − 2√
=1=2(=1 + =2)

, (5.9)

where =1 and =2 denote the number of leaves in the subtrees rooted by the two children of the root.

5.3 Average sensitivity

We are now ready to establish that, except for trivial cases, the average sensitivity of a binary

tree is close to maximal. The trivial cases are those where the tree has at most two leaves, in

which case the sensitivity is zero.

Lemma 5.7. The average sensitivity of Π) for binary trees) with = ≥ 2 leaves is = − $(1).

Proof. We use the expression (5.5) for the average sensitivity of Π) , where E ranges over all

nodes of degree 2 such that)E contains as least two leaves. Consider a node E of degree 2 such

that)E contains =E,1 leaves one one side and =E,2 leaves on the other side, where =E,1 + =E,2 ≥ 3.

If we choose the ranking � and the adjacent-rank transposition � uniformly at random, each of

the

(=
2

)
pairs of leaves are equally likely to be the affected pair. As there are =E,1 · =E,2 choices

that result in E as their lowest common ancestor, we have that ℙ[E = LCA(ℓlo , ℓhi)] = 2=E,1=E,2
=(=−1) .

Combining this with the root sensitivity lower bound given by (5.9), we have that

B(Π)) ≥ (= − 1)
∑
E

2=E,1=E,2

=(= − 1) ·
(
1 − 2√

=E,1=E,2(=E,1 + =E,2)

)
= (= − 1) − 22

=

∑
E

√
=E,1=E,2

=E,1 + =E,2
.

The following claim then completes the proof. �

Claim 5.8. There is a constant 2′ such that for all binary trees) with = leaves∑
E

√
=E,1=E,2

=E,1 + =E,2
≤ 2′=, (5.10)

where the sum ranges over all nodes E of degree 2 such that)E contains at least 3 leaves.

Proof of Claim 5.8. We use structural induction to prove a somewhat stronger claim, namely that∑
E

√
=E,1=E,2

=E,1 + =E,2
≤ 2′= − 3′

√
= (5.11)

for some constants 2′ and 3′ to be determined. As the base case we consider binary trees) with

at most two leaves. In this case, the left-hand side of (5.11) is zero and the right-hand side is

non-negative provided 2′ ≥ 3′, so (5.11) holds.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 26

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

For the inductive step, the case where the root of) has degree 1 immediately follows

from the inductive hypothesis for the subtree)D rooted by the child D of the root of). The

remaining case is where the root of) has degree 2. Let D1 and D2 be the two children for the root,

=1 = |L()D1
)|, and =2 = |L()D2

)|. The sum on the left-hand side of (5.11) has three contributions:√
=1=2

=1+=2

from the root, and the contributions from)D1
and)D2

, to which we can individually

apply the inductive hypothesis. This gives us an upper bound of√
=1=2

=1 + =2

+ (2′=1 − 3′
√
=1) + (2′=2 − 3′

√
=2) =

√
=1=2

=1 + =2

+ 2′(=1 + =2) − 3′(
√
=1 +
√
=2),

which we want to upper bound by

2′= − 3′
√
= = 2′(=1 + =2) − 3′

√
=1 + =2.

Writing =1 =
= for some
 ∈ [0, 1] and rearranging terms, the upper bound holds if and only if√

(1 −
) ≤ 3′(

√

 +
√

1 −
 − 1).

We claim that the upper bound holds for 3′ = (
√

2 + 1)/2. Let

�(
) � 3′(
√

 +
√

1 −
 − 1) −
√

(1 −
).

It suffices to show that �(
) ≥ 0. Since � is continuous on [0, 1], it attains a minimum on [0, 1].
On (0, 1), � is differentiable. It can be verified that �′ has a unique zero in (0, 1/2), which needs

to be a maximum as � is increasing at
 = 0. By the symmetry �(
) = �(1 −
), it follows

that the minimum of � on [0, 1] is attained at the midpoint
 = 1/2 or at one of the endpoint

 = 0 or
 = 1. At all three points �(
) = 0. We conclude that (5.11) holds for any constants

3′ ≥ (
√

2 + 1)/2 and 2′ ≥ 3′. �

6 Sensitivity approach for bounded error

In this section, we apply the sensitivity approach to obtain lower bounds on the query complexity

of problems in the comparison-query model against randomized algorithms with bounded error.

We derive a general result that query lower bounds against deterministic algorithms that are

based on the Sensitivity Lemma also hold against bounded-error randomized algorithms with a

small loss in strength. The approach works particularly well when we have linear lower bounds

on the average sensitivity, in which case there is only a constant-factor loss in the strength of

the query lower bound. Among others, this applies to the Ω(= log =) query lower bound for

inversion minimization on trees of bounded degree.

Our approach is based on Yao’s minimax principle [29], which lower bounds worst-case

complexity against randomized algorithms with bounded error by average-case complexity

against deterministic algorithms with bounded distributional error. We view a deterministic

algorithm with small distributional error for a problem Π as an exact deterministic algorithm

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 27

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

for a slightly modified problemΠ′. The idea is to then apply the sensitivity approach toΠ′, and
capitalize on the closeness of the average sensitivities of Π and Π′ to obtain a lower bound in

terms of the sensitivity ofΠ. By using the Sensitivity Lemma as a black box, the approach yields

a lower bound on the query complexity of bounded-error algorithms that is worst-case with

respect to the input and with respect to the randomness, i. e., the lower bound holds for some

input and some computation path on that input. By delving into the proof of the Sensitivity

Lemma, we are able to obtain a lower bound that is worst-case with respect to the input but

average-case with respect to the randomness, i. e., the lower bound holds for the expected

number of queries on some input.1

We first define the notions of randomized complexity and distributional complexity.

Definition 6.1 (randomized query complexity, RQ·(·), and distributional query complexity,

DistQ·(·, ·)). Let Π be a problem in the comparison-query model and � ∈ [0, 1].
A randomized algorithm ' for Π is said to have error � if on every input �, the algorithm

outputs Π(�)with probability at least 1 − �. The query complexity of ' is the maximum, over

all inputs �, of the expected number of queries that ' makes on input �. The �-error randomized
query complexity of Π, denoted RQ�(Π), is the minimum query complexity of ' over all �-error
randomized algorithms ' for Π.

LetD be a probability distribution on the inputs �. A deterministic algorithm � for Π has

error � with respect toD if the probability that �(�) = Π(�) is at least 1 − � where the input � is

chosen according toD. The query complexity of � with respect toD is the expected number of

queries that �makes on input �when � is chosen according toD. The �-error distributional query
complexity of Π with respect toD, denoted DistQ�(Π,D), is the minimum query complexity of

� with respect toD over all deterministic algorithms � for Π that have error � with respect to

D.

The relationship between randomized complexity and distributional complexity is described

by Yao’s principle.

Lemma 6.2 (Yao’s minimax principle [29]). Let Π be a problem in the comparison-query model,
� ∈ [0, 1/2], andD a distribution on the inputs �.

RQ�(Π) ≥
1

2

DistQ
2�(Π,D). (6.1)

We now prove lower bounds on the distributional query complexity, and thus on randomized

query complexity, of comparison-query problems Π based on average sensitivity bounds. For

these bounds, we always setD to be the uniform distribution, the distribution underlying the

notion of average sensitivity.

We start by studying average-case query complexity, i. e., zero-error distributional query

complexity, and its relationship to the average sensitivity. We follow a strategy similar to the

1In fact, the approach yields a lower bound that is average-case with respect to the input (chosen uniformly at

random) as well as the randomness. This follows because the proof of Yao’s minimax principle allows us to replace

the left-hand side of (6.1) by the average of the expected number of queries with respect to the distributionD, which

we pick to be uniform in our application of the principle.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 28

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

one in the proof of the Sensitivity Lemma. Whereas a bound on deterministic complexity Q

follows purely from the number of execution traces D, here, the execution traces are weighted

by their depth and their probability of occurring.

Recall that , in the statement of the Strong Sensitivity Lemma denotes any convex function

, : [1,∞) → ℝ with ,(G) = G! for G ∈ [=]; for deriving the Sensitivity Lemma from the Strong

Sensitivity Lemma we also need , to be nondecreasing. One such function is ,(G) = Γ(G + 1). To
prove a lower bound on the zero-error distributional complexity, we need the function , to be

not only convex, but log-convex, i. e., log
2
,(G) needs to be convex. The function ,(G) = Γ(G + 1)

satisfies this constraint as well.

Proposition 6.3. Let Π be a problem in the comparison-query model with = items, D the uniform
distribution on the inputs �, and , : [1,∞) → ℝ a nondecreasing log-convex function with ,(G) = G!

for G ∈ [=].
DistQ

0
(Π,D) ≥ log

2
(,(B(Π) + 1)/=)

Proof. Let : be the number of distinct execution traces of a deterministic algorithm � for Π, and

let '1 , . . . , ': denote the corresponding sets of rankings. Interpreting � as a binary decision

tree, let 3('8) be the depth of the execution trace corresponding to '8 . By Kraft’s inequality,

:∑
8=1

2
−3('8) ≤ 1.

Let 5 (G) = 1

=

,(G+1)
=!

and define the weight function F(�) = 5 (deg
�
(�)), where � refers to the

notation of the Strong Sensitivity Lemma: � denotes the subgraph of the full permutahedron

that only consists of the bichromatic edges when the vertices are colored with their execution

trace under �. By Claim 3.3, the sum of the weights of all rankings � in '8 is at most 1. Therefore,∑
�

2
−3(�)F(�) ≤ 1.

Dividing both sides by =! and taking the logarithm of both sides, we get that

log
2
E

[
2
−3(�)F(�)

]
≤ log

2
(1/=!), (6.2)

where the expectation is with respect to a uniform distribution over the inputs �. By Jensen’s

inequality, since log is concave, we get

log
2
E

[
2
−3(�)F(�)

]
≥ E

[
log

2

(
2
−3(�)F(�)

)]
= E[−3(�)] + E[log

2
F(�)],

which, in combination with (6.2), implies

E[log
2
F(�)] ≤ E[3(�)] + log

2
(1/=!).

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 29

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Note that since , is log-convex, so is 5 . By applying Jensen’s inequality again,

E[log
2
F(�)] = E[log

2
5 (deg

�
(�))] ≥ log

2
5 (E[deg

�
(�)]),

implying

log
2

(
1

=
·
,(E[deg

�
(�)] + 1)

=!

)
≤ E[3(�)] + log

2
(1/=!),

or equivalently,

E[3(�)] ≥ log
2
(,(E[deg

�
(�)] + 1)/=).

The result follows since � is an arbitrary deterministic algorithm forΠ, E[3(�)] equals the query
complexity of �with respect to the uniform distributionD, E[deg

�
(�)] ≥ E[deg

�(Π)(�)] = B(Π),
and , is nondecreasing. �

Proposition 6.3 allows us to prove a lower bound on the �-error distributional query

complexity of Π with respect to the uniform distribution. In order to do so, we view a

deterministic algorithm with distributional error � for Π as an exact deterministic algorithm for

a modified problem Π′, apply Proposition 6.3, and lower bound the sensitivity of Π′ in terms of

the sensitivity of Π.

Proposition 6.4. Let Π be a problem in the comparison-query model with = items, D the uniform
distribution on the inputs �, � ∈ [0, 1], and , : [1,∞) → ℝ a nondecreasing log-convex function with
,(G) = G! for G ∈ [=].

DistQ�(Π,D) ≥ log
2

(
,(B(Π) + 1 − 2(= − 1)�)

=

)
(6.3)

Proof. Consider any algorithm � with error � for Π, or in other words, ℙ[�(�) ≠ Π(�)] ≤ �. Let
Π� be the problem of determining the output of �. We prove that

B(Π�) ≥ B(Π) − 2(= − 1)�,

which implies the desired result by Proposition 6.3, since � is a deterministic algorithm for Π�

and , is nondecreasing.

Let � denote the full permutahedron graph for = items. We use the fact that B(Π) =
(= − 1) · ℙ4∈�[4 ∈ �(Π)], and similarly, B(Π�) = (= − 1) · ℙ4∈�[4 ∈ �(Π�)], where all the

underlying distributions are uniform. Suppose the endpoints of 4 are �1 and �2. Note that if

4 ∈ � is picked uniformly at random, then the marginal distributions of both �1 and �2 are also

uniform. If �(�1) = Π(�1), �(�2) = Π(�2), and 4 ∈ �(Π�), then 4 ∈ �(Π), as well. By a union

bound, the probability that �(�1) ≠ Π(�1) or �(�2) ≠ Π(�2) is at most 2�.

ℙ4∈�[4 ∈ �(Π�)] ≥ ℙ4∈�[4 ∈ �(Π)] − ℙ4∈�[�(�1) ≠ Π(�1) or �(�2) ≠ Π(�2)]
≥ ℙ4∈�[4 ∈ �(Π)] − 2�.

Multiplying both sides by = − 1 gives B(Π�) ≥ B(Π) − 2(= − 1)�. �

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 30

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

Since B(Π) ≤ = − 1, Proposition 6.4 only yields nontrivial lower bounds for small �. In order

to establish lower bounds for the standard � = 1/3, we first reduce the error using standard

techniques. Doing so such that the argument of , on the right-hand side of (6.3) remains

Ω(B(Π)), and picking ,(G) = Γ(G + 1), we conclude:

Lemma 6.5 (Bounded-Error Sensitivity Lemma). For any problem Π in the comparison-query model
with = items,

RQ
1/3(Π) = Ω

(
B log B

log(2=/B)

)
,

where B � B(Π).

Proof. By taking the majority vote of multiple independent runs and a standard analysis, e. g.,

based on Chernoff bounds, we have that RQ�(Π) = $(log(1/�))RQ
1/3(Π) for any � ≤ 1/3.

Combining this with Lemma 6.2 and Proposition 6.4, we have:

RQ
1/3(Π) = Ω

(
RQ�(Π)
log(1/�)

)
= Ω

(
DistQ

2�(Π)
log(1/�)

)
= Ω

(
log(,(B + 1 − 4(= − 1)�)/=)

log(1/�)

)
.

Setting � such that 4=� = B/2 yields

RQ
1/3(Π) = Ω

(
log(,(B/2 + 1)/=)

log(8=/B)

)
.

Picking ,(G) = Γ(G + 1) and using the fact that Γ(G) ≥
√

2�G
(
G
e

)G
, we obtain

RQ
1/3(Π) = Ω

((B/2) log(B/(2e)) − log =

log(8=/B)

)
= Ω

(
B log B

log(2=/B)

)
,

where the simplification can be verified by considering the cases of large B (say B ≥
√
=) and

small B separately. �

We can apply Lemma 6.5 to the sensitivity lower bounds of Lemma 4.1 and produce

randomized lower bounds for inversion minimization on bounded-degree trees. Using Fact 4.5

we obtain:

Theorem 6.6 (lower bound against bounded-error for inversion minimization on trees). Let)
be a tree with deg()) ≤ :. The query complexity of Π) for bounded-error randomized algorithms is
Ω(= log(=/:)

: log(:)).

7 Connectivity Lemma

In this section we establish Lemma 1.16 and use it to present some of the known lower bounds

in a unified framework. We actually prove the following somewhat stronger result.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 31

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Lemma 7.1 (Strong Connectivity Lemma). Consider an algorithm � in the comparison-based model,
color each vertex of the permutahedron with its execution trace under �, and let � denote the subgraph
with the same vertex set but only containing the monochromatic edges. The number of distinct execution
traces of � equals the number of connected components of �.

The Connectivity Lemma follows from Lemma 7.1 because the coloring with execution

traces of an algorithm � for Π is a refinement of the coloring with Π. Note that the counterpart

of Lemma 7.1 in the Boolean setting is trivial. This is because an execution trace in the Boolean

setting is specified by values for a subset of the input bits, so the set of inputs that follow a

particular execution trace form a subcube of the hypercube, the Boolean counterpart of the

permutahedron. Subcubes are trivially connected inside the hypercube. In the comparison-

query model, the sets of inputs that follow a particular execution trace can be more complicated,

and their connectedness is no longer trivial but still holds.

Proof of Lemma 7.1. Two rankings �1 and �2 that have distinct execution traces under � cannot

be connected because any path between them needs to contain at least one bichromatic edge.

For the remainder of the proof, we consider two rankings �1 and �2 that have the same execution

trace under �, and construct a path from �1 to �2 in �.

If �1 = �2, we do not need to make any move and use an empty path.

Otherwise, there exists a rank A < = such that �1 and �2 agree on ranks less than A and

disagree on rank A. We have the following situation, where the item HA with rank A under �2,

has rank B > A under �1.

rank 1 · · · A − 1 A · · · B − 1 B · · · =

�−1

1
G1 · · · GA−1 GA · · · GB−1 GB = HA · · ·
= = = ≠

�−1

2
H1 · · · HA−1 HA · · · · · ·

Considering ranking �1, we have that �1(GB−1) = B − 1 < B = �1(GB). Considering ranking

�2, since GB−1 differs from H8 = G8 for every 8 ∈ [A − 1] and also differs from HA , we have that

�2(GB−1) > A = �2(HA) = �2(GB). Thus, the relative ranks of GB−1 and GB under �1 and �2 differ. As

�1 and �2 have the same execution trace, this means that the algorithm does not compare GB−1

and GB on either input, and on �1 in particular. Let �′
1
be the ranking obtained from ranking �1

by applying the adjacent-rank transposition � = (B − 1, B). Since the algorithm does not compare

the affected items, the execution trace for �′
1
and �1 are the same, so the edge from �′

1
to �1 is

monochromatic and in �. We use this edge as the first on the path from �1 to �2 in �. What

remains is to find a path from �′
1
to �2 in �. The situation is the same as the one depicted above

but with A increased by one in case B = A + 1, and with the same A and B decreased by one,

otherwise. The proof then follows by induction on the ordered pair (A, = − B). �

Remark 7.2. Suppose we allow an algorithm � to have multiple valid execution traces on a

given input �, and let ' denote the set of rankings on which a particular execution trace is valid.

The construction in the proof of Lemma 7.1 yields a path in the permutahedron between any

two rankings in ' such that the path entirely stays within '. This means that we can replace

D(Π) in the statement of the Connectivity Lemma by its nondeterministic variant N(Π).

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 32

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

The Connectivity Lemma captures all the prior lower bounds stated in Section 2 except the

elementary adversary argument (which is also based on connectivity considerations, but in

an undirected graph other than �, namely (-, �) where � denotes the queries the algorithm

makes on a given input ranking �). It captures the information-theoretic lower bound because

input rankings with different outputs cannot belong to the same connected component of �.

We already explained in Section 1 how the Connectivity Lemma shows that counting inversions

and inversion parity amount to sorting, and require at least log(=!) queries. We now illustrate

its use for a classical problem that is easier than sorting, namely, median finding.

Let Π denote the selection problem with rank A = d=/2e. For any ranking, the adjacent-rank

transpositions � that change the item with rank A are the two that involve rank A: � = (A − 1, A)
and � = (A, A + 1). Those transpositions are the ones that correspond to missing edges in the

permutahedron graph �(Π). As a result, for any two rankings, there exists a path between them

in �(Π) if and only if they have the same median as well as the same set of items with rank less

than A (and also the same set of items with rank greater than A). As there are = possibilities

for the median and, for each median,

(=−1

A−1

)
possibilities for the set of items that have rank

less than A, �(Π) has = ·
(=−1

A−1

)
connected components. It follows that any algorithm for Π has

at least = ·
(=−1

A−1

)
= Ω(

√
= · 2=) distinct execution paths, and therefore needs to make at least

= + 1

2
log(=) − $(1) queries.

As a side note, this example clarifies a subtlety in the equivalence between ordinary

selection and the instantiation of partial order production that is considered equivalent to

selection. Whereas selection of rank A ordinarily requires outputting only the item of rank A, the

instantiation of partial order production additionally requires partitioning the remaining items

according to whether their ranks are less than or greater than A. The above analysis implies

that it is impossible for the algorithm to know the item of rank A without also knowing how

to partition the remaining items into those of rank less than and greater than A. It follows

that, in the comparison-based model, ordinary selection and the instantiation of partial order

production are equivalent.

8 Connectivity approach

This section covers the connectivity approach for obtaining query lower bounds in the

comparison-query model. Our main focus is the problem Π) of inversion minimization

on a fixed tree), for which we derive very strong query lower bounds in the case of the special

types of trees in Theorem 1.8. Some parts of the analysis carry through for a broader class of

problemsΠ, namely those that satisfy a certain partition property. We first develop the property

and apply the Connectivity Lemma to a general problem Π with the property. We then present

sufficient conditions for the problem Π) to have the property and perform a detailed analysis,

leading to Theorem 1.8. Finally, we apply the same ideas to the problem of counting cross

inversions, for which we obtain the query lower bound of Theorem 1.9, as well as to the closely

related problem of inversion minimization on the Mann–Whitney trees of Figure 2.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 33

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

8.1 Partition property

In order to obtain good lower bounds on D(Π) using the Connectivity Lemma, it is sufficient to

find good upper bounds on the size of the connected components of a typical vertex in �(Π).
For the problem Π) , we can assume without loss of generality that) has no internal nodes

of degree 1, i. e., no nodes with exactly one child. With that assumption, Π) is insensitive to

any adjacent-rank transposition � at a ranking � for which the affected leaves are siblings in).

Thus, the corresponding edges from the permutahedron are always present in �(Π)). From the

perspective of ensuring small connected components in �(Π)), the ideal situation would be if

there were no other edges in �(Π)). That is to say, Π) is sensitive at � to every adjacent-rank

transposition � except when the affected leaves are siblings. We will investigate conditions on)

that guarantee this situation in the next two subsections. In this subsection, we analyze the size

of the connected components of �(Π)) when) is of the desired type, and use it obtain a query

lower bounds via the Connectivity Lemma. Our analysis applies more generally to any problem

Πwith the following property.

Definition 8.1 (partition property). A computational problemΠ in the comparison-query model

on a set - of = items has the partition property if the set - can be partitioned into sets -8 such

that for any ranking � of - and adjacent-rank transposition � = (A, A + 1) with A ∈ [= − 1],
Π(�) = Π(��) if and only if �−1(A) and �−1(A + 1) belong to the same partition class -8 . If every

partition class -8 has size at most :, we say that Π has the partition property with class size at

most :.

In other words, a problem Π has the partition property if the underlying universe can be

partitioned in such a way that adjacent-rank transpositions that do not change the answer are

exactly those whose affected items fall within the same partition class. In the case of the problem

Π) , the partition classes -8 correspond to the leaf child sets LC(E) from Definition 1.7, where E

ranges over the leaf parents.

Let us investigate the size of the connected components of�(Π)whenΠ satisfies the partition

property. Consider a walk in �(Π). As the only steps we can take correspond to adjacent-rank

transpositions � that swap elements in the same partition class, the sets -8 remain invariant,

irrespective of the ranking � we start from. Depending on �, there may be more structure inside

each partition class -8 ; the set -8 may be broken up into smaller subsets that are each invariant.

For our analysis, we list the elements of each partition class in order of increasing rank under

�, and include an edge between elements that have successive ranks. We introduce the term

“successor graph" to capture this structure, viewed as a graph with the ranks as vertices.

Definition 8.2 (successor graph, ((·, ·)). Let Π be a computational problem in the comparison-

query model on a set - of = items, and � a ranking of -. The successor graph ofΠ on �, denoted
((Π, �), has vertex set [=] and contains all edges of the form (A, A + 1) with A ∈ [= − 1] such that

Π(�) = Π(��), where � denotes the adjacent-rank transposition (A, A + 1).

We have the following connection.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 34

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

Proposition 8.3. LetΠ be a computational problem in the comparison-query model on the set -, and let
� be a ranking of -. If Π has the partition property, then the connected component of � in �(Π) has size∏

9(= 9!), where the = 9’s denote the sizes of the connected components of ((Π, �).

Proof. The connected components of the successor graph ((Π, �) correspond to subsets of

the classes -8 that each remain invariant under walks in �(Π). Within each of the subsets,

independently for each subset, every possible ordering can be realized by such walks. This is

because for any adjacent-rank transposition �, the successor graphs ((Π, �) and ((Π, ��) are
the same, and every ordering can be realized by a sequence of swaps of adjacent elements. It

follows that the number of rankings that can be reached from � in �(Π) equals the product over
all connected components of ((Π, �) of the number of possible orderings of the elements in the

connected component. �

Figure 10 depicts an example for a problem of typeΠ) and a partition consisting of 4 classes,

namely the leaf child sets LC1 , LC2 , LC3 and LC4. The tree) and ranking � are represented in

Figure 10a. Figure 10b represents the part of the successor graph ((Π) , �) involving the leaf

child set LC3 and illustrates the subpartitioning into invariant subsets.

4 12 6 5 10

11 2 3 9 14 7 8

1 13

LC1 LC2

LC3

LC4

(a) Leaf child sets and leaf ranks under �

A 2 3 7 8 9 11 14

�(A)

(b) Inside leaf child set LC3

Figure 10: Connected component analysis

If each of the partition classes -8 has size at most :, then each of the connected components

of ((Π, �) has size = 9 ≤ :, irrespective of �. The maximum value that

∏
9(= 9!) can take under

the constraints

∑
9 = 9 = = and = 9 ≤ : is no more than (:!)=/: . By the Connectivity Lemma, we

conclude that D(Π) ≥ =!/(:!)=/: , and that the query complexity is at least log
2
(=!) −$(= log(:)).

We can do better by observing that, for a random ranking �, the number of adjacent-rank

transpositions � that do not jump from one partition class to another is not much larger than the

average size of the partition classes.

Lemma 8.4 (lower bound for problems with the partition property). Let Π be a computational
problem in the comparison-query model on a set of size =. If Π satisfies the partition property with class
size at most :, then then D(Π) ≥ =!/(2(:!)2).

Proof. For any rank A ∈ [= − 1], the probability that �−1(A) and �−1(A + 1) belong to the same

partition class equals

∑
8
|-8 |
=
|-8 |−1

=−1
, which is at most

:−1

=−1
provided each partition class -8 has size

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 35

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

at most :. It follows that the expected number of adjacent-rank transpositions � that do not

change partition class, is at most : − 1, so for a fraction at least half of the rankings � the number

is at most 2(: − 1).
The number of adjacent-rank transpositions � that do not change partition class for a given

ranking � equals the number of edges in the successor graph ((Π, �). In terms of the sizes = 9 ,

the number equals

∑
9(= 9 − 1). We are considering rankings � for which the sum is at most

2(: − 1). The maximum of

∏
9(= 9 !) under the constraints that

∑
9(= 9 − 1) ≤ 2(: − 1) and that each

individual = 9 ≤ :, is reached when two of the = 9 ’s equal : and the rest are 1. Thus, if each of the

partition classes -8 are of size at most :, for a fraction at least half of the rankings �, the size of
the connected component of � in �(Π) is at most (:!)2. It follows that the number of connected

components of �(Π) is at least =!/(2(:!)2). The Connectivity Lemma then yields the claimed

lower bound on D(Π). �

Lemma 8.4 yields a lower bound of log(=!) − $(: log(:)) on the query complexity of Π

whenever Π satisfies the partition property with class size at most :.

Next we turn to sufficient conditions on the tree) that guarantee the partition property for

Π) . For didactic reasons we first develop the conditions for binary trees, and then generalize

them to arbitrary trees.

8.2 Binary trees

In the case of binary trees), the sensitivity analysis of Section 5.1 leads to a simple sufficient

condition for the partition property to hold for Π) . Recall that we are assuming without loss of

generality that) has no internal nodes of degree 1, which in the case of binary trees is equivalent

to saying that the tree is full: Every internal node has the maximum degree of 2.

Consider criterion 5.3 in Proposition 5.2. The right-hand side is always −1. As for the

left-hand side, we know the following.

Fact 8.5. For all disjoint sets �, � ⊆ - and any ranking � of -, DInv�(�, �) = |�| · |�| mod 2.

Proof. As every pair in � × � constitutes a cross-inversion for either � to �, or � to �, we have

XInv�(�, �) + XInv�(�, �) = |�| · |�|. Thus,

DInv�(�, �) � XInv�(�, �) − XInv�(�, �)
= (XInv�(�, �) + XInv�(�, �)) − 2 XInv�(�, �)
= |�| · |�| − 2 XInv�(�, �). (8.1)

As XInv�(�, �) in an integer, the claim follows. �

Fact 8.5 implies that whenever at least one of the leaf sets !lo or !hi is of even cardinality,

then (5.3) fails to hold, and Π) is sensitive to the underlying � at �. Thus, we can guarantee that

Π) satisfies the partition property provided that for any two siblings D1 and D2 in) that are

not both leaves, at least one of |L()D1
)| or |L()D2

)| is even. We refer to the latter condition as the

product condition. In trees without nodes of degree 1, the product condition can be expressed

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 36

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

alternately in terms of the leaf child sets. We state and prove the result for arbitrary trees as it

will help us in the next subsection to generalize the analysis.

Proposition 8.6. Let) be a tree without nodes of degree 1. The following two conditions are equivalent:

(a) For any two siblings D1 and D2 that are not both leaves, at least one of |L()D1
)| or |L()D2

)| is even.

(b) At most one leaf child set is odd, and if there exists a node E∗ with an odd leaf child set LC(E∗), then
all ancestors of E∗ have an empty leaf child set.

In the case of binary trees, (b) can be simplified to: At most one leaf has a non-leaf sibling.

Proof. We establish the two directions of implication separately.

⇒: We argue the contrapositive. Suppose that at least two of the leaf child sets are odd. Start

with the root of) as the node E, and iterate the following: If E has a child D such that)D contains

at least two nodes with an odd leaf child set, replace E by such a child D. When the process

ends, one of the following situations applies:

• There are two distinct children D1 and D2 of E that are not leaves and each contain a single

node with an odd leaf child set. In this case both)D1
and)D2

contain an odd number of

leaves, violating (a).

• There exists a unique child D1 of E that is not a leaf and contains a single node with an odd

leaf child set, and E itself has an odd number of leaf children. In this case, setting D2 to

any one leaf child of E (which exists as their number is odd), leads to a violation of (a).

Next, suppose that there exists a unique node E∗ that has an odd leaf child set, and that an

ancestor E of E∗ has a leaf child D1. Setting D2 to the child of E that contains E∗ in its subtree,

yields a violation of (a) as)D2
contains an odd number of leaves.

⇐: If neither D1 nor D2 are leaves, the first condition of (b) guarantees that at most one of)D1
or

)D2
contains an odd number of leaves. If D1 is a leaf and D2 is not, then the second condition of

(b) implies that)D2
cannot contain a node with an odd leaf child set, and therefore has an even

number of leaves.

In the case of binary trees, the first condition of (b) implies the second one, which can

therefore be dropped from the equivalence statement. Moreover, for binary trees the first

condition of (b) can be expressed as: At most one leaf has a non-leaf sibling. �

By Proposition 8.6, in a binary tree the condition that at most one leaf has no sibling is

equivalent to the product condition, which implies the partition property of Π) , so the lower

bound of Lemma 8.4 applies. This establishes Theorem 1.8 in the case of binary trees.

As a side note, Fig. 11 shows the simplest example of a full binary tree) and a ranking � for

which there exists an adjacent-rank transposition � to which Π) is insensitive at � while the

affected leaves are not siblings. The tree has two leaves without siblings, namely 1 and 2. The

adjacent-rank transposition (3, 4) acts on nodes that are not siblings, but leaves the minimum

number of inversions at 4.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 37

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

1

3 6

2

4 5

Figure 11: Tree insensitive to non-sibling transposition

8.3 General trees

For general trees) the sensitivity analysis of Π) becomes more complicated than for binary

trees, and we do not know of a simple sensitivity criterion like Proposition 5.2, but we can

nevertheless extend the result for binary trees to arbitrary trees with similar constraints. For a

given ranking � of L()) and a given adjacent-rank transposition �, we would like to figure out

the effect of � on the objective MinInv(), ·), in particular when MinInv(), ��) = MinInv(), �).
Recall the decomposition (4.3) of MinInv(), ·) from Section 4.2. By Proposition 4.7 the only term

on the right-hand side of (4.3) that can be affected by the transposition � is

MinRInv()E , �) � min

�
RInv(), �, �)

corresponding to the node E that is the least common ancestor LCA(ℓlo , ℓhi) of the two leaves

ℓlo and ℓhi that are affected by � under �. In Section 5 we considered the two possible relative

orderings �1 and �2 of the children of E, and derived a criterion for when the lowest cost does

not change under �. More precisely, when

min(RInv(), �, �1),RInv(), �, �2)) = min(RInv(), ��, �1),RInv(), ��, �2)). (8.2)

There are two complications in generalizing this approach from binary to general trees.

• The expression (4.2) for RInv(), �, �) involves multiple terms instead of just one as in

(5.1). This complicates probabilistic analyses like the one we did in Section 5 because the

difference in cost of the two relative orderings of two children is also affected by parts of

the tree outside of their combined subtrees. The issue did not matter for the analysis in

Section 4. We will be able to manage it here, as well.

• There now are not just two but multiple possible orderings �, and it is not clear what

pairs (�1 , �2) we need to impose (8.2) on in order to guarantee that MinRInv()E , �) =
MinRInv()E , ��) but no more.

In Section 4 we circumvented the second issue by only considering sensitivities that decrease

the objective function, and establishing a lower bound on their occurrence independent of

the ordering �. Here we are also able to handle the second issue by shooting for a sufficient

condition for sensitivity rather than a criterion. We do so by requiring that for no pair of distinct

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 38

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

orderings �1 and �2, condition (8.2) holds (unless the two affected leaves are siblings). Similar

to the case of binary trees, we guarantee that (8.2) fails based on parity considerations given the

product condition.

For the analysis we again assume without loss of generality that) has no nodes of degree 1.

We use the same notation as in Section 5: Let ℓlo denote the affected leaf that is smaller with

respect to �, and ℓhi the other affected leaf. Let !8 denote the leaf set !8 � L()D8), where D1 , . . . , D:
are the children of E = LCA(ℓlo , ℓhi). We also write Dlo for the child of E that contains ℓlo in its

subtree, and !lo for the leaf set of the subtree rooted at Dlo, and define ℓhi, Dhi, and !hi similarly.

See Figure 12 for a sketch of the setting.

E

D1 · · · Dlo · · · · · · Dhi · · · D:

ℓlo ℓhi

:

Figure 12: Sensitivity for general trees

We slightly abuse notation and let � denote both the ordering of the entire tree) as well as

the ranking of the children of E. By the analysis of Section 5, we have that for two orderings �1

and �2 the situation (8.2) can only occur if �1(Dlo) < �1(Dhi), �2(Dlo) > �2(Dhi), and

RInv�()E , �, �1) − RInv�()E , �, �2) = −1 = DInv�({ℓlo}, {ℓhi}). (8.3)

For any two disjoint sets of leaves, (8.1) lets us write

XInv�(�, �) =
1

2

DInv�(�, �) +
1

2

|�| · |�|. (8.4)

Applying (8.4) to all the terms involved in (4.2), we have

RInv�()E , �, �) =
∑

1≤8< 9≤:
XInv�(!8 , !9) · I[�(8) < �(9)]

+
∑

1≤8< 9≤:
XInv�(! 9 , !8) · I[�(8) > �(9)]

=
1

2

∑
1≤8< 9≤:

(
DInv�(!8 , !9) · (−1)I[�(8>�(9)] + |!1 | · |!2 |

)
RInv�()E , �, �1) − RInv�()E , �, �2) =

∑
1≤8< 9≤:
�1(8)<�2(9)
�2(8)>�2(9)

DInv�(!8 , !9) +
∑

1≤8< 9≤:
�1(8)>�2(9)
�2(8)<�2(9)

DInv�(!8 , !9)

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 39

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

By combining the last equation with (8.3) and separating out the term for (8 , 9) = (lo, hi), we

obtain the following necessary condition for (8.2) to hold:

DInv�(!lo , !hi) −DInv�({ℓlo}, {ℓhi}) = −
∑

1≤8< 9≤:
�1(8)<�2(9)
�2(8)>�2(9)
(8 , 9)≠(lo,hi)

DInv�(!8 , !9) +
∑

1≤8< 9≤:
�1(8)>�2(9)
�2(8)<�2(9)

DInv�(!8 , !9). (8.5)

In order for Π) to have the partition property, it suffices to ensure that (8.5) fails whenever

Dlo and Dhi are not both leaves. By (8.1) each of the terms DInv�(!8 , !9) in (8.5) has the same

parity as |!8 | · |! 9 |. Since DInv�({ℓlo}, {ℓhi}) is odd, it follows that (8.5) fails whenever at most

one of the leaf sets !8 involved is odd, which is condition (a) in Proposition 8.6. Switching to the

equivalent condition (b) from Proposition 8.6 allows us to conclude via Lemma 8.4:

Theorem 8.7. Let) be a tree without nodes of degree 1 such that the leaf child sets have size at most :, at
most one of them is odd, and if there exists an odd one, say LC(E∗), then all ancestors of E∗ have empty leaf
child sets. Then D(Π)) ≥ =!/(2(:!)2).

Theorem 1.8 follows by taking the base-2 logarithm of the bound.

8.4 Counting cross inversions and evaluating the Mann–Whitney statistic

We now apply the connectivity approach that we captured in Proposition 8.3 to the problem

ΠXInv of computing the number of cross inversions between two disjoint sets � and � with

respect to a ranking � of - = � t �. Note that this problem is a refinement of evaluating the

Mann–Whitney statistic, or equivalently, of inversionminimization on the tree) of Figure 2: Any

algorithm that solves ΠXInv with @ queries, can be transformed into an algorithm for Π) with @

queries, namely by transforming the output H of the algorithm for ΠXInv to min(H, |�| · |�| − H).
Viewed in the contrapositive, a lower bound for ΠXInv is easier to obtain than one for Π) on the

tree) of Figure 2. We first establish a lower bound for ΠXInv and then see how it extends to Π) .

One can think of ΠXInv as inversion minimization on the Mann–Whitney tree without

allowing swapping the two children of the root. As a result, the problem ΠXInv is sensitive to

every adjacent-rank transposition between non-siblings, and therefore automatically satisfies

the partition property (with � and � being the partition classes), so Proposition 8.3 applies. In

contrast, the problem Π) of minimizing inversions on the Mann–Whitney tree may not have the

partition property. This is why analyzing ΠXInv is a bit simpler, and why we handle it first.

Let 0 � |�| and 1 � |�|. By the partition property, the average sensitivity of ΠXInv equals

201
0+1 , which via the Sensitivity Lemma yields a query lower bound of Ω(0 log(0)) for 0 ≤ 1. To
obtain the stronger lower bound of Ω((0 + 1) log(0)) we need a more detailed analysis of the

connectivity of the permutahedron graph �(ΠXInv).
For a given ranking �, let G1 , . . . , G0 be the elements of � listed in increasing order, and

similarly for H1 , . . . , H1 for the elements of �. We define <1 , . . . , <1+1 such that for each 8, <8 is

the number of elements of � between H8−1 and H8 . (Here, H0 and H1+1 serve as sentinels with

an infinitely low and infinitely high rank.) Similarly, we define =1 , . . . , =0+1 as the number

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 40

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

of elements in � between successive elements of �. The numbers <8 and =8 are the sizes of

the connected components of the successor graph ((ΠXInv , �) (possibly with some additional

zeroes). By Proposition 8.3, the connected component of � in �(ΠXInv) has size

(<1)! · · · (<1+1)!(=1)! · · · (=0+1)!. (8.6)

Depending on the values of <1 , . . . , <1+1 , =1 , . . . , =0+1, some connected components may be

much larger than others. We apply the Connectivity Lemma in a similar way as in Lemma 8.4

and only count the rankings � that are in small connected components, which are the rankings

for which <1 , . . . , <1+1 , =1 , . . . , =0+1 are bounded. Let <
∗
and =∗ be the minimum integers for

which

ℙ[<1 , . . . , <1+1 ≤ <∗] ≥
3

4

and ℙ[=1 , . . . , =0+1 ≤ =∗] ≥
3

4

.

By a union bound, the probability that both of these events hold is at least 1/2. In other words,

there are least (0 + 1)!/2 rankings � for which <1 , . . . , <1+1 ≤ <∗ and =1 , . . . , =0+1 ≤ =∗.

Proposition 8.8.

D(Π)) ≥
(0 + 1)!

2(<∗)!0/<∗(=∗)!1/=∗
. (8.7)

Proof. We consider the rankings for which <1 , . . . , <1+1 ≤ <∗ and =1 , . . . , =0+1 ≤ =∗. We first

argue the following upper bound on the size (8.6) of the connected component in �(ΠXInv) of
any such ranking �:

(<1)! · · · (<1+1)!(=1)! · · · (=0+1)! ≤ (<∗)0/<
∗(=∗)1/=∗ . (8.8)

For nonnegative integers =, =!
1/=

is increasing. This can be seen by noticing that log(=!
1/=) is the

average of log(1), . . . , log(=). As a result, for 8 ∈ [1 + 1], (<8)!1/<8 ≤ (<∗)!1/<∗ , or equivalently,
(<8)! ≤ (<∗)<8/<∗

. Using the fact that <1 + · · · + <1+1 = 0,

(<1)! · · · (<1+1)! ≤ (<∗)!(<1+···+<1+1
)/<∗ = (<∗)!0/<∗ .

We can apply similar reasoning to get (=1)! · · · (=0+1)! ≤ (=∗)!1/=
∗
. From this, we conclude that

the size of the connected components among the rankings under consideration is at most the

right-hand side of (8.8).

Since there are at least (0 + 1)!/2 of the rankings under consideration, we derive the stated

bound on D(Π)) by applying the Connectivity Lemma. �

Now, we find concrete bounds on <∗ and =∗.

Proposition 8.9.

max

(
1,

0

1 + 1

)
≤ <∗ ≤ 0 + 1

1
ln(4(1 + 1)).

Symmetrically,

max

(
1,

1

0 + 1

)
≤ =∗ ≤ 0 + 1

0
ln(4(0 + 1)).

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 41

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Proof. We first prove the upper bound on <∗. Let : be a positive integer. We compute the

probability, over an average ranking �, that<8 > : for a specific 8. Notice that there is a one-to-one

correspondence between the ranking � and the corresponding sequence of nonnegative integers

<1 , . . . , <1+1 such that <1 + · · · + <1+1 = 0, because the ranks of � can be uniquely recovered

as <1 + 1, <1 + <2 + 2, . . . , and the remaining ranks form �. By stars and bars, there are

(0+1
1

)
such sequences. Now, if <8 > :, then <8 − (: + 1) is an arbitrary nonnegative integer, and

<1 + · · · + (<8 − (: + 1)) + · · · + <1+1 = 0 − : − 1. By stars and bars, there are

(0+1−:−1

1

)
such

sequences. Therefore, the probability that <8 > : is
(0+1−:−1

1

)
/
(0+1
1

)
. Continuing,

ℙ[<8 > :] = (0 + 1 − : − 1) · · · (0 − :)
(0 + 1) · · · (0 + 1) ≤

(
0 + 1 − : − 1

0 + 1

)1
≤ exp

(
−1 · : + 1

0 + 1

)
,

where the last step uses the bound 1+ G ≤ exp(G). By a union bound and taking the complement,

ℙ[<1 , . . . , <1+1 ≤ :] ≥ 1 − (1 + 1) exp

(
−1 · : + 1

0 + 1

)
. (8.9)

If : is such that the right-hand side of (8.9) is at least 3/4, we know that <∗ ≤ :. Solving for :

yields the stated bound on <∗.
For the lower bounds, <∗ ≥ 1 because at least one of <1 , . . . , <1+1 is at least 1, and <

∗ ≥ 0
1+1

because <1 + · · · + <1+1 = 0, and <
∗
is greater than or equal to the average term in the sum. �

The first part of Theorem 1.9 now comes from taking the logarithm of D(ΠXInv) in Proposi-

tion 8.8 and using the bounds in Proposition 8.9.

Proof of the first part of Theorem 1.9. We mainly make use of the following approximation based

on Stirling’s formula.

ln(=!) =
(
= + 1

2

)
ln(=) − = + $(1). (8.10)

In order to estimate ln D(ΠXInv), we need to estimate ln((0 + 1)!) − 0
<∗ ln(<∗) − 1

=∗ ln(=∗). By (8.10),

ln((0 + 1)!) =
(
0 + 1 + 1

2

)
ln(0 + 1) − (0 + 1) + $(1) (8.11)

0

<∗
ln((<∗)!) =

(
0 + 0

2<∗

)
ln(<∗) − 0 + 0

<∗
$(1) (8.12)

1

=∗
ln((=∗)!) =

(
1 + 1

2=∗

)
ln(=∗) − 1 + 1

=∗
$(1) (8.13)

We can use the lower bounds in Proposition 8.9, namely that <∗ ≥ 1 and =∗ ≥ 1
0+1

, to simplify

the occurrences of <∗ and =∗ in the denominators of (8.12) and (8.13). Therefore,

ln D(ΠXInv) ≥ 0 ln

(
0 + 1
<∗

)
+ 1 ln

(
0 + 1
=∗

)
− 0

2

ln(<∗) − 0 + 1

2

ln(=∗) + 1

2

ln(0 + 1) − $(0)

= 0 ln

(
0 + 1

<∗
√
<∗=∗

)
+

(
1 + 1

2

)
ln

(
0 + 1
=∗

)
− $(0).

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 42

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

Using the upper bounds in Proposition 8.9, absorbing low-order terms, and using the condition

that 0 ≤ 1, we get

log D(ΠXInv) ≥ Ω
(
0 log

(
1
√
01

0 + 1

)
+ 1 log(0)

)
≥ Ω(0 log(

√
01/2) + 1 log(0)) = Ω((0 + 1) log(0)).

�

Evaluating the Mann–Whitney statistic. We now argue how the second part of Theorem 1.9

follows, i. e., that the lower bound of Ω((0 + 1) log(0)) holds for inversion minimization on the

Mann–Whitney tree) of Figure 2 with 0 ≤ 1. We do so by tweaking our lower bound argument

for ΠXInv to the setting of Π) .

How does the permutahedron graph for Π) relate to the one for ΠXInv? The problem Π) is

a coarsening of the problem ΠXInv: Output values H and 01 − H for ΠXInv are both mapped to

min(H, 01− H) underΠ) . This means that all edges present in �(ΠXInv) are also present in �(Π)),
but there may be more, and some of the connected components in �(ΠXInv) corresponding to

output value H, may be merged in �(Π))with some of the connected components of �(ΠXInv)
corresponding to output value 01 − H. However, by the reasoning behind Proposition 4.7, edges

in �(ΠXInv) can only go between rankings whose value under ΠXInv differ by at most one. This

means that the above merging of connected components can only happen if the difference

between H and 01 − H is 1, i. e., for the values b01/2c and d01/2e, and only if 01 is odd. In fact,

this is exactly the situation that we analyzed in Figure 9, where E coincides with the root of).

Ifwe ignore the rankingswith value b01/2c or d01/2e underΠXInv, our lower bound argument

for ΠXInv carries over verbatim to Π) , except that on the right-hand side of Proposition 8.8

the factor of
1

2
is replaced by

1

2
−, , where, represents the fraction of rankings with value

b01/2c or d01/2e under ΠXInv. Lemma 5.5 tells us that, ≤ 2�/
√
01(0 + 1), where � denotes

the constant from the lemma. Thus, we obtain a lower bound for D(Π)) that is a negligible

fraction smaller than the one for D(ΠXInv). Taking logarithms, we obtain the same lower bound

for the query complexity up to an additive term. In particular, we obtain a query lower bound

of Ω((0 + 1) log(0)) for Π) in case 0 ≤ 1. This is the second part of Theorem 1.9.

9 Cross-inversion distribution

In this section we prove the upper bound we need for the proof of Theorem 1.6 in Section 5.2,

namely Lemma 5.5. Recall that XInv0,1 denotes a random variable that counts the number of

cross inversions XInv(�, �) from � to �, where � is an array of length 0, � an array of length

1, and the concatenation �� is a random permutation of [0 + 1]. Lemma 5.5 states that for all

positive integers 0 and 1, XInv0,1 takes on no value with probability more than �/
√
01(0 + 1),

where � is a universal constant.

9.1 Approach

We establish Lemma 5.5 by going through the characteristic function of XInv0,1 .

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 43

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Definition 9.1 (characteristic function, !·,·). The characteristic function !. of a random variable

. is the function !.(C) : ℝ→ ℂ : C ↦→ E(e8C.). We denote by !0,1 the characteristic function of

XInv0,1 .

The characteristic function is well-defined for any random variable . and the distribution

function of . can always be retrieved from it (see, e.g., [24, Chapter VI]). In the case of integer-

valued random variables like XInv0,1 , the characteristic function is periodic with period 2� and

the distribution function can be retrieved via the inverse Fourier transform of the characteristic

function. In particular, the probabilities of XInv0,1 can be expressed as the following integrals.

Fact 9.2. For any positive integers 0, 1 and integer :

ℙ[XInv0,1 = :] =
1

2�

∫ �

−�
!0,1(C)e−8C: 3C. (9.1)

Proof. Observe that the characteristic function !0,1 of XInv0,1 is a polynomial in I = e
8C
, where

the coefficient of degree : equals the probability of the outcome :.2 Formula (9.1) then follows

by linearity from ∫ �

−�
I3e−8:C 3C =

∫ �

−�
e
8(3−:)C 3C =

{
2� 3 = :

0 3 ≠ :.

�

The following lemma represents the essence of the proof of Lemma 5.5.

Lemma 9.3. Then there exists a constant � such that for all integers 0, 1 with 1 ≥ 0 ≥ 2∫ �

−�
|!0,1(C)| 3C ≤

�

1
√
0
. (9.2)

where !0,1(C) � E(e8C XInv0,1).

Proof of Lemma 5.5. By symmetry, it suffices to consider the case where 0 ≤ 1. In the case where

0 = 1, the distribution of XInv0,1 is uniform over {0, . . . , 1}, so the maximum probability is

1

1+1
≤ �/

√
01(0 + 1) for any constant � ≥

√
2/2. Otherwise, we have

ℙ[XInv0,1 = :] =
1

2�

∫ �

−�
!0,1(C)e−8C: 3C ≤

1

2�

∫ �

−�
|!0,1(C)| 3C ≤

�

2�1
√
0
≤ �√

01(0 + 1)

by (9.1) and Lemma 9.3. �

2After multiplication by

(0+1
0

)
, the resulting polynomial is known as the Gaussian polynomial with parameter

(0, 1).

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 44

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

To establish Lemma 9.3, as |!0,1(C)| is an even function, it suffices to take the integral (9.2)

over the domain [0,�] and multiply by two:∫ �

−�
|!0,1(C)| 3C = 2

∫ �

0

|!0,1(C)| 3C (9.3)

We divide the domain of integration on the right-hand side of (9.3) into two regions: one

close to zero, and the rest. The integrand is well-behaved in the center near zero, with it being

approximated accurately by a Gaussian curve. It is harder to analyze the behavior of the function

away from zero. In this region, a pole reduction lemma (captured by Lemma 9.13) that hinges

on a combinatorial matching result (Lemma 9.15), plays a crucial role in eliminating most of the

messy behavior of the function and still providing an effective bound.

We first derive an expression for the characteristic function of XInv0,1 in Section 9.2, bound

the central part of the integral in Section 9.3, the peripheral part in Section 9.4, and conclude

with the pole reduction lemma in Section 9.5.

9.2 The characteristic function !0,1

Our derivation of the characteristic function !0,1 of XInv0,1 is based on a connection between

cross inversions and inversions in arrays.

Fact 9.4. Let � and � be arrays, and let �� be the concatenation of � with �. Then

Inv(��) = Inv(�) + Inv(�) + XInv(�, �).

Proof. Any inversion in �� is either between two elements of �, two elements of �, or one

element of � and one element of �. In each case, the inversion is counted in Inv(�), Inv(�), or
XInv(�, �), respectively. �

We also make use of the following handy property of characteristic functions.

Fact 9.5. For independent random variables ., /,

!.+/(C) = !.(C)!/(C).

Proof. !.+/(C) = E(e8C(.+/)) = E(e8C.e
8C/) = E(e8C.)E(e8C/) = !.(C)!/(C). �

Let Inv0 be the random variable that counts the number Inv(�) of inversions in an array �

that is a uniform permutation of [0], and let !0(C) be the characteristic function of Inv0 .

Claim 9.6.

!0(C) =
0∏
:=1

(
e
8C(:−1)/2

:
· sin(:C/2)

sin(C/2)

)
(9.4)

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 45

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Proof. Consider the process of placing the elements 1, . . . , 0 one by one, each time placing each

new element between two elements or on some end of the array, to form an array �.

For : = 1, . . . , 0, consider the random variable that counts the number of new inversions

formed with : when : is placed. First of all, when : is placed, the number of new inversions

is equal to the number of elements to the left of : at the time of placement (only the elements

1, . . . , : − 1 have been placed at this point). This means the random variable has a uniform

distribution over {0, . . . , : − 1}, which we denote by*:−1. Furthermore, this situation applies

regardless of the placement of the other elements, so this random variable*:−1 is independent

from all other previous random variables* 9−1 with 9 < :.

Therefore, Inv0 can be written as the following sum of independent variables:

Inv0 = *0 + · · · +*0−1.

We can use Fact 9.5 to calculate the characteristic function:

!0(C) =
0∏
:=1

E[e8C*:−1] =
0∏
:=1

(
1

:

:−1∑
<=0

e
8C<

)
,

from which (9.4) follows as

∑:−1

<=0
e
8C< = e

8C:−1

e
8C−1

=
e
8C:/2(e8C:/2−e

−8C:/2)
e
8C/2(e8:/2−e

−8C/2) = e
8C(:−1)/2 · 28 sin(C:/2)

28 sin(C/2) . �

Consider a random permutation of [0+ 1], let � be the array consisting of the first 0 elements,

and � the array consisting of the remaining 1. Then Inv(�), Inv(�), Inv(�, �), and XInv(�, �)
have the same distributions as Inv0 , Inv1 , Inv0+1 , and XInv0,1 , respectively. Moreover, the values

of Inv(�), Inv(�), and XInv(�, �) are independent. Hence, by Fact 9.4 and Fact 9.5 we have

!0+1(C) = !0(C)!1(C)!0,1(C),

or

!0,1(C) =
!0+1(C)

!0(C)!1(C)
.

By (9.4), the arithmetic sum formula applied to the exponents of e, and algebraic simplifications

we conclude:

Proposition 9.7. For integers = ≥ 0, let B=(C) =
∏=

:=1

sin(:C)
:

. Then

!0,1(C) = e
8C01 B0+1(C/2)

B0(C/2)B1(C/2)
and |!0,1(C)| =

���� B0+1(C/2)
B0(C/2)B1(C/2)

���� .
9.3 Center bound

For the first piece of the integral on the right-hand side of (9.3), we integrate |!0,1(C)| over the
interval [0, 2�/(0 + 1)]. For the sake of convenience, we substitute C with 2C in order to avoid the

denominator of 2 in the sine terms of the integrand.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 46

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

Lemma 9.8 (center bound). For integers 1 ≥ 0 ≥ 2,∫ 2�
0+1

0

|!0,1(C)| 3C = 2

∫ �
0+1

0

|!0,1(2C)| 3C = $
(

1

1
√
0

)
.

We can write

|!0,1(2C)| =
0∏
:=1

:

1 + : ·
sin((1 + :)C)

sin(:C)

as every term in the product on the right-hand side is nonnegative on this interval. We start

with the following estimates.

Claim 9.9. For positive integers : ≤ 1 and G ∈ [0,�/(1 + :)],

:

1 + : ·
sin((1 + :)G)

sin(:G) ≤ 1 − 12

2�2

G2.

To prove this claim, we first prove two trigonometric bounds. Refer to Figure 13 for a plot of

the functions and bounds.

Claim 9.10. For positive integers :, and G ∈ [0,�/:],

sin(:G) ≤ :G − (:G)
3

�2

.

Proof. Let H = :G. It is enough to argue that sin(H) ≥ H − H3

�2
in the range H ∈ [0,�].

Let 5 (H) = sin(H) − H + H3

�2
. Notice that 5 (0) = 5 (�) = 0 and 5 ′(�) > 0. We will argue that

there is a unique point H∗ ∈ (0,�) such that 5 ′(H∗) = 0, which will ensure that 5 (H) ≤ 0 for all

H ∈ [0,�].
We can calculate that

5 ′(H) = cos(H) − 1 + 3H2

�2

=
3H2

�2

− 2 sin
2

(H
2

)
.

So 5 ′(H) = 0 if and only if sin(H/2) = ±(
√

6/�) · (H/2), which is satisfied by one unique point

H∗ ∈ (0,�). �

Claim 9.11. For positive integers :, and G ∈ (0,�/2:],

cot(:G) ≤ 1

:G
.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 47

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Proof. Let H = :G. We will prove that cot(H) ≤ 1

H for all H ∈ (0,�/2]. It is enough to prove that

H cos(H) ≤ sin(H) for all H ∈ [0,�/2].
The latter inequality follows because both sides are zero when H = 0, and the derivative of

the left hand side is bounded above by the derivative of the right hand side when H ∈ [0,�/2]:

cos(H) − H sin(H) ≤ cos(H).

�

G

H

�

(a) Claim 9.10

G

H

�/2
(b) Claim 9.11

Figure 13: Plots of Trigonometric Bounds.

Trigonometric functions are dotted, upper bounds are dashed.

Now we finish the proof of Claim 9.9.

Proof. Notice that

sin((1 + :)G)
sin(:G) =

sin(:G) cos(1G) + sin(1G) cos(:G)
sin(:G)

= cos(1G) + cot(:G) sin(1G).
Of course, cos(1G) ≤ 1. Furthermore, from Claim 9.10 and Claim 9.11, we can see that in this

domain of G, sin(1G) ≤ 1G − 13G3

�2
and cot(:G) ≤ 1

:G
. Additionally, sin(1G) ≥ 0. Therefore, using

the fact that : ≤ 1,

:

1 + : ·
sin((1 + :)G)

sin(:G) ≤ :

1 + :

(
1 + 1

:G

(
1G − 1

3G3

�2

))
≤ 1 − 13

(1 + :)�2

G2 ≤ 1 − 12

2�2

G2.

�

From this, we can now prove Lemma 9.8.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 48

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

Proof. Recall that on this interval

|!0,1(2C)| =
0∏
:=1

:

1 + : ·
sin((1 + :)C)

sin(:C) .

Claim 9.9 applies on all C in the domain because �/(1 + 0) ≤ �/(1 + :) for all :.
Therefore,∫ �

0+1

0

|!0,1(2C)| 3C ≤
∫ �

0+1

0

(
1 − 1

2C2

2�2

) 0
3C ≤

∫ �
0+1

0

exp

(
− 01

2C2

2�2

)
3C = $

(
1

1
√
0

)
.

Here, we use the fact that 1 − G ≤ exp(−G) for all G, and the Gaussian integral: the integral of

exp(−C2) over ℝ is constant, and by scaling the argument, the integral of exp(−2C2) over ℝ is a

constant factor of 2−1/2
for any parameter 2. �

9.4 Peripheral bound

We now bound |!0,1(C)| in the region away from 0, namely, the interval [2�/(0 + 1),�]. As for

the other part of the integral on the right-hand side of (9.3), we substitute C with 2C in order to

avoid the denominator of 2 in the sine terms of the integrand.

Lemma 9.12 (peripheral bound). For integers 1 ≥ 0 ≥ 2,∫ �

2�
0+1

|!0,1(C)| 3C = 2

∫ �
2

�
0+1

|!0,1(2C)| 3C = $
(

1

1
√
0

)
.

In this region, the main problem is that the denominator of |!0,1(2C)| often goes to zero,

which could potentially blow up the integrand. However, the terms in the numerator always

cancel out these blowups. The following lemma will be our main tool for bounding |!0,1(2C)| in
this region; it will allow terms in the numerator to cancel out bad terms in the denominator.

Lemma 9.13 (pole reduction). For every C ∈ ℝ, there exists a bĳection �C : {1, . . . , 0} → {1 +
1, . . . , 1 + 0} (depending on C) such that for every : = 1, . . . , 0,����1: sin(:C)

���� ≥ ���� 1

�C(:)
sin(�C(:)C)

���� .
A basic bound can be found by applying Lemma 9.13 on |!0,1(2C)| for : = 2, . . . , 0, resulting

in an upper bound of 1/1 sin(C). This bound is usable, but is weak on points closer to 0. To

remedy this, we can divide the domain of integration into multiple parts, where the points

closer to 0 can safely include more terms in the denominator.

Let 2 ≤ = ≤ 0 be an integer. We split the domain of integration into three intervals: [�
0+1 ,

�
2=],

[�
2= ,

�
2
− �

2=], and [�2 − �
2= ,

�
2
]. By selecting a good value of =, we can get a reasonable upper bound

on this region. Here, we will make use of Lemma 9.13 and the following linear approximation

to sine:

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 49

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Fact 9.14. For a positive integer : and C ∈ [0,�/2:],

sin(:C) ≥ 2:C

�
.

Proof. Notice that sin(:C) = 2:C
� when C = 0 and C = �

2:
. This fact then follows since sine is

concave on this interval. �

Region I. The first region of integration is [�/(0 + 1),�/(2=)].∫ �
2=

�
0+1

|!0,1(2C)| 3C ≤
∫ �

2=

�
0+1

=!

�C(1) · · · �C(=)

����sin(�C(1)C) · · · sin(�C(=)C)
sin(C) · · · sin(=C)

���� 3C
≤ =!

1=

∫ �
2=

�
0+1

���� 1

sin(C) · · · sin(=C)

���� 3C
≤ 1

1=

∫ �
2=

�
0+1

(�
2

)=
1

C=
3C

≤ 1

1=
·
(�

2

)=
· 1

= − 1

·
(
0 + 1
�

)=−1

≤ 1

1=
·
(�

2

)=
· 1

= − 1

·
(
21

�

)=−1

≤ �

21(= − 1) .

The first two steps involve applying Lemma 9.13 on all : ∈ {= + 1, . . . , 0}, and then using

the fact that |sin(G)| ≤ 1 and �C(:) ≥ 1. The third step uses Fact 9.14 for : ∈ {1, . . . , =}, which

applies on the interval [�/(0 + 1),�/(2=)] for these values of :. From there, we bound with the

left limit of integration.

Region II. We now bound |!0,1(2C)| on the interval [�
2= ,

�
2
− �

2=]. We can use Lemma 9.13 to

eliminate all terms except : ∈ {1, 2} this time.∫ �
2
− �

2=

�
2=

|!0,1(2C)| 3C ≤
∫ �

2
− �

2=

�
2=

2

�C(1) �C(2)

����sin(�C(1)C) sin(�C(2)C)
sin(C) sin(2C)

���� 3C
≤ 2

12

∫ �
2
− �

2=

�
2=

���� 1

sin(C) sin(2C)

���� 3C.
Because |sin(C)| is increasing here and |sin(2C)| is symmetric about

�
4
, the value of the integral

on the interval [�
2= ,

�
4
] exceeds the value on the interval [�

4
, �

2
− �

2=]. Using Fact 9.14,

2

12

∫ �
4

�
2=

���� 1

sin(C) sin(2C)

���� 3C ≤ 1

12

∫ �
4

�
2=

(�
2

)
2

1

C2
3C ≤ �2

412

· 2=
�
=

�=

212

.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 50

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

We have now established that ∫ �
2
− �

2=

�
2=

|!0,1(2C)| 3C ≤
�=

12

.

Region III. Notice that |sin(C)| is increasing on the interval [�
2
− �

2= ,
�
2
], so we can bound |sin(C)|

by |sin(�
2
− �

2=)|. Similar to before, the first step follows from Lemma 9.13, this time applied to

: ∈ {2, . . . , 0}.∫ �
2

�
2
− �

2=

|!0,1(2C)| 3C ≤
∫ �

2

�
2
− �

2=

1

�C(1)

����sin(�
1
(C))

sin(C)

���� 3C ≤ ∫ �
2

�
2
− �

2=

1

|1 sin(C)| 3C

≤ �
2=
· 1

1 sin(�
2
− �

2=)
≤ �

2=

1

1(1 − 1

=)
=

�

21(= − 1) .

Overall bound. Summing the above bounds, we can deduce that∫ �
2

�
0+1

|!0,1(2C)| 3C ≤
�

1(= − 1) +
�=

12

.

By choosing = = d
√
0 e (keeping in mind that 1 ≥ 0 ≥ 2), we can deduce Lemma 9.12.

9.5 Pole reduction

Finally, we prove the pole reduction lemma (Lemma 9.13). The essence is an interval matching

strategy capture Lemma 9.15. Here is the intuition.

Recall that we want to upper bound factors of the form | sin(ℓ C)
ℓ | by rescaled versions | sin(:C)

:
|

of the same pattern, where ℓ ∈ {1 + 1, . . . , 1 + 0} and : ∈ {1, . . . , 0} are matched. The matching

definitely needs to avoid situations like in Figure 14a, where | sin(:C)
:
| vanishes at the point C while

| sin(ℓ C)
ℓ | does not. Ideally, the period of the :-scaled version that contains the point C encloses

the period of the ℓ -scaled version that contains C, like in Figure 14b. As long as the pattern is

convex, this ensures that the :-scaled version is larger than the ℓ -scaled version everywhere on

the encompassed period. (We will formally prove this in Claim 9.22.) Thus, if at every point C,

we can set up a matching such that the enclosing relationship holds for all matched pairs, we

are home free. Lemma 9.15 below does exactly this.

Let us first introduce some notation. For every real number C and positive integer :, there is

a unique integer = such that C is contained in the half-open interval [=/:, (= + 1)/:). We call this

interval the :-interval of C. For positive integers :, ℓ , we can say that the :-interval of C encloses
the ℓ -interval of C if the ℓ -interval of C is a subset of the :-interval of C. We use the shorthand

that : encloses ℓ at C.

Lemma 9.15 (interval matching). Let 0, 1 be positive integers. For any real C, there exists a bĳection �C
between {1, . . . , 0} and {1 + 1, . . . , 1 + 0} such that for all : = 1, . . . , 0, : encloses ℓ = �C(:) at C.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 51

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

ℓ
:

C

(a) Bad case: no interval enclosure

ℓ
:

C

(b) Good case: interval enclosure

Figure 14: Enclosing intervals are needed for Lemma 9.13.

Note that the bĳection can be different depending on C. In fact, this is necessary as otherwise

ℓ would need to be a multiple of :, which is not possible with a bĳection between the sets

{1, . . . , 0} and {1 + 1, . . . , 1 + 0}.
We can interpret Lemma 9.15 as a matching on a bipartite graph by using Hall’s marriage

lemma.

Lemma 9.16 (Hall’s marriage lemma). Let � be a bipartite graph with partitions !, '. For any � ⊆ !,
let #(�) be the set of all vertices in ' with at least one neighbor in �. The graph � admits a perfect
matching if and only if for all such �, |#(�)| ≥ |�|.

For � ⊆ {1, . . . , 0}, let #C(�) be the set of all ℓ ∈ {1 + 1, . . . , 1 + 0} such that there exists

: ∈ � where : encloses ℓ at C. To produce the desired bĳection �C in Lemma 9.15, it is sufficient

to prove that |#C(�)| ≥ |�| for all C and �.
There are some values of ℓ that are always contained in #C(�) regardless of the value of C.

Let #(�) be the set of all ℓ ∈ ℕ such that for all C, there exists : ∈ � where : encloses ℓ (this :

can vary depending on C). As #(�) ∩ {1 + 1, . . . , 1 + 0} ⊆ #C(�), it is sufficient to prove that

|#(�) ∩ {1 + 1, . . . , 1 + 0}| ≥ |�| for all � and apply Theorem 9.16 to prove Lemma 9.15.

Example 9.17. 5 ∈ #({2, 3}).

Proof. We only consider C ∈ [0, 1) for clarity. When C ∈ [0, 0.4), the 2-interval for C is [0, 0.5), while

the 5-interval for C is either [0, 0.2) or [0.2, 0.4), which means 2 encloses 5. When C ∈ [0.4, 0.6),
the 3-interval for C is [1/3, 2/3), which encloses the 5-interval [0.4, 0.6). When C ∈ [0.6, 1), the
2-interval is [0.5, 1) while the 5-interval is either [0.6, 0.8) or [0.8, 1), so 2 encloses 5. These

enclosures are shown in Figure 15, where the marked 5-intervals are contained within the

respectively marked 2 or 3-intervals.

For all C, either 2 encloses 5, or 3 encloses 5. In other words, 5 ∈ #({2, 3}). �

We first consider a different characterization of #(�).

Claim 9.18. Let ℓ be a positive integer. Then ℓ ∈ #(�) if and only if every open interval � ⊂ ℝ that
contains a fraction of denominator : for every : ∈ � must also contain a fraction of denominator ℓ .
(These fractions do not have to be distinct or reduced.)

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 52

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

ℓ = 5

: = 3

: = 2

Figure 15: Example 9.17

The idea is that if no : ∈ � encloses ℓ for some C, then the endpoints of each :-interval form

a fraction of denominator : contained strictly within the ℓ -interval of C. As a result, we have a

contiguous interval � containing a fraction of denominator :, and � is contained strictly within

the ℓ -interval of C. As such, � cannot contain a fraction of denominator ℓ . This is illustrated

in Figure 16. The formal proof also considers the edge cases involving the endpoints of the

intervals.

C

:-intervals for : ∈ �

ℓ -interval

�

Figure 16: � contains a fraction of denominator : for all :, but no fraction of denominator ℓ .

For Claim 9.18, we prove the following proposition.

Proposition 9.19. The following statements are equivalent for any half-open interval [2, 3) and positive
integer ::

(1) [2, 3) is contained within a :-interval.

(2) (2, 3) is contained within a :-interval.

(3) (2, 3) contains no fraction of denominator :.

Proof. (1) =⇒ (2). This follows as (2, 3) is a subset of [2, 3).
(2) =⇒ (3). Suppose (2, 3) is contained in the :-interval [=/:, (= + 1)/:). The interval (2, 3)

cannot contain a fraction of denominator :, otherwise said fraction would be strictly between

=/: and (= + 1)/:.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 53

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

(3) =⇒ (1). Let =/: be the largest fraction of denominator : less than or equal to 2. It

must be true that (= + 1)/: ≥ 3, since (= + 1)/: cannot be contained in (2, 3). Therefore, [2, 3) is
contained in the :-interval [=/:, (= + 1)/:). �

From this, we can prove Claim 9.18.

Proof. By definition, the condition that ℓ ∈ #(�) is that any ℓ -interval � is contained in some

:-interval for some : ∈ �. By condition (2) in Proposition 9.19, this is equivalent to saying Int(�)
is contained in some :-interval, where Int(�) is the interior of �. This is true if and only if any

open subinterval � of Int(�) is contained in some :-interval. Equivalently, if � is an open interval

that is not contained in any :-interval, then � is not contained in any ℓ -interval. Using condition

(3) in Proposition 9.19, this is finally equivalent to the condition that if � contains a fraction of

denominator : for every : ∈ �, then � contains a fraction of denominator ℓ . �

The characterization in Claim 9.18 allows us to prove the following key claim about #(�).
Claim 9.20. If ℓ1 , ℓ2 ∈ #(�), then ℓ1 + ℓ2 ∈ #(�).
Proof. By Claim 9.18, any interval � that contains a fraction of denominator : for every : ∈ �
must also contain two fractions G/ℓ1 and H/ℓ2. For positive integers 0, 1, 2, 3, define the mediant
of 0/1 and 2/3 to be (0 + 2)/(1 + 3). Then the mediant is always between the two fractions. In

other words, if 0/1 ≤ 2/3,
0

1
≤ 0 + 2
1 + 3 ≤

2

3
.

This fact can be proven with elementary algebra, as both sides are equivalent to 0/1 ≤ 2/3.
From this, we see that the mediant (G + H)/(ℓ1 + ℓ2) is contained in �, as it is between

two elements of �. As this applies to every such �, we can use Claim 9.18 to conclude that

ℓ1 + ℓ2 ∈ #(�).
Note that G/ℓ1 and H/ℓ2 do not have to be distinct. ℓ1 and ℓ2 might be equal, or G/ℓ1 = H/ℓ2. �

As : encloses : for every C, we have that � ⊆ #(�). Let Sums(�) be the set of positive

integers that can be written as the sum of not necessarily distinct elements of �. Claim 9.20

implies that Sums(�) ⊆ #(�).
Claim 9.21. For nonnegative integers =,

|Sums(�) ∩ {= + 1, . . . , = + 0}| ≥ |�|.
Proof. Let < = max(�). Because � ⊆ Sums(�), Sums(�) contains every positive integer

congruent to an element of � modulo <, since we can repeatedly add < to any element of

�. As 0 ≥ <, the set {= + 1, . . . , = + 0} contains at least one element for every residue mod <.

Therefore, Sums(�) contains at least |�| elements of {= + 1, . . . , = + 0}. �

Putting it all together, we have that

|�| ≤ |Sums(�) ∩ {1 + 1, . . . , 1 + 0}| ≤ |#(�) ∩ {1 + 1, . . . , 1 + 0}| ≤ |#C(�)|,
which proves Lemma 9.15 by our previous reasoning. To finish, we need to show that this

implies Lemma 9.13.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 54

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

G
�/ℓ

�/:

5 (ℓ G)
ℓ

5 (:G)
:

C

Figure 17: Proof of Claim 9.22: �/ℓ ≤ �/:

Claim 9.22. Lemma 9.15 implies Lemma 9.13.

Proof. We prove the following more general claim. Let 5 : ℝ→ ℝ be a function that has period

1, and additionally, 5 is concave on [0, 1] and 5 (0) = 5 (1) = 0. For C ∈ [0, 1], let �C be a bĳection
that satisfies the conditions of Lemma 9.15. Then for any : ∈ {1, . . . , 0}, let ℓ = �C(:). We seek

to prove that

5 (:C)
:
≥ 5 (ℓ C)

ℓ

for all : = 1, . . . , 0. Notice that 5 (C) = |sin(C)| satisfies all the conditions of the claim, albeit after

scaling the period from � to 1.

To prove the general claim, let � = :C − b:Cc and � = ℓ C − bℓ Cc, noting that �,� ∈ [0, 1]. By
the enclosing property, it is true that �/: ≥ �/ℓ , since they represent the distance from C to the

left endpoints of the : and ℓ -intervals, respectively, and : encloses ℓ at C. This can be seen in

Figure 17.

Suppose � ≤ �. We have

5 (:C) = 5 (�) ≥ �
�
5 (�) ≥ :

ℓ
5 (�) = :

ℓ
5 (ℓ C).

The first step follows from the periodicity of 5 , the second from the concavity of 5 on [0, 1]
and the fact that 5 (0) = 0 (the point (�, 5 (�)) is above the line segment connecting (�, 5 (�)) and
(0, 0)), the third from the aforementioned inequality �/: ≥ �/ℓ , and the last from the periodicity

of 5 again.

If � < �, we can instead consider the function 5̃ (C) = 5 (1 − C). Here, �̃ = 1 − � and �̃ = 1 − �,
and we can use our previous reasoning. This proves the general claim. �

10 Turing complexity

This section serves as a supplementary discussion on the time (and space) complexity of

algorithms for computing the minimum number of inversions in trees. From the analysis in Sec-

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 55

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

tion 4.2, computing MinInv(), �) involves computing the sum of MinRInv()E , �) independently
for each E ∈):

MinInv(), �) =
∑
E

MinRInv()E , �).

In order to compute MinRInv()E , �) for each E, we need to check the orderings � of the

children D1 , . . . , D: of E and determine the minimum number of cross inversions between the

corresponding leaf sets !1 , . . . , !: in the order given by �:

RInv()E , �, �) �
∑

1≤8< 9≤:
XInv�(!�(8) , !�(9)).

A natural approach for computing MinInv(), �) consists of two phases:

1. In a first phase, we compute XInv� between the leaf sets of any pair of siblings in). This

can be done in a bottom-up fashion similar to mergesort. More precisely, for a node

E with sorted leaf sets !1 , . . . , !: , the cross inversions between every pair of leaf sets

can be calculated using a merge operation in $(: · (|!1 |+ · · · + |!: |)) time, and sorts the

concatenation of the leaf sets for use in future steps. Each leaf of depth 3 appears in 3

operations, which gives the total runtime of $(deg()) · 3avg()) · =).

2. In a secondphase,we check, for eachnode E independently,whichordering � of the children
of E minimizes RInv()E , �, �). We then output the sum of the values MinRInv()E , �).

Exhaustively testing all orderings � of the : children of E to computeMinRInv()E , �) takes$(: ·:!)
time, as $(:) time is required to calculate RInv()E , �, �), for each �, from the precomputed

values of XInv. This results in a total of $(= · deg())!) time for the second phase, and an overall

running time of $((deg())! + deg()) · 3avg())) · =).
For any constant bound on the degree of the tree), the basic algorithm runs in time

polynomial in =. The dependency of the running time on the degree can be improved. One way

to do so is by reducing the problem of the second phase to the closely-related and well-studied

problem of computing a minimum arc feedback set of a weighted directed graph.

Definition 10.1 (Minimum Feedback Arc Set). Given a directed graph � = (+, �) with an

ordering � on the vertices E1 , . . . , E= , a feedback arc is an edge 4: from E8 to E 9 such that

�(E8) > �(E 9). The minimum feedback arc set problem is finding the minimum number of

feedback arcs induced by any ordering �. In weighted minimum feedback arc set, each edge

from E8 to E 9 has a weight F8 9 , and the objective is to minimize

∑
4∈� 48 9 · I[�(E8) > �(E 9)].

We can encode the problem of computing MinRInv()E , �) as an instance of weighted

minimum arc feedback set, where each edge of the graph � has a positive weight. If the leaf sets

of the children of E are !1 , . . . , !: , we construct a graph � with : vertices E1 , . . . , E: . For each

pair of vertices E8 and E 9 , if XInv�(!8 , !9) < XInv�(! 9 , !8), we add an edge from E8 to E 9 of weight

XInv�(! 9 , !8) − XInv�(!8 , !9). We can extract the value of MinRInv()E , �) from the weight of the

minimum feedback arc set.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 56

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

As a consequence, we can use existing efficient algorithms for weighted minimum arc

feedback set to construct algorithms for inversion minimization on trees that are more efficient

than the basic algorithm we described. [3] gives two exact algorithms for weighted minimum

arc feedback set. One algorithm [3, Algorithm 1] is based on the Held-Karp algorithm for the

traveling salesman problem [13]; it uses dynamic programming to achieve a time complexity

of Θ(=2
2
=) and a space complexity of Θ(2=) for a graph of = vertices. Another algorithm

[3, Algorithm 2] uses a divide and conquer approach that achieves a time complexity of

$(poly(=) · 4=), but has the advantage of only needing polynomial space.

Algorithm 2 MinRInv()E , �), Dynamic Programming

Input: Tree)E with child leaf sets !1 , . . . , !: , ranking �
Initialize Cost[(], where (is over all subsets of {1, . . . , :}.
Cost[∅] ← 0

for 8 from 1 to : do
for all sets (of size 8 do

Cost[(] ← minB∈((Cost((\ {B}) +∑
9∈(,9≠B XInv�(! 9 , !B)))

return Cost[{1, . . . , :}].

�:

E8 E 9

4:

):

�:

E8 E 9

−2: 2: − 1 −2: + 1 2:

· · ·

· · · · · ·

=

2 deg�(E8) 2 deg�(E 9)

Figure 18: Encoding of an edge 4:

An adaptation of the dynamic programming algo-

rithm for calculating MinRInv is given in Algorithm 2.

Using this subroutine for computing MinRInv, we can

improve the time complexity of our basic algorithm to

$((deg())22
deg()) + deg()) · 3avg())) · =).

The improved running time is still not efficient for

trees with unrestricted degree. In fact, the problem is

NP-hard.

Proposition 10.2. Computing MinInv(), �) is NP-hard.

Proof. We show a reduction from the known NP-hard

problem “Minimum feedback arc set" [17].

For a graph � with = vertices E1 , . . . , E= and <

directed edges 41 , . . . , 4< , we construct a depth-2 tree)

and a ranking � of its leaves. We will assume that � has

no isolated vertices; this goes without loss of generality

as isolated vertices can be dropped from an instance of

minimum arc feedback set without affecting the answer.

We also assume that between any two vertices at most

one of the two directed edges is present; this is also without loss of generality since dropping

the edges in case both are present reduces the answer by one. Finally, for ease of notation, we

allow the ranking � to be an injective mapping into the integers; this can be changed easily by

replacing each integer by its rank in the range.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 57

http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

In the first layer, the root of) has = children corresponding to E1 , . . . , E= . The second layer

has leaves with ranks encoding the edges of �. For each edge 4: going from E8 to E 9 , we add two

leaves under E8 with ranks −2: and 2: − 1, and two leaves under E 9 with ranks −2: + 1 and 2:,

as shown in Figure 18. All ranks are distinct.

Consider the number of inversions in) induced by an ordering � of E1 , . . . , E= . For each

edge 4: , the number of inversions between the leaves of rank −2: and 2: − 1 and the leaves

of rank −2: + 1 and 2: is 1 if �(E8) < �(E 9) and 3 if �(E8) > �(E 9). These four leaves also form

8(< − 1) inversions with all other leaves, keeping in mind that these inversions are counted

twice when summed up over all edges.

Therefore, the minimum number of inversions in) is given by

MinInv(), �) = min

�

(
4<(< − 1) + < + 2 ·

∑
4:∈�

I[�(E8) > �(E 9)]
)
.

The size of the minimum arc feedback set is precisely min�
(∑

4:∈� I[�(E8) > �(E 9)]
)
, which

can be extracted from MinInv(), �) with straightforward calculations. This completes the

reduction. �

Approximation Algorithms. If we relax our requirements to an approximate answer, we can

approximate MinRInv in polynomial time using existing approximation algorithms for weighted

minimum feedback arc set. The best known such algorithm achieves an approximation ratio

of $(log = log log =) on a graph with = vertices [10]. Adapting this algorithm for minimizing

inversions in trees produces an approximation factor of $(log(deg())) log log(deg()))) for
MinInv(), �). Under the unique games conjecture, there does not exist a constant-factor

approximation algorithm for minimum feedback arc set on arbitrary digraphs [12].

In the special case of tournament graphs, which have exactly one edge of weight 1 between

every pair of vertices, there are efficient constant factor approximation algorithms for minimum

arc feedback set. Some of these also apply to weighted tournaments, where for every pair of

vertices E8 , E 9 , the nonnegative edge weights F8 9 , F 98 satisfy F8 9 + F 98 = 1. This case corresponds

to the scenario of computing MinRInv()E , �) where all leaf sets !8 of siblings have the same

size. [18] gives an algorithm with runtime $∗(2$(
√

OPT)), given that the optimal answer is OPT.

[19] also gives an approximation algorithm in the case where F8 9 + F 98 ∈ [1, 1] for some 1 > 0:

For any & > 0, the algorithm produces a (1 + &)-approximation of OPT in time =2
$̃(1/(&1)12)

. For

the problem of computing MinRInv()E , �), the parameter 1 represents the ratio between the

smallest and largest possible values of |!8 | · |! 9 |.

Wilcoxon test. As a final remark we point out an alternate way of computing Π)(�) in the

special case of the Mann–Whitney trees of Figure 2. The number of cross inversions XInv�(�, �)
can be written in terms of the rank sum,� �

∑
H∈� �(H) as follows, where 0 � |�| and 1 � |�|:

XInv�(�, �) = 01 +
1(1 + 1)

2

−,� . (10.1)

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 58

http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

The quantity,� is known as the Wilcoxon rank-sum statistic for differences between random

variables. Because of the relationship (10.1) the Wilcoxon test is equivalent in power to the

Mann–Whitney test. However, the evaluation based on the efficient computation of cross

inversions (especially in the case of unbalanced set sizes 0 and 1) is superior to the evaluation

based on the rank sum (�, as the latter presumes sorting the combined set - = � t �.

Acknowledgements

Wewould like to thankGreta Panova, Robin Pemantle, andRichard Stanley for pointers regarding

Gaussian polynomials, Stasys Jukna for answering questions about the complexity measure

, and the anonymous reviewers and copy editors for helpful suggestions. We appreciate the

partial support for this research by the U.S. National Science Foundation under Grants No.

2137424 and 2312540.

References

[1] Michael Ben-Or: Lower bounds for algebraic computation trees. In Proc. 15th STOC, pp.
80–86. ACM Press, 1983. [doi:10.1145/800061.808735] 10

[2] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan:

Time bounds for selection. J. Comput. System Sci., 7(4):448–461, 1973. [doi:10.1016/S0022-
0000(73)80033-9] 12

[3] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M.

Thilikos: A note on exact algorithms for vertex ordering problems on graphs. Theory
Computing Sys., 50(3):420–432, 2012. [doi:10.1007/s00224-011-9312-0] 57

[4] Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M. Jungers, and J. Ian Munro: An

efficient algorithm for partial order production. SIAM J. Comput., 39(7):2927–2940, 2010.
[doi:10.1137/090759860] 13

[5] Svante Carlsson and Jingsen Chen: The complexity of heaps. In Proc. 3rd Ann. ACM–SIAM
Symp. on Discrete Algorithms (SODA’92), pp. 393–402. SIAM, 1992. ACM DL. 12

[6] Richard Degerman: Ordered binary trees constructed through an application of Kendall’s

tau. Psychometrika, 47(4):523–527, 1982. [doi:10.1007/BF02293713] 2, 3, 4

[7] Dorit Dor and Uri Zwick: Selecting the median. SIAM J. Comput., 28(5):1722–1758, 1999.
[doi:10.1137/S0097539795288611] 12

[8] Dorit Dor and Uri Zwick: Median selection requires (2 + &)= comparisons. SIAM J. Discr.
Math., 14(3):312–325, 2001. [doi:10.1137/S0895480199353895] 12

[9] David Eppstein: A permutohedron, 2007. LINK, see also Wikipedia article, accessed

11-07-2024. 9

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 59

http://dx.doi.org/10.1145/800061.808735
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1016/S0022-0000(73)80033-9
http://dx.doi.org/10.1007/s00224-011-9312-0
http://dx.doi.org/10.1137/090759860
https://dl.acm.org/doi/10.5555/139404.139483
http://dx.doi.org/10.1007/BF02293713
http://dx.doi.org/10.1137/S0097539795288611
http://dx.doi.org/10.1137/S0895480199353895
https://en.m.wikipedia.org/wiki/File:Permutohedron.svg
https://en.wikipedia.org/wiki/Permutohedron
https://en.wikipedia.org/wiki/Permutohedron
http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

[10] Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan: Approximating mini-

mum feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.
[doi:10.1007/pl00009191] 58

[11] Gaston H. Gonnet and J. Ian Munro: Heaps on heaps. SIAM J. Comput., 15(4):964–971,
1986. [doi:10.1137/0215068] 12

[12] Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra,

and Moses Charikar: Beating the random ordering is hard: Every ordering CSP is

approximation resistant. SIAM J. Comput., 40(3):878–914, 2011. [doi:10.1137/090756144] 58

[13] Michael Held and Richard M. Karp: A dynamic programming approach to sequencing

problems. J. SIAM, 10(1):196–210, 1962. [doi:10.1137/0110015] 57

[14] Ivan Hu, Dieter van Melkebeek, and Andrew Morgan: Query complexity of inversion

minimization on trees. InProc. 34thAnn. ACM–SIAMSymp. onDiscrete Algorithms (SODA’23),
pp. 2836–2866. SIAM, 2023. [doi:10.1137/1.9781611977554.ch107] 1

[15] Stasys Jukna, Alexander A. Razborov, Petr Savický, and Ingo Wegener: On P versus

NP ∩ co-NP for decision trees and read-once branching programs. Comput. Complexity,
8(4):357–370, 1999. [doi:10.1007/s000370050005] 11

[16] Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, and Peter Sanders: Towards optimal

multiple selection. In Proc. 32nd Internat. Colloq. on Automata, Languages, and Programming
(ICALP’05), pp. 103–114. Springer, 2005. [doi:10.1007/11523468_9] 12

[17] Richard M. Karp: Reducibility among combinatorial problems. In Raymond E. Miller

and James W. Thatcher, editors, Complexity of Computer Computations, pp. 85–103. Plenum
Press/Springer, 1972. Available at ResearchGate. [doi:10.1007/978-1-4684-2001-2_9] 57

[18] Marek Karpinski and Warren Schudy: Faster algorithms for feedback arc set tournament,

Kemeny rank aggregation and betweenness tournament. In Proc. Internat. Symp. on
Algorithms and Computation (ISAAC’10), pp. 3–14. Springer, 2010. [doi:10.1007/978-3-642-
17517-6_3] 58

[19] Claire Kenyon-Mathieu and Warren Schudy: How to rank with few errors. In Proc. 39th
STOC, pp. 95–103. ACM Press, 2007. [doi:10.1145/1250790.1250806] 58

[20] Henry B. Mann and Donald R. Whitney: On a test of whether one of two random variables

is stochastically larger than the other. Ann. Math. Stat., 18(1):50–60, 1947. JSTOR. 11

[21] Stephen Melczer, Greta Panova, and Robin Pemantle: Counting partitions inside a

rectangle. SIAM J. Discr. Math., 34(4):2388–2410, 2020. [doi:10.1137/20M1315828] 11

[22] George A. Miller: Psychological method to investigate verbal concepts. J. Mathematical
Psychology, 6(2):169–191, 1969. [doi:10.1016/0022-2496(69)90001-7] 2

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 60

http://dx.doi.org/10.1007/pl00009191
http://dx.doi.org/10.1137/0215068
http://dx.doi.org/10.1137/090756144
http://dx.doi.org/10.1137/0110015
http://dx.doi.org/10.1137/1.9781611977554.ch107
http://dx.doi.org/10.1007/s000370050005
http://dx.doi.org/10.1007/11523468_9
https://www.researchgate.net/publication/221580898_Reducibility_Among_Combinatorial_Problems
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-3-642-17517-6_3
http://dx.doi.org/10.1007/978-3-642-17517-6_3
http://dx.doi.org/10.1145/1250790.1250806
https://www.jstor.org/stable/2236101
http://dx.doi.org/10.1137/20M1315828
http://dx.doi.org/10.1016/0022-2496(69)90001-7
http://dx.doi.org/10.4086/toc

LOWER BOUND TECHNIQUES IN THE COMPARISON-QUERY MODEL

[23] Ryan O’Donnell: Analysis of Boolean Functions. Cambridge Univ. Press, 2014.

[doi:10.1017/CBO9781139814782] 14

[24] Alfréd Rényi: Probability Theory. North-Holland 1970, Dover 2007. 44

[25] Arnold Schönhage: The production of partial orders. Astérisque, 38–39:229–246, 1976.
NumDam. 12

[26] Igor S. Sergeev: On the upper bound of the complexity of sorting. Comput. Math. and Math.
Physics, 61(2):329–346, 2021. [doi:10.1134/S0965542521020111] 5

[27] Richard P. Stanley and Fabrizio Zanello: Some asymptotic results on @-binomial co-

efficients. Annals of Combinatorics, 20(3):623–634, 2016. [doi:10.1007/s00026-016-0319-8]
11

[28] Lajos Takács: Some asymptotic formulas for lattice paths. J. Stat. Planning and Inference,
14(1):123–142, 1986. [doi:10.1016/0378-3758(86)90016-9] 11

[29] Andrew Chi-Chin Yao: Probabilistic computations: Toward aunifiedmeasure of complexity.

In Proc. 18th FOCS, pp. 222–227. IEEE Comp. Soc., 1977. [doi:10.1109/SFCS.1977.24] 27, 28

AUTHORS

Ivan Hu

Ph.D. student

Department of Computer Science

University of Wisconsin – Madison

Madison, Wisconsin, USA

ilhu wisc edu

https://pages.cs.wisc.edu/~ihu/

Dieter van Melkebeek

Professor

Department of Computer Science

University of Wisconsin – Madison

Madison, Wisconsin, USA

dieter cs wisc edu

https://pages.cs.wisc.edu/~dieter/

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 61

http://dx.doi.org/10.1017/CBO9781139814782
http://www.numdam.org/book-part/AST_1976__38-39__229_0/
http://dx.doi.org/10.1134/S0965542521020111
http://dx.doi.org/10.1007/s00026-016-0319-8
http://dx.doi.org/10.1016/0378-3758(86)90016-9
http://dx.doi.org/10.1109/SFCS.1977.24
https://pages.cs.wisc.edu/~ihu/
https://pages.cs.wisc.edu/~dieter/
http://dx.doi.org/10.4086/toc

IVAN HU, DIETER VAN MELKEBEEK, AND ANDREW MORGAN

Andrew Morgan

Software engineer

Google

amorgan cs wisc edu

https://pages.cs.wisc.edu/~amorgan/

ABOUT THE AUTHORS

Ivan Hu is a third year Ph.D. student at the University of Wisconsin–Madison under

the supervision of Dieter van Melkebeek. He is currently studying complexity

theory.

Dieter van Melkebeek received his Ph.D. from the University of Chicago, under

the supervision of Lance Fortnow. His thesis was awarded the ACM Doctoral

Dissertation Award. After postdocs at DIMACS and the Institute for Advanced

Study, he joined the faculty at the University of Wisconsin-Madison, where

he currently is a full professor. His research interests include the power of

randomness, lower bounds for NP-complete problems, and connections between

derandomization and lower bounds.

Andrew Morgan received his Ph.D. in 2022 from the University of Wiscon-

sin–Madison under the supervision of Dieter van Melkebeek. After graduating,

he became a software engineer at Google.

THEORY OF COMPUTING, Volume 20 (7), 2024, pp. 1–62 62

https://pages.cs.wisc.edu/~amorgan/
https://www.wisc.edu/
http://www.uchicago.edu
http://lance.fortnow.com
https://awards.acm.org/award-recipients/vanmelkebeek_7183705
https://awards.acm.org/award-recipients/vanmelkebeek_7183705
http://dimacs.rutgers.edu
http://www.ias.edu
http://www.ias.edu
http://www.wisc.edu
https://www.wisc.edu/
https://www.wisc.edu/
http://dx.doi.org/10.4086/toc

	Overview
	Main results
	Techniques
	Other results
	Organization

	The comparison-query model
	Sensitivity Lemma
	Sensitivity approach for general trees
	Subtree-induced sensitivity
	Decomposition of the objective function
	Lipschitz continuity

	Refined sensitivity approach for binary trees
	Sensitivity criterion
	Root sensitivity
	Average sensitivity

	Sensitivity approach for bounded error
	Connectivity Lemma
	Connectivity approach
	Partition property
	Binary trees
	General trees
	Counting cross inversions and evaluating the Mann–Whitney statistic

	Cross-inversion distribution
	Approach
	The characteristic function phi a,b
	Center bound
	Peripheral bound
	Pole reduction

	Turing complexity
	References

