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Abstract. An =-vertex graph is called a small-set expander if any set of size >(=)
contains at most a >(1) fraction of the edges that touch it. The goal of this paper is

to investigate small-set expansion properties of the Johnson graph, which is not a

small-set expander.

We obtain a qualitative descriptions of all small sets that violate the small-set

expansion property in the Johnson graph: we show that any such set is correlated

with some union of small intersections of “basic sets,” where each basic set is a

dictatorship—i. e., belonging to it depends only on containing a single coordinate 8.

This condition is necessary and sufficient, since any such set violates the small-set

expansion property.

The statement and its proof are inspired by recent analogous questions on

the Grassmann graph (Dinur et al., STOC’18 and Israel J. Math., 2021) and their

∗
Research supported by NSF CCF-1422159, Simons Collaboration on Algorithms and Geometry, and Simons

Investigator Award.

†
This work was completed while the author was in the School of Computer Science, Tel Aviv University and was

supported by Clore scholarship.

‡
Supported by the National Science Foundation under grants number 1648712, 2200956 and 1705028.

§
Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and

innovation programme (Grant agreement No. 835152), by an ISF grant 2017/13 and by a BSF grant 2016414.

ACM Classification: G.2.2

AMS Classification: 06E30, 05C48

Key words and phrases: Johnson graph, small-set expansion, hypercontractivity

© 2025 Subhash Khot, Dor Minzer, Dana Moshkovitz, and Muli Safra
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2025.v021a002

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2025.v021a002


SUBHASH KHOT, DOR MINZER, DANA MOSHKOVITZ, AND MULI SAFRA

application to the 2-to-1 Games Conjecture. To prove our results, we build on and

extend the techniques of Dinur et al., Israel J. Math., 2021. Subsequently to our work,

the full expansion hypothesis for the Grassmann graph was proved in Khot et al.,

Ann. Math. 2023.

1 Introduction

1.1 Graph expansion

For a regular graph � = (+, �) and a set of vertices ( ⊆ + , the edge expansion of (, denoted

by Φ�((), is the probability of escaping the set ( in a single step. That is, Φ�(() is the

probability of landing outside ( after picking a vertex D from ( randomly, and walking along a

randomly chosen edge (D, E).1 Unless specifically stated otherwise, when we say “randomly”

we mean uniformly. Expander graphs, i. e., graphs in which any set of size at most half the

vertices has constant edge expansion, are widely used in Theoretical Computer Science in

pseudorandomness, probabilistically checkable proofs, and more (see [27]). One particularly

appealing aspect of expanders is that they have numerous, seemingly different definitions that

yet turn out to be equivalent: a graph is an expander if and only if the second eigenvalue of its

normalized adjacency matrix is bounded away from 1.

Small-set expansion is an incomparable notion of edge expansion. A graph � is called an

(�, �) small-set expander if any set ( of vertices containing at most a � fraction of the vertices,

has Φ�(() > 1 − �. In words, the probability to start from a random vertex in ( and stay

inside ( after a random step, is at most �. While this notion is very natural, it is much less

understood: it is often difficult to check if a graph is a small-set expander, as there is no

equivalent eigenvalue-based definition; this is also the reason it is harder to work with. Another

stark contrast is that while, given an input graph, the task of checking whether it is an expander

graph can be done efficiently (as it amounts to computing eigenvalues of the adjacency matrix),

no such results are known for small-set expansion. In fact, it is conjectured in [39, 40] that for all

� > 0 there exists � > 0, such that given a graph � = (+, �) it is NP-hard to distinguish between

the case that � is an (�, �) small-set expander, and the case that � contains a subset ( ⊆ + with

|( | 6 � |+ | and Φ�(() 6 �,

1.2 Noisy hypercube

For a parameter � > 0, the noisy hypercubeℋ�[=], defined below, is a widely used weighted

undirected graph in Theoretical Computer Science and in the Analysis of Boolean Functions.

The vertex set + is {0, 1}= , and the edges are weighted according to the following randomized

rule. To sample an edge, pick a vertex D = (D1 , . . . , D=) ∈' + uniformly at random, and choose

its neighbour E = (E1 , . . . , E=) according to the distribution )1−�(D) defined as follows: for each

coordinate 8 ∈ [=] independently, set E8 = D8 with probability 1 − � and otherwise resample

1Note that this definition also makes sense for weighted graphs, i. e., graphs in which the edges are assigned

weights.
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E8 ∈' {0, 1} (thus, the expected value of the Hamming distance between D and E is �=/2). The
edge (D, E) is the output of the procedure, and the weight of an edge (G, H) is the probability
that (G, H) is selected.

The noisy hypercube is well known to be a small-set expander for any constant � > 0: for

every � > 0, there exists 2 > 0, such that for small enough �, any set ( containing at most a

� fraction of the vertices has edge expansion at least 1 − �2 . This fact follows from Bonami’s

Hypercontractive Inequality [6, 5, 24], and for Boolean-valued functions, they are equivalent.2

This is helpful in deducing structural results on Boolean functions 5 : {0, 1}= → {0, 1} that are
the indicator functions of small sets, such as the KKL Theorem [29], that are then helpful for

constructing PCPs [26, 15, 32, 13], SDP integrality gaps [16, 38], metric embedding lower bounds

[36, 35] and much more.

1.2.1 Level inequalities on the hypercube

The operator )1−� that defines the edges of ��[=] can be viewed as an operators on function

5 : {0, 1}= → ℝ. The function )1−� 5 : {0, 1}= → ℝ is defined by

()1−� 5 )(G) = E
H∼)1−�(G)

[ 5 (H)].

The Fourier–Walsh decomposition of a function allows one towrite any function 5 : {0, 1}= →
ℝ as �0 + �1 + . . . + �= , where each component �8 is an eigenvector of )1−� with eigenvalue

(1 − �)8 , that are orthogonal to each other. Using the small-set expansion property (or the

hypercontractive inequality), one can show that if 5 : {0, 1}= → {0, 1} is the indicator function
of a set of fractional size �, then almost all of the mass in the above decomposition lies on �8 for

8 > Ω(log(1/�)) (and this in turn can be used to prove many classical results such as KKL and

Friedgut’s Junta theorem [29, 21]).

1.2.2 Applications of the hypercube

As discussed earlier, the noisy hypercube is a useful building block in various constructions in

Theoretical Computer Science. A typical application of it is to construct PCPs, where a problem

% is reduced to a problem %′ using the hypercube as a gadget. A “good assignment” in %′

naturally corresponds to a Boolean function 5 : {0, 1}= → {0, 1} with local properties (such as

satisfying 5 (G) + 5 (H) = 5 (G + H) for at least 1

2
+ � fraction of the pairs G, H ∈ {0, 1}= , or being

noise stable, i. e., satisfying 5 (G) = 5 (H) with close to 1 probability when G is sampled uniformly

and H ∼ )1−�(G)), and the goal is to extract global/structural information about it. The latter

corresponds to a “good assignment” to the first problem %.

Another application is to Metric Embedding, where the hypercube is folded under some

group of symmetries �, so that a function 5 : {0, 1}=/�→ {0, 1} can be naturally viewed as a

�-invariant function 5 : {0, 1}= → {0, 1}, from which some properties can be deduced.

2The Hypercontractive Inequality states that the normalized adjacency operator of ��[=] is a contraction from

!?(�) to !2
for some ?(�) > 2, and the small-set expansion property of the noisy hypercube makes the same assertion

but only with regards to Boolean-valued functions.
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In both applications, the fact that the hypercubehas exponential size in = leads todeterioration

of parameters (be it (1) the size of the instance in PCP constructions, or (2) the number of points

in the metric for nonembeddability results), thus it could be useful to find alternatives to the

hypercube that contain significantly fewer vertices. There is a known way [4] to “fold” the

hypercube under some group of symmetries, so that it is significantly smaller and still useful

for (some) applications [30, 10].

1.3 The Johnson graph

The Johnson graph �(=, ℓ , C) is a natural potential substitute to the hypercube that has significantly
fewer vertices, defined for integer parameters 0 < C < ℓ < = as follows. The vertex set of the

graph is

([=]
ℓ

)
, the collection of all size-ℓ subsets of [=], and two vertices are adjacent if they

intersect in size C:

� = { (�, �) | |� ∩ �| = C} .

Denote ℓ = ?=, for some 0 < ? < 1. Works concerning the Johnson graph [41, 18, 17, 19, 20]

mainly dealt with the case ? is constant bounded away from 0 and 1 and C = ℓ − 1, which is

closely related to the Boolean hypercube {0, 1}= with the ?-biased measure. Indeed, for such ?

analogs of the KKL Theorem, Friedgut’s Junta theorem and the Majority is Stablest theorem are

known. When C = ℓ for  close to 1 (say,  = 0.99), the graph is closely related to the noisy

hypercube �(1−)[=], and in particular it is a small-set expander [37].

In this paper wewill only be concernedwith the case ? = >(1) and C = ℓ where  is bounded

away from 0 and 1. In this regime of parameters, the graph is no longer a small-set expander.

For each 8 ∈ [=] define (8 = {� ⊆ [=] | |�| = ℓ , 8 ∈ �}, and note that (8 is a small set with edge

expansion bounded away from 1. Indeed, it contains

(=−1

ℓ−1

)
/
(=
ℓ

)
= ? = >(1) fraction of the vertices

in the graph, and its edge expansion is 1 −
(ℓ−1

C−1

)
/
(ℓ
C

)
= 1 − C/ℓ = 1 − .

This example (which is also known as the dictatorship function) serves as a basic building

block for a wider collection of small sets with edge expansion bounded away from 1: several

basic sets can be combined by unions of intersections such as ((1 ∩ (2) ∪ ((1 ∩ (3 ∩ (4) ∪ (5. One

can show that a union of intersections of constant width, namely in which each intersection

involves only constantly many sets, has far from 1 edge expansion. Also, whenever the width of

union is not too large, the set would be small. The question we address in this paper, is whether

these are essentially the only small sets with exhibiting such behaviour. More precisely:

Question 1.1. Are all small sets ( with expansion Φ(() 6 1 − � correlated with constant-width

unions of intersections of basic sets?

Our results give a positive answer to this question in the case that ℓ is significantly smaller

than =.

1.4 Main results

A set of vertices in �(=, ℓ , C) of the form ( = {� | |�| = ℓ , 8 ∈ �} for some 8 ∈ [=] is called a basic

set.
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Definition 1.2. Let A ∈ ℕ, � > 0. A set ( is called (A, �)-pseudorandom if for any A basic sets

(1 , . . . , (A ,

|( ∩ ((1 ∩ . . . ∩ (A)| 6 � |(1 ∩ . . . ∩ (A | .

In words, an (A, �)-pseudorandom set ( contains at most � fraction of the vertices from

any width A intersection of basic subsets. We remark that any (A, �)-pseudorandom set is also

automatically a small set. With this definition, we can now state our main result.

Theorem 1.3. For every  ∈ (0, 1), and � > 0, there are A ∈ ℕ, � > 0 such that the following holds.
Take large enough ℓ > ℓ0(, �), and take large enough = > =0(ℓ ). Then any (A, �)-pseudorandom set ( in
�(=, ℓ , ℓ ) has close to 1 expansion:

Φ(() > 1 − �.

Equivalently, this theorem asserts that a set that has expansion bounded away from 1 cannot

be pseudorandom, thus there are basic sets (1 , . . . , (A such that

|( ∩ ((1 ∩ . . . ∩ (A)| > � |(1 ∩ . . . ∩ (A | . (1.1)

Using this, one can prove a characterization of small sets ( whose expansion is bounded

away from 1 as follows. Apply Theorem 1.3 to find a tuple (1 , . . . , (A of basic sets, for which

equation (1.1) holds. Defining (′ = ( \ ((1 ∩ . . . ∩ (A), one can show that the expansion of (′ is
not much more than the expansion of (, and thus theorem can be applied again to (′ to find

another tuple satisfying equation (1.1). Iterating this argument, one can extract many tuples

((1 , . . . , (A), until a significant correlation is found between ( and a width A combination of

basic sets.

A technical challenge that arises when working with the Johnson graph is that it is not

a product graph, and thus its eigenfunction decomposition (the analog of Fourier-Walsh

decomposition) is more complicated to study. Still, any function � : �(=, ℓ , ℓ ) → ℝ can be

written as

� = �0 + �1 + . . . + �ℓ , (1.2)

where �8 is an eigenvector of the normalized adjacency operator of �(=, ℓ , ℓ )with eigenvalue

≈ 8 . En route to proving Theorem 1.3, we prove an analog of the level inequalities of the

hypercube:

Theorem 1.4 (Informal). Fix  ∈ (0, 1), let ℓ > ℓ0() be large enough, and take large enough = > =0(ℓ ).
For every � > 0 there exists A ∈ ℕ, such that any set ( that is (A, �)-pseudorandom, has all but an >(1)
fraction of its mass on levels 8 > Ω(log(1/�)).

1.5 Related work

This paper is related to a recent line ofwork establishing the 2-to-2 Theorem in PCP [33, 11, 12, 34].

A key component in this line ofwork is a theorem similar to Theorem 1.3 for theGrassmann graph

rather than the Johnson graph, which was subsequently established in [34]. The nodes of the
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Grassmann graphs are ℓ -dimensional linear subspaces rather than size-ℓ sets. Edges correspond

to pairs of subspaces with large intersection. The structure of the small non-expanding sets in

the Grassmann graph is more complicated than in the Johnson graph, and our Theorem 1.3 was

an important step towards the analogous theorem about the Grassmann graph [34].

In this article, we work directly with the Johnson graph (which is not a product graph) and

this makes the spectral decomposition (1.4) somewhat complicated. To overcome this issue,

we develop an explicit, approximate decomposition that is more convenient to work with. An

alternative approach would have been to replace the Johnson graph with a Cayley, product

graph that is closely related in terms of expansion; indeed, such approach was taken in [34] for

example. We believe however, that the explicit approximate decomposition approach may be of

interest in domains that have no clear product analogs, such as high-dimensional expanders

[2, 25] and may have other merits down the line.

1.6 Proof overview

To prove Theorem 1.3, we use the spectral decomposition in (1.2), and as each �8 is an eigenvector

of �(=, ℓ , ℓ ) of eigenvalues (roughly) 8 , one has that (after using orthonormality)

1 −Φ(() = 1

�(()

ℓ∑
8=0

8 ‖�8 ‖2
2
.

It can be shown, using Parseval’s identity that the contribution of 8 > A in the above sum is at

most A+1�((), so 1 − Φ(() 6 1

�(()
A∑
8=0

8 ‖�8 ‖2
2
+ A+1

. Taking large enough A, A+1
is close to 0,

and therefore to complete the proof we must show that the first sum is also small. Here, we

crudely bound

1

�(()

A∑
8=0

8 ‖�8 ‖2
2
6 A max

8=0,...,A

‖�8 ‖2
2

�(() .

By Parseval, the sum over 8 of ‖�8 ‖2
2
is �((), hence we refer to the quantity

‖�8 ‖2
2

�(() as the relative

spectral weight of ( on level 8. Thus, the proof of Theorem 1.3 boils down to showing that

pseudorandom functions cannot have large weight on small levels 8.

To gain some intuition, assume this is not the case, i. e., the quantity

‖�8 ‖2
2

�(() is large. Then �8 is

correlated with a Boolean function �; in the extreme case where instead of correlation we would

have closeness, this would allow us to say that the fourth moment of �8 is roughly the same as

‖�8 ‖1/2
2

. Something similar (though weaker) could be said in the case of correlations, and indeed

we are able to establish a lower bound on the fourth moment of �8 . To get a contradiction, we

show that due to other considerations, an upper bound on the fourth moment of �8 may be

established, and combining these two results gives a contradiction (or more precisely, shows

that

‖�8 ‖2
2

�(() must be small if ( is (8 , �)-pseudorandom).
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For the proof of the upper bound, we need more information regarding the structure of the

level 8 component of (, i. e., of �8 , and as we shall see we may write this function as

�8[�] =
∑

�⊆�,|� |=8
5 (�)

for some function 5 :

([=]
8

)
→ ℝ satisfying several orthogonality conditions. Thinking of

� ∈
([=]
ℓ

)
as being randomly chosen and then of the 5 (�) above as random variables, if they

were uncorrelated, we would expect �8[�] to be well behaved, and in particular we would

expect some concentration around the mean to occur. In particular, its fourth moment would

not behave like that of a Boolean function with the same ℓ2-norm, and formalizing this shows

that this would indeed contradict the lower bound we proved earlier on ‖�8 ‖4. Thus, at least
qualitatively, the task of upper bounding ‖�8 ‖4 reduces to upper bounding correlations between

the 5 (�), and this is the heart of the matter of our argument that we explain next.

More precisely, it turns out that one has to analyze expectations of the form

E [ 5 (G1 , . . . , GA) 5 (H1 , . . . , HA) 5 (I1 , . . . , IA) 5 (F1 , . . . , FA)], (1.3)

for a certain function of interest 5 emerging from the spectral decomposition on the Johnson

graph,where the expectation is takenuniformly over G, H, I, F ∈ [=]A that satisfy apredetermined

set of equalities of the form 0 = 1 for 0, 1 ∈ { G8 , H8 , I8 , F8 | 8 = 1, . . . , A}. We call such expectations

four-wise correlations, since it is an expectation of the product of four values of 5 on correlated

inputs.

For the analog in the Grassmann graph, one has to study the four-wise correlations

E [ 5 (G1 , . . . , GA) 5 (H1 , . . . , HA) 5 (I1 , . . . , IA) 5 (F1 , . . . , FA)], (1.4)

where now the expectation is uniform over G8 , H8 , I8 , F8 ∈ F =
2
, that satisfy a predetermined set of

linear equations in G8 , H8 , F8 , I8 . In particular, this set of equations could contain equalities as

before, say G1 = H2.

In [12], the authors could analyze the expectations of the form (1.4) for A = 1, 2. For A = 2, they

use brute force analysis to enumerate over all possible linear equation systems that determine

the constraints among the variables, and prove an upper bound on each such configuration

separately. The analysis uses a combination of Fourier analysis on 5 and the Cauchy–Schwarz

inequality, along with the (additional) notion of zoom-outs. As A increases, the number of

configurations grows quickly and a case by case analysis becomes infeasible. It was very unclear

if a more systematic approach is possible that is able to deal with larger A.

In this paper, we present a systematic approach for the Johnson graph (where Fourier

analysis on 5 and the notion of zoom-outs are not needed). It turns out that (as far as this

analysis is concerned), the Johnson analysis is a special but crucial case of the Grassmann

analysis. Indeed, in the Grassmann analysis, if the only linear dependencies are equalities, then

the analysis, as far as its high level structure/strategy is concerned, reduces to the Johnson

analysis. This turned out to be an insightful step in completing the Grassmann analysis in [34].
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We also show how to analyze higher than four-wise correlations in the Johnson graph. This

leads to improved quantitative results in Theorem 1.3 and in the main technical result used to

achieve it, Theorem 2.18 and its improved form Theorem 2.20.

1.7 Subsequent and future work

We end this introductory section by subsequent developments and future directions.

1. Following our work, the analogous characterization of small sets that have bounded away

from 1 expansion in the Grassmann graph was proven [34].

2. The vertices of the Johnson graph form the Boolean slice of the hypercube, which is a

well-studied object from a combinatorial point of view [18, 17, 19, 20]. It is related to the

study of sharp thresholds of Boolean functions and graph properties [22]. Subsequent

to our work, some progress in this direction [31] was made, including an improved

quantitative version of Bourgain’s Sharp Threshold Theorem [22].

3. Our work has also inspired the study of the complexity of Unique Games over graphs

that exhibit characterizations of small sets that violate the small expansion property [1, 3].

This class extends the class of certifiable small-set expanders, on which Unique Games are

known to be polynomial time solvable.

We next move on to a few open directions that stem from our work.

1. Many results in the PCP literature [26], construction of integrality gaps and non-

embeddability results [36, 35] rely on the small-set expansion property of the (noisy)

hypercube. The quantitative aspect of these results is often determined by the number of

vertices in the noisy-hypercube, which is large. Improving these results can be achieved by

constructing hypercube like graphs (e. g., that have a “small-set expansion” type property)

with significantly smaller number of vertices. We believe that our results can be used to get

improved constructions to the above problems. This task is not trivial since the Johnson

graph is not a small-set expander, but one could hope to instead use the characterization

of sets violating the small-set expansion property given herein. The outer PCP of [33, 12]

is an example in which a characterization of this sort is used.

2. For theGrassmanngraph, the characterization of small sets that have non-perfect expansion

implies a “direct product testing” result, i. e., an encoding scheme and a set of (2-to-1) tests

on words, such that any word that passes a notable fraction of the tests must have a global

structure. Our results are related, in the same sense, to the problem of direct product

testing on the hypercube [28, 14, 7]. It is interesting to note that the notion of “basic sets”

appears in many of these works, and often as an intermediate step (if there are more than

2 queries).

2 Preliminaries

In this section we present the necessary background on the Johnson graph.
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2.1 Notation.

We shall use the big $ notation: for nonnegative-valued functions 5 , , : ℕ→ ℝ, by 5 = $(,)we

mean that 5 (=) 6 � · ,(=) for some constant � > 0 and all sufficiently large =, and by 5 = Ω(,)
we mean that 5 (=) > 2 · ,(=) for some constant 2 > 0 and all sufficiently large =. When we

write expectations such as E�[�[�]], unless specified otherwise, we mean that � is sampled

uniformly from the domain of �.

Definition 2.1. Let C < ℓ < = be integers. The generalized Johnson graph �(=, ℓ , C) is defined as

follows: the vertex set is

([=]
ℓ

)
, the set of all subsets of [=] of size ℓ . Two vertices �, � ⊆ [=] are

adjacent if |� ∩ �| = C.

Abusing notation, we denote the normalized adjacency operator of the generalized Johnson

graph by �(=, ℓ , C). We think of it as operating on real-valued functions � :

([=]
ℓ

)
→ ℝ.

2.2 Fourier analysis on the generalized Johnson graph

Any undirected regular graph, and in particular �(=, ℓ , C), induces a spectral decomposition of

real-valued functions on it. Spectral decompositions on the Johnson graph, and more generally

in association schemes have been studied in the work of Delsarte [9, 8]. In this section, we briefly

present such decomposition (similar to the one used in the context of the Grassmann graph

[12]); we refer the reader to [23] for a more thorough study.

We endow the space of real-valued functions on �(=, ℓ , C)with the inner product

〈�, �〉 = E
�∈([=]ℓ )

[�[�]�[�]]

for any �, � :

([=]
ℓ

)
→ ℝ. We denote the average of a function � :

([=]
ℓ

)
→ ℝ as �(�) =

E�∈([=]ℓ ) [�[�]].

2.3 Level functions

Definition 2.2. Let C < ℓ < = be integers. For any 8 = 0, ..., ℓ we define the space spanned by

the first 8 levels �68 as follows. � ∈ �68 if and only if there exists 5 :

([=]
8

)
→ ℝ such that for all

� ∈
([=]
ℓ

)
�[�] =

∑
�⊆�,|� |=8

5 (�).

One can easily verify that each �68 is a linear subspace, and that �6ℓ contains all real-valued

functions on �(=, ℓ , C). Furthermore, we have that �68 ⊆ �68+1.

Definition 2.3. We define the space of level 8 functions by �=8 = �68 ∩ �⊥68−1
. In words, it is the

space of all functions from �68 perpendicular to �68−1.
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It follows by the definition that the space of real-valued functions on �(=, ℓ , C) can be written

as �=0 ⊕ �=1 ⊕ ... ⊕ �=ℓ .

Definition 2.4. Let C < ℓ < = be integers. For 8 = 0, ..., ℓ define

�8(=, ℓ , C) =

ℓ∑
A=ℓ−C
(−1)A−(ℓ−C)+8

( A
ℓ−C

) (=−2A
ℓ−A

) (=−A−8
A−8

)
(ℓ
C

) (=−ℓ
ℓ−C

) .

A standard fact (see for example [23, Theorem 6.5.2]) asserts that the �8(=, ℓ , C) are the

eigenvalues of �(=, ℓ , C), and furthermore one has:

Theorem 2.5. Let C < ℓ < = be integers. For any 8 = 0, ..., ℓ , and � ∈ �=8 , we have �(=, ℓ , C)� =
�8(=, ℓ , C)�. Moreover, dim(�=8) =

(=
8

)
−

( =
8−1

)
.

The following notation will be convenient.

Definition 2.6. Let 9 < 8 < = be integers and 5 :

([=]
8

)
→ ℝ. For � ⊆ [=], |� | = 9 we denote

��( 5 ) = E
�⊇�
[ 5 (�)].

The following simple claim will be used extensively:

Claim 2.7. Let �′ ⊆ �. Then 1�∩�=�′ =
∑

�′′:�′⊆�′′⊆�
(−1)|�′′\�′ |1�⊇�′′.

Proof. Note that as the right hand side is equal to 1�⊇�′
∑

�′′⊆�\�′
(−1)|�′′ |1�⊇�′′, it suffices to prove

the statement for �′ = ∅. For this, we note that 1�∩�=∅ =
∏
9∈�

(
1 − 1�3 9

)
, and the result follows by

expanding this out. �

We have the following lemma:

Lemma 2.8. Suppose = > 10ℓ 2, and let � ∈ �68 be given by �[�] = ∑
�⊆�

5 (�). Then � ∈ �=8 if and only

if for every ' ⊆ [=], |' | < 8 we have that �'( 5 ) = 0.

Proof. For the⇐ direction, let A 6 8 − 1 and let ' be of size A. Then

〈�, 1�⊇'〉 =
∑
�

5 (�)E
�
[1�⊇'∪�] =

∑
�

5 (�)? |'∪� | ,

where ?< =
(=−<ℓ−<)
(=ℓ )

for < 6 ℓ and 0 otherwise. Thus,

〈�, 1�⊇'〉 =
A∑

A′=0

?A+8−A′
∑
'′⊆'
|'′ |=A′

∑
�

5 (�)1�∩'='′ .
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Using Claim 2.7, we plug in 1�∩'='′ =
∑

'′⊆'′′⊆'
(−1)|'′′\'′ |1�⊇'′′ and get that

〈�, 1�⊇'〉 =
A∑

A′=0

?A+8−A′
∑
'′⊆'
|'′ |=A′

∑
'′⊆'′′⊆'

(−1)|'′′\'′ |E
�
[ 5 (�)1�⊇'′′].

AsE� [ 5 (�)1�⊇'′′] is proportional to�'′′( 5 ) and |'′′ | 6 |' | 6 A 6 8−1, all of the above expectations

are 0.

The⇒ direction. We prove by induction on A = 0, 1, . . . , 8 − 1 that if � ∈ �=8 is given as in the

lemma, and ' ⊆ [=] has size A, then �'( 5 ) = 0. The base case, A = 0, follows since �( 5 ) = �(�)
(ℓ8)

= 0,

as �(�) = 0.

Let A 6 8−1, assume the statement for A′ 6 A−1, and prove for A. As in the previous direction

0 = 〈�, 1�⊇'〉 =
A∑

A′=0

?A+8−A′
∑
'′⊆'
|'′ |=A′

∑
'′⊆'′′⊆'

(−1)|'′′\'′ |E
�
[ 5 (�)1�⊇'′′].

As E� [ 5 (�)1�⊇'′′] is proportional to �'′′( 5 ), by induction hypothesis it is 0 if |'′′ | < A, so we get

that only the case that '′′ = ' contributes to the above sum, so

0 = E
�
[ 5 (�)1�⊇']

A∑
A′=0

?A+8−A′
∑
'′⊆'
|'′ |=A′

(−1)|'\'′ | = E
�
[ 5 (�)1�⊇']

A∑
A′=0

?A+8−A′

(
A

A′

)
(−1)A−A′ ,

Thus, since E� [ 5 (�)1�⊇'] is proportional to �'( 5 ), to show that �'( 5 ) = 0 it suffices to argue that

the above sum is non-zero. This is true since ?A+8−A′
( A
A′
)
is an increasing function of A′: we have

?A+8−A′−1 >
=
ℓ ?A+8−A′,

( A
A′+1

)
>

( A
A′
)

1

A and
=
Aℓ >

=
ℓ2
> 10, so����� A∑

A′=0

?A+8−A′

(
A

A′

)
(−1)A′

����� > ?8 − ∑
06A′<A

(
A

A′

)
?A+8−A′ > ?8 −

∑
06A′<A

1

10
A−A′ ?8 >

?8

2

> 0. �

2.4 Approximate eigenvalues

The formula for �8(=, ℓ , C) is quite complex, and it is not even clear from it what is the order of

magnitude of �8(=, ℓ , C). Thus, we shall use the following approximations of �8(=, ℓ , C):

Definition 2.9. Let C < ℓ < = be integers. For 8 = 0, ..., C define �≈8(=, ℓ , C) =
(C9)
(ℓ9)

, and for C < 8 6 ℓ

define �≈8(=, ℓ , C) = 0.

Lemma 2.10. For all 0 6 9 6 ℓ ,
��� 9(=, ℓ , C) − �≈9(=, ℓ , C)�� 6 ℓ

=−ℓ .
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Proof. For 9 = 0, a direct computation shows that �≈0(=, ℓ , C) = �0(=, ℓ , C) = 1.

For 0 < 9 6 ℓ , set � = {1, . . . , 9}, define �[�] = 1�⊇� and let � be the projection of � onto +=9 .

Then by Theorem 2.5

� 9(=, ℓ , C)��(�) = E
�⊇�

[
� 9(=, ℓ , C)�[�]

]
= E
�⊇�
[�(=, ℓ , C)�[�]] = E

�⊇�

[
E

|�∩�|=C
[�[�]]

]
=

∑
�′⊆�

E
�⊇� ,�
|�∩�|=C

[
�[�]1�∩�=�′

]
.

Note that conditioned on � ∩ � = �′, the distribution over � is uniform over all ℓ -size subsets

intersecting � in �′, so the last sum is equal to∑
�′⊆�

?�′ E
�∩�=�′

[�[�]],

where ?�′ is the probability that � ∩ � = �′. We note that ?� = �≈9 , and we next bound the

expectation for other subsets �′. Let @�′ = Pr� [� ∩ � = �′]. Then

E
�∩�=�′

[�[�]] =
E�

[
�[�]1�∩�=�′

]
@�′

=
∑

�′⊆�′′⊆�
(−1)|�′′\�′ |

E�
[
�[�]1�⊇�′′

]
@�′

,

where we used Claim 2.7. Since � ∈ +=9 and 1�⊇�′′ ∈ +6 |�′′ | , the expectation in the numerator is 0

unless �′′ = �, so

E
�∩�=�′

[�[�]] =
E�

[
�[�]1�⊇�

]
@�′

=
@�

@�′
��(�).

Plugging this above, we conclude that

� 9(=, ℓ , C)��(�) =
∑
�′⊆�

?�′
@�

@�′
��(�),

so � 9(=, ℓ , C) =
∑
�′⊆�

?�′
@�
@�′
. Thus,

��� 9(=, ℓ , C) − �≈9(=, ℓ , C)�� = ∑
�′(�

?�′
@�

@�′
6 max

�′(�

@�

@�′
= max

A6 9−1

(=−9
ℓ−9

)(=−9
ℓ−A

) .
The maximum is attained at A = 9 − 1, and by direct computation is equal to

ℓ−9+1

=−ℓ . �

2.5 Decomposition and approximate decomposition

2.5.1 Decomposition

Recall that we have seen that the space of all real-valued functions on

([=]
ℓ

)
can be decomposed

as �=0 ⊕ �=1 ⊕ . . . ⊕ �=ℓ . For any function � :

([=]
ℓ

)
→ ℝ, we denote this decomposition by
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� = �=0 + �=1 + ... + �=ℓ where �=8 ∈ �=8 . We also define 5=8 :
([=]
8

)
→ ℝ to be a function that

satisfies

�=8[�] =
∑

�⊆�, |� |=8
5=8(�).

We remark that by dimension considerations, the choice of the function 5=8 is unique. Indeed,

any function in �68 admits such representation, and as the dimension of �68 is
(=
8

)
, which is the

same as the dimension of the space of functions � that can be written as

∑
�⊆�, |� |=8

,(�) for some

, :

([=]
8

)
→ ℝ. We also remark that by Lemma 2.8, the function 5=8 automatically satisfies several

orthogonality conditions.

The notion of level 8 weight of � will be important for us:

Definition 2.11. Let � :

([=]
ℓ

)
→ ℝ be a function, and let 8 ∈ {0, 1, ..., ℓ }. We define the weight of

� on level 8 to be

,=8[�] 34 5= 〈�=8 , �=8〉.

Computing the spectral decomposition. It is easy to verify that �=0 ≡ �(�), and it is not very

hard to get an explicit formula for �=1. As 8 gets larger and larger though, getting a convenient,

precise formula for �=8 is more challenging. Thus, in the next section we define approximate

versions of these functions.

2.5.2 Approximate decomposition

Next, we introduce the approximate decomposition and approximate eigenvalues that will be

easier for us to work with. Given a function � :

([=]
ℓ

)
→ ℝ, define 5≈0 ≡ �(�). Inductively once

5≈9 have been defined for all 9 < 8, we define 5≈8 :
([=]
8

)
→ ℝ by

5≈8(�)
34 5
= ��(�) −

∑
�(�

5≈|� |(�)

for all � ∈
([=]
8

)
. We then define �≈8 :

([=]
ℓ

)
→ ℝ by

�≈8[�]
34 5
=

∑
�⊆�, |� |=8

5≈8(�).

To work with 5≈8 , �≈8 instead of 5=8 and �=8 , we will show that they are close in ℓ2 distance.

Theorem 2.12. There is an absolute constant � > 0 such that the following holds. Let = > ℓ > 8 be
integers such that = > 2

382+8�ℓ 28+1, and let � :

([=]
ℓ

)
→ ℝ be a function. Then

‖�=8 − �≈8 ‖2
2
6

2
482+8�ℓ 28

=
‖�‖2∞.
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Proof. Deferred to Appendix A.2. �

For our argument to go through, we will need a few more facts about 5≈8 , �≈8 . Note that by

Claim 2.8, we have that �'( 5=8) = 0 for all |' | < 8. The following fact asserts that this is also

approximately the case for 5≈8(�).

Fact 2.13. Let ℓ , = be integers such that = > 2ℓ 2, and let � :

([=]
ℓ

)
→ ℝ be a function. Then for all

8 = 1, ..., ℓ , 0 6 9 < 8 and � ⊆ [=] of size 9,����( 5≈8)�� 6 2
382+�8 ℓ

=
‖�‖∞ ,

where � > 0 is some absolute constant.

Proof. Deferred to Appendix A.1. �

The following fact asserts that if � is bounded, then so is 5≈8 .

Fact 2.14. Let ℓ 6 = be integers, and let � :

([=]
ℓ

)
→ ℝ be a function. Then for all 8 = 0, ..., ℓ ,

‖ 5≈8 ‖∞ 6 2
82 ‖�‖∞.

Proof. We prove this by induction on 8. Note that by definition of 5≈8 , we have that

‖ 5≈8 ‖∞ 6 ‖�‖∞ +
8−1∑
9=0

(
8

9

)
‖ 5≈9 ‖∞.

Thus, defining 08 = max(‖�‖∞ ,max06 968 ‖ 5≈9 ‖∞), the above inequality gives the recurrence

08 6 08−1 + (28 − 1)08−1 = 2
808−1. Hence 08 6 2

8∑
9=1

9

00 6 2
82 ‖�‖∞ as 00 6 ‖�‖∞. �

Note that 5≈8 depends of course on the underlying function �. Often times the function

� will be clear from the context, however sometimes we will be dealing with more than one

function simultaneously. In this case we shall denote the function 5≈8 by 5≈8 ,�.

2.6 Restrictions

Given a function � :

([=]
ℓ

)
→ ℝ and - ⊆ [=] of size at most ℓ − 1, we define the restricted function

� |- :

([=]\-
ℓ−|- |

)
→ ℝ by

� |-[�] = �[- ∪ �].

The following definition extends the notion of pseudorandom sets from the introduction to

functions.

Definition 2.15. Let A ∈ ℕ and � > 0. For ℓ > A, a function � :

([=]
ℓ

)
→ ℝ is called (A, �)-

pseudorandom if for any set - ⊆ [=] of size at most A, ‖� |- ‖2
2
6 �.
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In this language, the definition of pseudorandom sets is equivalent to saying that the

indicator function of the set is pseudorandom as per the definition above.

The following lemma expresses level 8 + 1 components of a function � as a function of the

level 8 components of � and its restrictions.

Lemma 2.16. Let � :

([=]
ℓ

)
→ ℝ be a function, 0 6 8 6 ℓ − 1 and G ∈ [=]. Then for any � ⊆ [=] \ {G}

of size 8,
5≈8+1,�(� ∪ {G}) = 5≈8 ,� |{G} (�) − 5≈8 ,�(�).

Proof. The proof is by induction on 8. For 8 = 0 the claim is obvious, since we have � = ∅ and
both sides are easily seen to be equal to �{G}(�) − �(�).

Let 8 > 0, assume the claim for every 9 < 8 and prove for 8. Fix �, then by definition

5≈8+1,�(� ∪ {G}) = ��∪{G}(�) −
∑
�⊆�

5≈|� |,�(�) −
∑
�(�

5≈|� |+1,�(� ∪ {G}). (2.1)

Consider the second sum. Since we sum only over � strictly contained in �, we may apply the

induction hypothesis to get that

5≈|� |+1,�(� ∪ {G}) = 5≈|� |,� |{G} (�) − 5≈|� |,�(�).

Plug it into (2.1) to get

5≈8+1,�(� ∪ {G}) = ��∪{G}(�) −
∑
�⊆�

5≈|� |,�(�) −
∑
�(�

( 5≈|� |,� |{G} (�) − 5≈|� |,�(�))

= ��(� |{G}) −
∑
�(�

5≈|� |,� |{G} (�) − 5≈8 ,�(�)

= 5≈8 ,� |{G} (�) − 5≈8 ,�(�),

in the last equality we used the definition of 5≈8 ,� |{G} . �

Corollary 2.17. Let � :

([=]
ℓ

)
→ ℝ be function, 0 6 8 6 ℓ − 1 and - ⊆ [=], |- | < 8. Then for any

� ⊆ [=] \ - of size 9 = 8 − |- |,

5≈8 ,�(� ∪ -) =
∑
.⊆-
(−1)|. | 5≈9 ,� |-\. (�).

Proof. By induction on |- |. For |- | = 0 this is obvious. Assuming the statement for sets - of

size at most 9, let us prove for the statement for |- | = 9 + 1. Write - = {G} ∪ -′ for |-′ | = 9.

Then by Lemma 2.16

5≈8 ,�(� ∪ -) = 5≈8−1,� |{G} (� ∪ -
′) − 5≈8−1,�(� ∪ -′). (2.2)

Applying the induction hypothesis on each term, we get that

5≈8−1,� |{G} (� ∪ -
′) =

∑
.⊆-′
(−1)|. | 5≈9 ,� |{G}∪-′\. (�) =

∑
.⊆-, .∌G

(−1)|. | 5≈9 ,� |-\. (�)
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and

5≈8−1,�(� ∪ -′) =
∑
.⊆-′
(−1)|. | 5≈9 ,� |-′\. (�) =

∑
.⊆-, .3G

(−1)|. |+1 5≈9 ,� |-\. (�).

Plugging the two into (2.2) completes the proof. �

2.7 Main results

In this section we state our main results. Our first result is Theorem 1.4 from the introduction,

which in a more precise form states:

Theorem 2.18. There exists � > 0 such that the following holds. Suppose = > 2
882+8�ℓ

208
3

1

�4
. If ( has

density � and is (A, �)-pseudorandom, then for every 8 = 0, ...A,

,=8[1(] 6 e
$(8)��1/3 + 1

=1/24

.

We prove this theorem in Section 3. A quick corollary of the above result is Theorem 1.3

from the introduction:

Theorem 2.19. Let  ∈ (0, 1), and ( be a subset of vertices in �(=, ℓ , ℓ ) of density �. Let A ∈ ℕ, � > 0,
and suppose = > 2

8A2+A�ℓ
20A
3

1

�4
and that ( is (A, �)-pseudorandom. Then

Φ(() > 1 − A+1 − e
$(A)�1/4 − A

=1/24�
.

The proof is given in Section 4. Finally, we prove the following quantitative improvement of

Theorem 2.18 in Section 5.

Theorem 2.20. There exists � > 0, such that the following holds for A, < ∈ ℕ and � > 0 satisfying
= > (23A2+A�ℓ 2A)4<(2<−1)2�−4. If ( is (A, �)-pseudorandom of density �, then for every 8 = 0, . . . , A,

,=8[1(] 6 (�<)28��1− 1

2<−1 + 2
382+8�ℓ 28

=1/(4<(2<−1)2)
.

In words, the above theorem asserts that for constant A, an (A, �)-pseudorandom set (

can have at most ��1−>(1)
of its weight on the first A levels. Ignoring the error terms, the

best pseudorandomness one may hope for, in terms of �, is that � = $(�), namely that no

small restrictions increase the density of ( by more than a constant factor. In that case, while

Theorem 2.18 asserts that the weight of ( on level 8 is small compared to the measure of ( (more

precisely, it bounds it by $8(�4/3)), Theorem 2.20 shows a much stronger bound, and in fact that

the weight on level 8 is not much larger than the weight of level 0. While the latter quantity is

clearly equal to �2
, Theorem 2.20 gives a bound of �2

log(1/�)$(8) on the former quantity in the

case that � = $(�) (by picking < ≈ log(1/�)). This statement should be compared to the A-level

inequalities on the Boolean hypercube, stating that if 5 : {−1, 1}= → {0, 1} has density �, then
its Fourier weight on level A is at most �2$(log(1/�))A .
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3 Proof of Theorem 2.18

Notation. In this section we sometimes use the notation G = H ± � to say that |G − H | 6 �.
Let ( be an (A, �)-pseudorandom set of density �. Let � : �(=, ℓ ) → {0, 1} be the indicator

function of (, and let 8 ∈ {0, ..., A}. For 8 = 0 the claim is obvious, so consider 8 > 0. Write the

function � according to its decomposition � = �=0 + �=1 + . . . + �=ℓ , and denote � = ,=8[�].
Assume � > �2

since otherwise we are done; indeed, then ,=8[�] = � 6 �2 6 ��1/3
, as

� > �(�) = �. Thus, we have E�
[
�=8[�]2

]
= �, and by orthogonality E�

[
(� − �=8)[�]2

]
= � − �.

Throughout, � > 0 is an absolute constant (that may not be the same in different occurrences),

and we assume that = > 2
882+8�ℓ

208
3

1

�4
.

3.1 Information about the second moment

Claim 3.1. E�
[
�2

≈8[�]
]
= � ± 2

282+8�ℓ 8√
=

.

Proof. By the triangle inequality and Theorem 2.12, |‖�=8 ‖2 − ‖�≈8 ‖2 | 6 ‖�=8 − �≈8 ‖2 6 2
282+8�ℓ 8√

=
.

Multiplying the inequality by |‖�=8 ‖2 + ‖�≈8 ‖2 |, we get that

��‖�=8 ‖2
2
− ‖�≈8 ‖2

2

�� 6 2
282+8�ℓ 8√

=
|‖�=8 ‖2 + ‖�≈8 ‖2 | 6

2
282+8�ℓ 8√

=

(
2‖�=8 ‖2 +

2
282+8�ℓ 8√

=

)
6

2
282+8�ℓ 8√

=
,

the last inequality follows as ‖�=8 ‖2 6 ‖�‖2 6 1 by Parseval. �

Claim 3.2. We have

E
�

[
5≈8(�)2

]
=
,=8[�](ℓ

8

) ± 2
382+8�ℓ 8√

=
=

�(ℓ
8

) ± 2
382+8�ℓ 8√

=
.

Proof. Expand out E�
[
�2

≈8[�]
]
. On the one hand it is equal to � ± 2

282+8�ℓ 8√
=

by the previous claim

and the condition on =. On the other hand, it is equal to

E
�

©«
∑

�⊆�, |� |=8
5≈8(�)ª®¬

2 = E
�


∑

�⊆�, |� |=8
5≈8(�)2

 + E�


∑
�≠�′⊆�, |� |=|�′ |=8

5≈8(�) 5≈8(�′)


=

(
ℓ

8

)
E
�

[
5≈8(�)2

]
+ E
�


8−1∑
3=0

∑
� ,�′⊆�

|� |=|�′ |=8 , |�∩�′ |=3

5≈8(�) 5≈8(�′)


=

(
ℓ

8

)
E
�

[
5≈8(�)2

]
+

8−1∑
3=0

(
ℓ

3

) (
ℓ − 3
8 − 3

) (
ℓ − 8
8 − 3

)
E

� ,�′, |� |=|�′ |=8
|�∩�′ |=3

[ 5≈8(�) 5≈8(�′)].
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We shall show that the second sum is small. Fix 3 ∈ {0, ..., 8 − 1} and consider the last expectation.

Then it is equal to

E
� , |� |=8

 5≈8(�) E
�′, |�′ |=8
|�∩�′ |=3

[ 5≈8(�′)]
 .

Fix � in the outside expectation, and consider the inner expectation. We may write it as

E
�⊆�
|� |=3

 E
�′, |�′ |=8
�∩�′=�

[ 5≈8(�′)]
 .

Fix � and �, consider the distribution over �′ where �′ ∩ � = �; we compare this distribution to

the uniform distribution over all �′ containing �. We note that conditioned on �′ containing �,

the probability that �′ ∩ � ≠ � is at most
82

= ; moreover, conditioned on this event the distribution

over �′ is the same as in the above expectation. Therefore, the distribution over �′ in the above

expectation is
82

= close in statistical distance to the uniform distribution over �′ containing �,

and so we have that

E
�⊆�

 E
�′, |�′ |=8
�∩�′=�

[ 5≈8(�′)]
 = E

�⊆�

[
��( 5≈8) ±

82

=
‖ 5≈8 ‖∞

]
.

Applying Facts 2.13 and 2.14 we get that the expectation in absolute value is at most
2

582+8�
= , for

some absolute constant � > 0. Plugging it into the first equation in the proof, we see that����E
�

[
�2

≈8[�]
]
−

(
ℓ

8

)
E
�

[
5≈8(�)2

] ���� 6 8−1∑
3=0

(
ℓ

3

) (
ℓ − 3
8 − 3

) (
ℓ − 8
8 − 3

)
2

582+8�

=
6
ℓ 38

2
582+8�

=
,

and therefore

E
�

[
5≈8(�)2

]
=

1(ℓ
8

)E
�

[
�2

≈8[�]
]
± 1(ℓ

8

) ℓ 38
2

582+8�

=
± 1(ℓ

8

) 2
282+8�ℓ 8√

=
=

�(ℓ
8

) ± 2
382+8�ℓ 8√

=
. �

We end this section with the following two corollaries, that establish upper bounds on the

second moments of the level components of restrictions of �. We remark that this is the only

form in which the pseudorandomness of � is used in subsequent proofs.

Corollary 3.3. Let 0 6 1 6 8 be integers, and let � ⊆ [=] be of size at most 1. Then

E
|� |=8−1

[
5≈8−1,� |�(�)2

]
6
8 8−1�

ℓ 8−1
+ 2

382+8�ℓ 8√
=

.
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Proof. By Claim 3.2,

E
|� |=8−1

[
5≈8−1,� |�(�)2

]
6
,=8−1[� |�](ℓ−1

8−1
) ± 2

382+8�ℓ 8√
=

.

Note that since � is (A, �)-pseudorandom, ,=8−1[� |�] 6 �(� |�) 6 �. Using the bound(ℓ−1
8−1

)
> (ℓ/8)8−1 completes the proof. �

Corollary 3.4. Let 0 6 1 6 8 be integers, and let � ⊆ [=] be of size 1. Then

E
�⊆[=]\�
|� |=8−1

[
5≈8 ,�(� ∪ �)2

]
6

2
28+18 8−1 · �
ℓ 8−1

+ 2
382+8�ℓ 8√

=
,

where � > 0 is some absolute constant.

Proof. By Corollary 2.17

5≈8 ,�(� ∪ �)2 =
(∑
.⊆�
(−1)|. | 5≈8−1,� |�\. (�)

)
2

6 2
|�|

∑
.⊆�

5≈8−1,� |�\. (�)
2 ,

the last inequality is by Cauchy–Schwarz. Therefore by linearity of expectation and Corollary 3.3

E
�⊆[=]\�
|� |=8−1

[
5≈8 ,�(� ∪ �)2

]
6 2
|�|

∑
.⊆�

E
�⊆[=]\�
|� |=8−1

[
5≈8−1,� |�\. (�)

2

]
.

Fix . ⊆ �, and note that sampling � ⊆ [=] \. yields a � that is disjoint from � with probability

at least 1 − 82/= > 1/2; conditioned on that, the distribution of � is uniform among the subsets

of [=] \ . of size 8 − 1. Thus,

E
�⊆[=]\�
|� |=8−1

[
5≈8−1,� |�\. (�)

2

]
6 2 E

�⊆[=]\.
|� |=8−1

[
5≈8−1,� |�\. (�)

2

]
,

and plugging this bound yields that

5≈8 ,�(� ∪ �)2 6 2
1+1

∑
.⊆�

E
�⊆[=]\.
|� |=8−1

[
5≈8−1,� |�\. (�)

2

]
6 2

1+1

∑
.⊆�

8 8−1 · �
ℓ 8−1

+ 2
382+8�ℓ 8√

=

6
2

28+18 8−1 · �
ℓ 8−1

+ 2
382+8�ℓ 8√

=
.

�
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3.2 A lower bound on the fourth moment

Claim 3.5. If = > ℓ 28
2

482+8��−4, then E�
[
�4

≈8[�]
]
>

�4

16�3
.

Proof. Note that

� = 〈�, �=8〉 = 〈�, �≈8〉 + 〈�, �=8 − �≈8〉.

By Cauchy–Schwarz and Theorem 2.12 we have

〈�, �=8 − �≈8〉 6 ‖�‖2‖�=8 − �≈8 ‖2 6
√
�

2
282+8�ℓ 8√

=
6
�

2

by assumption on =, and � > �2
. Thus, 〈�, �≈8〉 > �/2. Using Hölder’s inequality we get that

〈�, �=8〉 6 ‖�‖4/3‖�≈8 ‖4 6 �3/4‖�≈8 ‖4 ,

and combining we get that ‖�≈8 ‖4
4
>

�4

16�3
. �

3.3 An upper bound on the fourth moment

The following lemma is the main technical result of this section. For the proof, we first define

the notion of intersection patterns. For � = {G1 , . . . , Gℓ } thought of as a set of ℓ symbols, let

�(�, 3) = { (�1 , �2 , �3 , �4) | �1 , ..., �4 ⊆ �, |�1 ∪ �2 ∪ �3 ∪ �4 | = 3} ,

and note that |�(�, 3)| depends only on ℓ , 8, 3 — denote it by �8 ,3,ℓ . Fix 3 and a tuple

(�1 , . . . , �4) ∈ �(�, 3). Consider a 15-dimensional vector ®�3, that has a coordinate for any

non-empty ) ⊆ {1, 2, 3, 4}, whose value on coordinate ) is equal to the number of elements in

∩8∈) �8 . We refer to this vector ®�3 as the intersection pattern of (�1 , �2 , �3 , �4).

Lemma 3.6. Suppose = > 2
482+8�ℓ 28+1�−2; if � is (8 , �)-pseudorandom, then

E
�

[
�4

≈8[�]
]
6 e

$(8)�� + 2
282+8�ℓ 58

=1/4 .

Proof. By opening the brackets we have

E
�

[
�4

≈8[�]
]
= E

�

[ ∑
�1 ,�2 ,�3 ,�4⊆�

5≈8(�1) 5≈8(�2) 5≈8(�3) 5≈8(�4)
]
.

Thus, using our notation we get that

E
�

[
�4

≈8[�]
]
=

48∑
3=8

�8 ,3,ℓE
�

[
E

(�1 ,�2 ,�3 ,�4)∈�(�,3)
[ 5≈8(�1) 5≈8(�2) 5≈8(�3) 5≈8(�4)]

]
,
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where by the expectation on � we mean that the symbols G1 , . . . , Gℓ are sampled uniformly so

that � is uniformly chosen from

([=]
ℓ

)
.

We note that by symmetry, the probability a tuple (�1 , ..., �4) is sampled depends only on its

intersection pattern. We denote by �(®�3) the probability that a specific intersection pattern ®�3
is chosen, and by �(®�3) the distribution over the tuples (�1 , . . . , �4) that have this intersection
pattern. Then

E
�

[
�4

≈8[�]
]
=

48∑
3=8

∑
®�3

�(®�3)�8 ,3,ℓE
�

 E
(�1 ,�2 ,�3 ,�4)∼�(®�3)

�1 ,...,�4⊆�

[ 5≈8(�1) 5≈8(�2) 5≈8(�3) 5≈8(�4)]
 . (3.1)

Note that now the distribution over (�1 , ..., �4) is uniform over all quadruples whose union has

size 3 and its intersection pattern is ®�3, and thus

E
�

[
�4

≈8[�]
]
=

48∑
3=8

∑
®�3

�(®�3)�8 ,3,ℓ E
(�1 ,�2 ,�3 ,�4)∼�( ®�3)

[ 5≈8(�1) 5≈8(�2) 5≈8(�3) 5≈8(�4)].

The following lemma is key in completing the proof of Lemma 3.6.

Lemma 3.7. There is � > 0 such that the following holds. Suppose = > 2
482+8�ℓ 28+1�−2. Let 8 , 3 be

integers such that 8 6 3 6 48 and let ®�3 be any intersection pattern. Then����� E
(�1 ,�2 ,�3 ,�4)∼�(®�3)

[ 5≈8(�1) 5≈8(�2) 5≈8(�3) 5≈8(�4)]
����� 6 2

28+283��

ℓ 3
+ 2

1.582+8�ℓ 0.58

=1/4 .

We defer the proof of Lemma 3.7 to the next section and show how to complete the proof of

Lemma 3.6 based on it. Using Lemma 3.7 we see that

(3.1) 6
48∑
3=8

∑
®�3

�(®�3)�8 ,3,ℓ

(
2

28+283��

ℓ 3
+ 2

1.582+8�ℓ 0.58

=1/4

)
.

Note that

�8 ,3,ℓ 6

(
ℓ

3

) (
3

8

)
4

6

(
ℓe

3

)3 (
3 · e
8

)
48

6 ℓ 33−3(4e
2)48 ,

and so by the previous inequality

(3.1) 6
48∑
3=8

∑
®�3

�(®�3)ℓ 33−3(4e
2)48

(
2

28+283��

ℓ 3
+ 2

1.582+8�ℓ 0.58

=1/4

)
6 e

$(8)�� + 2
282+8�ℓ 58

=1/4 .

�
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3.4 Wrapping things up

Proof of Theorem 2.18. Combining Claim 3.5 and Lemma 3.6 we see that

�4

16�3

6 E
�

[
�4

≈8[�]
]
6 e

$(8)�� + 2
282+8�ℓ 58

=1/4 .

Rearranging we see that

� 6 e
$(8)��1/3 + 2

282

3
+8�ℓ

58
3

=
1

12

�

�1/3 6 e
$(8)(8)��1/3 + 1

=1/24

,

the last inequality is by � > �2
. �

3.5 Proof of Lemma 3.7

Proof. Let G1 , ..., G3 be chosen independently and uniformly from [=]. Thinking of G1 , . . . , G3 as

symbols, we let %1 , ..., %4 ⊆ {G1 , . . . , G3} be fixed sets whose intersection pattern is ®�3. Namely,

each one of %1, %2, %3 and %4 is as a set containing 8 of the symbols G1 , . . . , G3, and the intersection

pattern of these sets is exactly ®�3. We would like to consider the value of 5≈8 on the %8 however

for a specific choice of G there is some small probability that %8 is a set of smaller size. We extend

the definition of 5≈8(�) to be 0 if |� | < 8. Thus, we note that����� E
G1 ,...,G3

[ 5≈8(%1) 5≈8(%2) 5≈8(%3) 5≈8(%4)] − E
(�1 ,�2 ,�3 ,�4)∼�( ®�3)

[ 5≈8(�1) 5≈8(�2) 5≈8(�3) 5≈8(�4)]
����� 6 32

=
‖ 5≈8 ‖4∞ ,

since the distributions of the sets � and the sets % are
32

= -close to each other in statistical distance

(as they are only different if some repetition occurs in one of the %8). Therefore, it suffices to

show an upper bound of the expectation involving the %8 .

Proposition 3.8. If ®�3 is such that there is an G 9 that appears in only one of the %8 , then���� E
G1 ,...,G3

[ 5≈8(%1) 5≈8(%2) 5≈8(%3) 5≈8(%4)]
���� 6 2

382+�832

=
.

Proof. Assume without loss of generality 9 = 1 and that %1 contains G1. Then

E
G1 ,...,G3

[ 5≈8(%1) 5≈8(%2) 5≈8(%3) 5≈8(%4)] = E
G2 ,...,G3

[
5≈8(%2) 5≈8(%3) 5≈8(%4)EG1

[ 5≈8(%1) | G2 , ..., G3]
]
.

(3.2)

Fix G2 , ..., G3 and denote � = {G2 , ..., G3} ∩ %1. Since G1 ∈ %1, we have that |� | 6 |%1 | − 1 = 8 − 1.

Additionally

|EG1
[ 5≈8(%1) | G2 , ..., G3]| 6

���� E
�⊇�
[ 5≈8(�)]

���� + 32

=
‖ 5≈8 ‖∞.
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The latter expectation is upper bounded by
2

382+�8
= from Fact 2.13. Combining this with Fact 2.14

we conclude that

|EG1
[ 5≈8(%1) | G2 , ..., G3]| 6

2
382+�832

=
.

Using this, the triangle inequality and Fact 2.14 on (3.2) completes the proof. �

Thus we may assume that every G 9 appears at least in two sets. Next, denote by �4 =

%1 ∩ %2 ∩ %3 ∩ %4 the set of those G 9 that appear in all sets, ℎ4 = |�4 |, �3 the set of those G 9 that

appear in exactly three of the sets, ℎ3 = |�3 |, �2 the set of those G 9 that appear in precisely two

sets, ℎ2 = |�2 |.

Claim 3.9. ���� E
�4 ,�3 ,�2

[ 5≈8(%1) 5≈8(%2) 5≈8(%3) 5≈8(%4)]
���� 6 E

�4 ,�3


4∏
9=1

√
E
�2

[
5 2

≈8(%9)
] .

Proof. Let G ∈ �2, and suppose %91 , %92 contain it but not %93 , %94 . Then the left hand side is at

most ���� E
�4 ,�3 ,�2\{G}

[�� 5≈8(%93)�� �� 5≈8(%94)��E
G

[�� 5≈8(%91)�� �� 5≈8(%92)��] ] ���� .
Applying the Cauchy–Schwarz inequality on the inner expectation, the above expression is

upper-bounded by���� E
�4 ,�3 ,�2\{G}

[�� 5≈8(%93)�� �� 5≈8(%94)��√E
G

[
5 2

≈8(%91)
]√

E
G

[
5 2

≈8(%92)
] ] ���� .

Continuing in this manner—namely picking each time a new variable from �2, isolating the

two terms that depends on it and applying Cauchy–Schwarz on that expectation, yields the

desired bound. For example, continuing another step, say we have H ∈ �2 that appears in %93 ,

%92 , we write the expectation as���� E
�4 ,�3 ,�2\{G,H}

[�� 5≈8(%94)��√E
G

[
5 2

≈8(%91)
]
E
H

[�� 5≈8(%93)��√E
G

[
5 2

≈8(%92)
] ] ] ����

6

����� E
�4 ,�3 ,�2\{G,H}

[�� 5≈8(%94)��√E
G

[
5 2

≈8(%91)
]√

E
H

[�� 5≈8(%93)��2]√ E
G,H

[
5 2

≈8(%92)
] ] ����� . �

We next give an upper bound on the quantity

E
�4 ,�3


4∏
9=1

√
E
�2

[
5 2

≈8(%9)
] . (3.3)
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Using the Cauchy–Schwarz inequality,

(3.3) 6

√
E

�4 ,�3

[
E
�2

[
5 2

≈8(%1)
]
E
�2

[
5 2

≈8(%2)
] ]√

E
�4 ,�3

[
E
�2

[
5 2

≈8(%3)
]
E
�2

[
5 2

≈8(%4)
] ]

6 max

�3∩%2 ,�4

√
E

�3\%2 ,�2

[
5 2

≈8(%1)
]

max

�3∩%3 ,�4

√
E

�3\%3 ,�2

[
5 2

≈8(%4)
]

√
E

�4 ,�3 ,�2

[
5 2

≈8(%2)
]√

E
�4 ,�3 ,�2

[
5 2

≈8(%3)
]
. (3.4)

The product of the third and the fourth term is equal to

E
%3

[
5 2

≈8(%3)
]
6
� · 8 8
ℓ 8
+ 2

382+8�ℓ 8√
=

.

Where the last inequality is by Claim 3.2 and the estimate

(ℓ
8

)
>

(
ℓ
8

) 8
.

Next, we estimate the maximums. For 9 = 1, 2, 3, 4 define�3, 9 = �3∩%9 . Apply Corollary 3.4

on the first maximum with � = (�4 , �3,1 ∩ %2) and � = (�2 ∩ %1 , �3,1 \ %2), we get it is at most

max

�

√
E
�

[
5 2

≈8(� ∪ �)
]
6

√
2

28+18 |�|�

ℓ |�|
+ 2

382+8�ℓ 8√
=
6

2
8+18�1/2√�
ℓ�1/2

+ 2
1.582+8�ℓ 0.58

=1/4 ,

where �1 = |�2 ∩ %1 | + |�3,1 \ %2 | (we remark that this is the place in the proof where the

pseduo-randomness of � is used). Similarly, the second maximum is upper bounded by

2
8+18�2/2√�
ℓ�2/2

+ 2
1.582+8�ℓ 0.58

=1/4 ,

where �2 = |�2 ∩ %4 | + |�3,4 \ %3 |. Combining everything, we see that

(3.4) 6
2

28+28
1

2
(28+�1+�2)��

ℓ
1

2
(28+�1+�2)

+ 2
1.582+8�ℓ 0.58

=1/4 . (3.5)

By counting occurrences of points in the %2, we get that 8 = ℎ4+ |�2 ∩ %2 | + |�3,2 | and by counting

occurrences of points in %3, 8 = ℎ4 + |�2 ∩ %3 | + |�3,3 |. Also, note that �3,1 \ %2 = �3 \ �3,2

since any G ∈ �3 \ �3,2 is in 3 of the sets but not in %2, and hence it is in %1. Thus, |�3,1 \ %2 | =
|�3 \ �3,2 | = ℎ3 − |�3,2 | and similarly |�3,4 \ %3 | = |�3 \ �3,3 | = ℎ3 − |�3,3 |. Plugging everything

into (3.5), we see that twice the exponent of ℓ (and also 8) is equal to

ℎ4 + |�2 ∩ %2 | + |�3,2 | + ℎ4 + |�2 ∩ %3 | + |�3,3 | + |�2 ∩ %1 | + |�2 ∩ %4 | + ℎ3 − |�3,3 | + ℎ3 − |�3,2 |

which is 2(ℎ4 + ℎ3 + ℎ2) = 23. Thus,

(3.4) 6
2

28+283��

ℓ 3
+ 2

1.582+8�ℓ 0.58

=1/4 . �
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4 Pseudorandomness implies expansion

Proof of Theorem 2.19. Let ( be a set as in the Theorem, and let � be its indicator function in

�(=, ℓ , ℓ ). Note that

�(1 −Φ(()) = 〈�, �(=, ℓ , ℓ )�〉. (4.1)

Claim 4.1.

〈�, �(=, ℓ , ℓ )�〉 =
ℓ∑
8=0

�8(=, ℓ , ℓ ),=8[�].

Proof. Writing � = �=0 + ... + �=ℓ we have

〈�, �(=, ℓ , ℓ )�〉 = 〈�,
ℓ∑
8=0

�(=, ℓ , ℓ )�=8〉 = 〈�,
ℓ∑
8=0

�8(=, ℓ , ℓ )�=8〉 =
ℓ∑
8=0

�8(=, ℓ , ℓ )〈�=8 , �=8〉.

�

To prove Theorem 2.19, we bound the right hand side of Claim 4.1; contribution of small

values 8 is bounded by appealing to the pseudorandomness properties of �, and contribution of

large values of 8 is bounded by using the fact the corresponding eigenvalues are small. Below

are the details.

By Lemma 2.10 we have that

�8(=, ℓ , ℓ ) 6
(C
8

)(ℓ
8

) + ℓ

= − ℓ 6
(
C

ℓ

) 8
+ ℓ

= − ℓ = 8 + ℓ

= − ℓ ,

so we conclude that

〈�, �(=, ℓ , ℓ )�〉 6
A∑
8=0

8,=8[�] +
ℓ∑

8=A+1

8,=8[�] + ℓ

= − ℓ .

Let 8 6 A. Observe that since ( is (A, �)-pseudorandom it follows that ( is (8 , �)-pseudorandom.

Therefore, applying Theorem 2.18 we see that for 8 = 0, 1, ..., A,

,=8[�] 6 e
$(8)��1/4 + 1

=1/24

.

For the second sum, note that by Parseval the sum of all weights of � is at most �. Hence,

combining these two facts we conclude

〈�, �(=, ℓ , ℓ )�〉 6
A∑
8=0

8e$(8)��1/4 + A+1

ℓ∑
8=A+1

,=8[�] +
A

=1/24

6 e
$(A)��1/4 + �A+1 + A

=1/24

.

Plugging this into (4.1) and simplifying yields Φ(() > 1 − A+1 − e
$(A)�1/4 − 1

=1/24�
. �

THEORY OF COMPUTING, Volume 21 (2), 2025, pp. 1–43 25

http://dx.doi.org/10.4086/toc


SUBHASH KHOT, DOR MINZER, DANA MOSHKOVITZ, AND MULI SAFRA

5 Proof of Theorem 2.20

Let ( be an (A, �)-pseudorandom set, and � be its indicator function. The proof of Theorem 2.20

follows the same outline as the proof of Theorem 2.18, except that we use higher moments. Let

0 6 8 6 A.
Throughout this section, we denote by � an absolute constant (that may not be the same in

different occurrences), and assume that = > (23A2+A�ℓ 2A)4<(2<−1)2�−4
.

Claim 5.1. E�
[
�2<
≈8 [�]

]
>

�2<

2
2<�2<−1

.

Proof. As in Claim 3.5, we have that 〈�, �≈8〉 > �/2. On the other hand, by Hölder’s inequality

we have

〈�, �≈8〉 6 ‖�‖2</(2<−1)‖�≈8 ‖2< = �(2<−1)/2< ‖�≈8 ‖2< .

Rearranging yields the result. �

The intersection pattern of %1 , . . . , %2< is a vector � indicating the sizes of all intersections of

any collection of the sets.

Lemma 5.2. Let �3 be an intersection pattern for 2< sets, and let %1 , . . . , %2< be sets that match this
intersection pattern in the symbols G1 , . . . , G3. Then������ E

G1 ,...,G3


2<∏
9=1

5≈8(%9)

������ 6 2

4<8+2< 8
3�2<−1�

ℓ 3
+ 2

8<
2
(382+8�)/2<(2<−1)ℓ 8/2<(2<−1)

=1/4<(2<−1) . (5.1)

The next section is devoted to the proof of this lemma.

5.1 Proof of Lemma 5.2

Let �3 be an intersection pattern. If among G1 , . . . , G3 there is a variable that appears only in one

of the %9 then the lemma holds trivially:

Proposition 5.3. There is an absolute constant � > 0 such that if there is an G 9 that appears in only one
of the %8 then ������ E

G1 ,...,G3


2<∏
9=1

5≈8(%9)

������ 6 2

(<+2)82+8�32

=
.

Proof. The proof is the same as the proof of Proposition 3.8. �

We thus assume from now on that each G 9 appears in at least 2 of the %8 . For B = 2, 3 . . . , 2<,

let �B be the set of those G 9 that appear in exactly B of the %8 . For convenience, let us also denote

�>B = �B ∪ �B+1 ∪ . . . ∪ �2< and �6B = �2 ∪ �3 ∪ . . . ∪ �B .
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For each one of the %-sets, define 41(%)
34 5
= | 5≈8(%)| and for B > 2 define

4B(%)
34 5
= E

�6B

[
5 2

≈8(%)
]

(we note that 4B(%) is only a function of % ∩ �>B).

For each 0 = 2, 3, . . . , 2<, define anoperator�0 on randomvariables by�0(/) = E�0

[
/0/(0−1)]

.

For 9 = 1, 2, . . . , 2< − 1, define )9 , 9(%)
34 5
= 4 9(%). Inductively for 0 > 9, define

)9 ,0(%)
34 5
= �0()9 ,0−1(%)) = E

�0

[
)9 ,0−1(%)

0
0−1

]
.

Denote &B[�>2]
34 5
=

2<∏
9=1

�� 5≈8(%9)��, and for each B > 2 let

&B[�>B+1]
34 5
= E

�6B


2<∏
9=1

�� 5≈8(%9)�� .
Note that for B = 2<, this is the term we wish to bound.

Proposition 5.4. For every 1 6 B 6 2<, and any setting of the variables in �>B+1, we have

&B[�>B+1] 6
©«

2<∏
9=1

)1,B(%9)ª®¬
1/B

.

We shall use the following fact in the proof, which is a direct corollary of Hölder’s inequality.

Fact 5.5. Let ℎ1 , . . . , ℎ@ :

([=]
<

)
→ ℝ. Then

‖ℎ1 . . . ℎ@ ‖1 6 ‖ℎ1‖@ · · · ‖ℎ@ ‖@ .

Proof of Proposition 5.4. The proof is by induction on B. The base case B = 1 is trivial. Let B > 1,

assume we have proven for B, and prove for B + 1. Note that

&B+1[�>B+2] = E
�B+1

[&B[�>B+1]].

Applying the induction hypothesis, we get that

&B+1[�>B+2] 6 E
�B+1


2<∏
9=1

(
)1,B(%9)

)
1/B

 .
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Iteratively, for each H ∈ �B+1 we consider the B + 1 sets % it appears in, and then apply Fact 5.5

on them. Thus, for instance suppose we have that H is in %1 , . . . , %B+1, then we would get

&B+1[�>B+2] 6 E
�B+1\{H}


B+1∏
9=1

(
E
H

[
)1,B(%9)(B+1)/B

] )1/(B+1) 2<∏
9=B+2

)1,B(%9)
 .

Repeating this process for every H ∈ �B+1, one gets

&B+1[�>B+2] 6
2<∏
9=1

(
E

�B+1∩%9

[
)1,B(%9)(B+1)/B

] )1/(B+1)

=

2<∏
9=1

)1,B+1(%9)1/(B+1). �

Thus, we have that

LHS(5.1) 6 ©«
2<∏
9=1

)1,2<(%9)ª®¬
1/2<

. (5.2)

Proposition 5.6. For any %-set % and 1 6 9 6 2< − 1

)9 ,2<(%) 6 )9+1,2<(%) ·max

�> 9+1

4 9(%)
2<
9(9+1) .

Proof. Fix 9 6 2< − 1; then

)9−1,2<(%) = �2< ◦ . . . ◦ � 9
(
4 9−1(%)

)
= �2< ◦ . . . ◦ � 9+1

(
E
�9

[
4 9−1(%)9/(9−1)

] )
.

Clearly, for all settings of �> 9+1 we have

E
�9

[
4 9−1(%)9/(9−1)

]
6 E

�9

[
4 9−1(%)

]
max

�> 9
4 9−1(%)1/(9−1) = 4 9(%)max

�> 9
4 9−1(%)1/(9−1).

Also, note that each operator �0 is monotone on non-negative random variables, and for a

random variable / and a constant 2 > 0 we have that �0(2/) = �0(2)�0(/). Thus, combining the

above two we get that

)9−1,2<(%) 6 [�2< ◦ . . . ◦ � 9+1](4 9(%)) · [�2< ◦ . . . ◦ � 9+1](max

�> 9
4 9−1(%)1/(9−1))

= )9 ,2<(%)max

�> 9
4 9−1(%)2</9(9−1). �

Repeated application of the above proposition yields that for any %-set,

)1,2<(%) 6 )2<,2<(%)
2<−1∏
0=1

max

�>0+1

40(%)
2<

0(0+1) =

2<∏
0=1

max

�>0+1

40(%)2<·,(0).
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where ,(0) = 1

0(0+1) for 0 6 2< − 1 and ,(2<) = 1

2< . We used the fact that )2<,2<(%) = 42<(%).
Plugging this into (5.2) yields

LHS(5.1) 6
2<∏
9=1

2<∏
0=1

max

�>0+1

40(%9),(0). (5.3)

Using Corollary 3.4, we see that for 0 < 2<,

max

�>0+1

40(%) 6 2
28+1

8 |%∩�60 |�

ℓ |%∩�60 |
+ +2

382+8�ℓ 8√
=

.

For 0 = 2<, by Claim 3.2

max

�>0+1

40(%) 6
8 |%∩�60 |�

ℓ |%∩�60 |
+ 2

382+8�ℓ 8√
=

.

Therefore, plugging into (5.3) we get

LHS(5.1) 6
2<∏
9=1

(
8 |%9∩�62< |�
ℓ |%9∩�62< | +

2
382+8�ℓ 8√

=

),(2<)
·

2<∏
9=1

2<−1∏
0=1

(
2

28+1
8 |%9∩�60 |�
ℓ |%9∩�60 |

+ 2
382+8�ℓ 8√

=

),(0)
6

2<∏
9=1

(
8 |%9∩�62< |�
ℓ |%9∩�62< |

),(2<)
·

2<∏
9=1

2<∏
0=1

(
2

28+1
8 |%9∩�60 |�
ℓ |%9∩�60 |

),(0)
+ 2

8<

(
2

382+8�ℓ 8√
=

)
min(,(2<−1),,(2<))

6 2
4<8+2<��2<−1

2<∏
9=1

2<∏
0=1

8,(0)·|%9∩�60 |

ℓ,(0)·|%9∩�60 |
+ 2

8<

(
2

382+8�ℓ 8√
=

)
min(,(2<−1),,(2<))

. (5.4)

where to compute the power of � we used the fact that

2<−1∑
0=1

,(0) = 1 − 1

2< (telescoping sum).

Consider the last product. It is equal to

2<∏
9=1

2<∏
0=1

0∏
A=1

8,(0)·|%9∩�A |

ℓ,(0)·|%9∩�A |
=

2<∏
0=1

0∏
A=1

8
,(0)·

2<∑
9=1

|%9∩�A |

ℓ
,(0)·

2<∑
9=1

|%9∩�A |

=

2<∏
0=1

0∏
A=1

8,(0)·A |�A |

ℓ,(0)·A |�A |

=

2<∏
A=1

2<∏
0=A

8,(0)·A |�A |

ℓ,(0)·A |�A |

=

2<∏
A=1

8
A |�A |

2<∑
0=A

,(0)

ℓ
A |�A |

2<∑
0=A

,(0)
.
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In the second equality, we used the fact that each element in �A is counted A times by the %9 . In

the third equality we interchanged the order of multiplication. Note that

2<∑
0=A

,(0) = 1

A , hence the

last product is equal to

2<∏
A=1

8 |�A |

ℓ |�A |
=
8

2<∑
A=1

|�A |

ℓ

2<∑
A=1

|�A |
=
83

ℓ 3
.

Plugging this into (5.4) yields

LHS(5.1) 6 2
4<8+2< 8

3��2<−1

ℓ 3
+ 2

8<
2
(382+8�)/2<(2<−1)ℓ 8/2<(2<−1)

=1/4<(2<−1) ,

concluding the proof of Lemma 5.2.

5.2 Concluding Theorem 2.20

In this section, we finish the proof of Theorem 2.20. The following corollary is proven using a

similar argument to the one in Lemma 3.6. Since the proof is almost identical, we give a rough

outline of it.

Corollary 5.7. If � is (8 , �)-pseudorandom, then

E
�

[
�2<
≈8 [�]

]
6 (10<)4<8��2<−2 + 2

8<
2

382<+8<�ℓ (2<+1)8

=1/(4<(2<−1)) .

Proof. As in (3.1), we expand out

E
�

[
�2<
≈8 [�]

]
=

2<8∑
3=8

∑
®�3

�(®�3)�8 ,3,ℓ ,<E
�

 E
(�1 ,...,�2<)∼�(®�3)
�1 ,...,�2<⊆�

[ 5≈8(�1) · · · 5≈8(�2<)]
 , (5.5)

where ®�3 now ranges over all intersection patterns of 2< sets of size 8, �( ®�3) is the distribution
over the intersection patterns and �8 ,3,ℓ ,< counts the number of �1 , . . . , �2< ⊆ � of size 8 whose

union has size 3. We then appeal to Lemma 5.2 (instead of Lemma 3.7) to bound the absolute

value of the expectation inside, and use the crude bound �8 ,3,ℓ ,< 6
(ℓ
3

) (3
8

)2<
6 ℓ 332<8

to finish

the proof. �

Combining Claim 5.1 and Corollary 5.7, we get that

�2<

2
2<�2<−1

6 (10<)4<8��2<−2 + 2
8<

2
382<+8<�ℓ (2<+1)8

=1/(4<(2<−1)) .
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Rearranging we get that

�2<−1 6 2
2<(10<)4<8�2<−1�2<−2 + 2

10<
2

382<+8<�ℓ (2<+1)8

=1/(4<(2<−1))
�2<−1

�
,

taking (2< − 1)-root yields

� 6 16(10<)28��1− 1

2<−1 + 2
382+8�ℓ 28

=1/(4<(2<−1)2)
�

�1/(2<−1) 6 16(10<)28��1− 1

2<−1 + 2
382+8�ℓ 28

=1/(4<(2<−1)2)
.

finishing the proof.

A Missing proofs

A.1 Proof of Fact 2.13

Let 08 = max|' |<8 |�'( 5≈8)|. For 01, we note that �( 5≈1) = 0, so 01 = 0. Next, we bound 08 in terms

of 01 , . . . , 08−1, and thereby prove Fact 2.13 by induction.

Let � be such that 08 =
����( 5≈8)��, and note that we may take such � of size 8 − 1. Then

��( 5≈8) = E
�⊇�
[ 5≈8(�)] = E

�⊇�

��(�) −
8−1∑
8′=0

∑
|�′ |=8′,�′⊆�

5≈8′(�′)


= ��(�) −
8−1∑
8′=0

∑
|�′ |=8′,�′⊆�

5≈8′(�′) − E
�⊇�


8−1∑
8′=0

∑
|�′ |=8′
�′⊆�
�′*�

5≈8′(�′)


= − E

�⊇�


8−1∑
8′=0

∑
|�′ |=8′
�′⊆�
�′*�

5≈8′(�′)


,

where the last equality is by definition of 5≈9(�). We may write∑
|�′ |=8′,�′⊆� ,�′*�

5≈8′(�′) =
∑
'(�
|' |<8′

∑
|�′ |=8′
�′⊆�

�′∩�='

5≈8′(�′),

and plugging that in above yields

��( 5≈8(�)) = −
8−1∑
8′=0

∑
'(� ,|' |<8′

08 ,8′, 9 ,' E
�⊇�

 E
�′⊆�

�′∩�='

[ 5≈8′(�′)]
 ,
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where 08 ,8′, 9 ,' counts the number of �′ ⊆ � such that �′ ∩ � = '; we will only use the fact that

08 ,8′, 9 ,' 6 2
8
, and get that

��( 5≈8) 6 828 max

8′,',|'′ |<8′

���� E
�⊇� ,�′⊆�:�′∩�='

[ 5≈8′(�′)]
���� .

Fix 8′ and ' that maximize this. Note that the distribution over �′ is uniform among these that

satisfy �′ ∩ � = ', so the expectation above is equal to

1

Pr�′ [�′ ∩ � = ']
E
�′

[
5≈8′(�′)1�′∩�='

]
=

1

Pr�′ [�′ ∩ � = ']
∑

'⊆'′⊆�
(−1)|'′′\'′ |E

�′
[ 5≈8′(�′)1�′⊇'′]

=
∑

'⊆'′⊆�

Pr�′ [�′ ⊇ '′]
Pr�′ [�′ ∩ � = ']

(−1)|'′′\'′ |�'′( 5≈8′),

where in the second transition we used Claim 2.7. Combining everything, we get that

08 =
����( 5≈8)�� 6 8−1∑

8′=0

∑
'⊆'′⊆�

Pr�′ [�′ ⊇ '′]
Pr�′ [�′ ∩ � = ']

|�'′( 5≈8′)| .

For '′ such that |'′ | 6 8′−1, we get that |�'′( 5≈8′)| 6 08′ . Otherwise, |'′ | > 8′, and thus |' | < |'′ |,
and we have |�'′( 5≈8′)| 6 2

82 ‖�‖∞ by Fact 2.14. Lastly, we have

Pr�′ [�′ ⊇ '′]
Pr�′ [�′ ∩ � = ']

6

ℓ (ℓ−1)···(ℓ−|'′ |)
=(=−1)···(=−|'′ |)

ℓ (ℓ−1)···(ℓ−|' |)
= |' |

·Ω(1)
6 $

(
ℓ |'

′ |−|' |

= |'′ |−|' |

)
,

which is at most $(1) for all |'′ | > |' | and at most $
(
ℓ
=

)
if |'′ | > |' |. Together, we conclude

that

08 6 2
8+�08−1 + 2

282+� ℓ

=
‖�‖∞

for some absolute constant � > 0. Thus, looking at the sequence 18 where 10 = 0 and

18 = 2
8+�18−1 + 2

282+� ℓ
= ‖�‖∞, we have that 08 6 18 , and solving the recurrence gives that

18 6
(
2

282+� + 2
282+�+8+� + 2

282+�+8+(8−1)+2� + . . . + 2
282+�+8+(8−1)+...+1+8�

) ℓ
=
‖�‖∞ ,

giving the bound 18 6 2
382+8�′ ℓ

= ‖�‖∞, for some absolute constant �′ > 0. �

Corollary A.1. Let 1 6 8 6 ℓ , and � :

([=]
8

)
→ ℝ and assume that = > 2ℓ 2. Then for all ' of size at

most 8 − 1 we have
|�'(�≈8)| 6 2

382+�8 ℓ
8+1

=
‖�‖∞

for some absolute constant � > 0.
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Proof. By definition,

�'(�≈8) = E
�⊇'

[∑
�⊆�

5≈8(�)
]
=

8−1∑
9=0

∑
�⊆',|� |=9

E
�⊇'


∑

�:�∩'=�
�⊆�

5≈8(�)

 =
8−1∑
9=0

∑
�⊆',|� |=9

08 , 9 ,ℓ E
�∩'=�

[ 5≈8(�)].

In the last transition, we turned the sum into expectation by dividing and multiplying by 08 , 9 ,ℓ ,

that counts the number of � ⊂ � such that � ∩ ' = �; we will only use the trivial bound 08 , 9 ,ℓ 6 ℓ 8 ,
hence

|�'(�≈8)| 6 828ℓ 8 max

968−1,|� |=9

���� E
�∩'=�

[ 5≈8(�)]
���� .

To bound this, we fix 9 and � that achieve this maximum, and write

E
�∩'=�

[ 5≈8(�)] =
1

Pr� [� ∩ ' = �]
E
�

[
5≈8(�)1�∩'=�

]
=

1

Pr� [� ∩ ' = �]
∑

�⊆�′⊆'
(−1)|�′\� |E

�

[
5≈8(�)1�⊇�′

]
,

where we used Claim 2.7. Thus, we get���� E
�∩'=�

[ 5≈8(�)]
���� 6 ∑

�⊆�′⊆'

Pr� [� ⊇ �′]
Pr� [� ∩ ' = �]

��′( 5≈8).

As before, we have that

Pr� [� ⊇ �′]
Pr� [� ∩ ' = �]

6 $

(
ℓ |�
′ |−|� |

= |�′ |−|� |

)
,

hence this is at most $(1) for all �′, � (as |�′ | > |� | always), and at most $(ℓ/=) if |�′ | > |� |. Hence,

we get that ∑
�⊆�′⊆'

Pr� [� ⊇ �′]
Pr� [� ∩ ' = �]

��′( 5≈8) 6 2
8$

(
ℓ

=

)
‖ 5≈8 ‖∞ + 2

8$(1)max

|�′ |=9

����′( 5≈8)�� .
Using Facts 2.14 and 2.13, this is at most 2

382+�8 ℓ
= ‖�‖∞ for some absolute constant � > 0, and we

are done. �

Claim A.2. Assume = > 2ℓ 2 and let 1 6 8 6 ℓ , � ∈ �68−1 be given as �[�] = ∑
�′⊆�

ℎ(�′), and

� :

([=]
ℓ

)
→ ℝ be some function. If E�′

[
ℎ(�′)2

]
6 ", and E �′⊆�

|�′ |=8−1

[
��′(�)2

]
6 �, then

|〈�≈8 , �〉| 6 ℓ 8−1

√
�".

Proof. By definition,

〈�≈8 , �〉 = E
�
[�≈8[�]�[�]] =

(
ℓ

8 − 1

)
E
�

 E
�′⊆�
|�′ |=8−1

[�≈8[�]ℎ(�′)]
 =

(
ℓ

8 − 1

)
E
�′⊆�
|�′ |=8−1

[��′(�≈8)ℎ(�′)].
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Using Cauchy–Schwarz, we may upper bound the absolute value of this by(
ℓ

8 − 1

)√
E
�′⊆�
|�′ |=8−1

[��′(�≈8)2]
√

E
�′⊆�
|�′ |=8−1

[ℎ(�′)2] 6 ℓ 8−1

√
�". �

A.2 Proof of Theorem 2.12

Normalizing �, we shall assume that ‖�‖∞ = 1.

Define �8 = � −
8∑
9=0

�≈9 . We show that �8 is nearly perpendicular to �68 . Intuitively, this will

allow us to conclude that

8∑
9=0

�≈9 is close to
8∑
9=0

�=9 for all 8, from which Theorem 2.12 follows via

an easy induction.

Claim A.3. For all ' ⊆ [=] of size at most 8, we have that |�'(�8)| 6 2
382+8� ·ℓ 8+1

= for some absolute
constant � > 0.

Proof. It suffices to prove the statement for ' of size 8. By definition,

�'(�8) = �'(�) −
8∑
9=0

�'(�≈9).

Expanding, we have

�'(�≈8) = E
�⊇'

[∑
�⊆�

5≈9(�)
]
=

∑
�⊆'

5≈9(�) + E
�⊇'


∑

�⊆�,�*'
5≈9(�)

 ,
so we get that

�'(�8) = �'(�) −
8∑
9=0

∑
�⊆'

5≈9(�) −
8∑
9=0

E
�⊇'


∑

�⊆�,�*'
5≈9(�)


= �'(�) − 5≈8(') −

8−1∑
9=0

∑
�⊆'

5≈9(�) −
8∑
9=0

E
�⊇'


∑

�⊆�,�*'
5≈9(�)


= −

8∑
9=0

E
�⊇'


∑

�⊆�,�*'
5≈9(�)

 ,
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where we used the definition of 5≈8 ; it remains to bound the last sum. We partition the sum

according to � ∩ ':

8∑
9=0

E
�⊇'


∑
'′('
|'′ |6 9−1

∑
�⊆�,�∩'='′

5≈9(�)

 =
8∑
9=0

∑
'′('
|'′ |6 9−1

E
�⊇'

[
0 |'′ |, 9 ,8 ,ℓ E

�⊆�,�∩'='′

[
5≈9(�)

] ]
,

where 0 |'′ |, 9 ,8 ,ℓ is the number of sets � of size 9 such that � ⊆ � and � ∩ ' = '′; we will only use

the fact that it is at most ℓ 9 , so that in absolute value the above sum is at most

2
8ℓ 9 max

9 ,'′('
|'′ |6 9−1

���� E
�∩'='′

[
5≈9(�)

] ���� .
Fix 9 and '′. By Claim 2.7 we have

E
�

[
5≈9(�)1�∩'='′

]
=

∑
'′′:'′⊆'′′⊆'

(−1)|'′′\'′ |1�⊇'′′ ,

so

E
�∩'='′

[
5≈9(�)

]
=

∑
'′′:'′⊆'′′⊆'

(−1)|'′′\'′ |
Pr� [� ⊇ '′′]

Pr� [� ∩ ' = '′]
�'′′( 5≈9).

Taking absolute value and using the triangle inequality, we get that���� E
�∩'='′

[
5≈9(�)

] ���� 6 ∑
'′′:'′⊆'′′⊆'

Pr� [� ⊇ '′′]
Pr� [� ∩ ' = '′]

���'′′( 5≈9)�� .
Note that

Pr� [� ⊇ '′′]
Pr� [� ∩ ' = '′]

6

ℓ (ℓ−1)···(ℓ−|'′′ |)
=(=−1)···(=−|'′′ |)

ℓ (ℓ−1)···(ℓ−|'′ |)
= |'′ |

·Ω(1)
6 $

(
ℓ |'

′′ |−|'′ |

= |'′′ |−|'′ |

)
.

This is at most $(1) for all '′ ⊆ '′′, and as |'′ | 6 9 − 1, this is $(ℓ/=) if |'′′ | > 9. We thus get

from Fact 2.13 that���� E
�∩'='′

[
5≈9(�)

] ���� 6 2
9$

(
ℓ

=

)
+ 2

9 · $(1) · 2392+�9 ℓ

=
6 2

392+�′ 9 ℓ

=
.

�

Claim A.4. Let 9 6 8. Then
��〈�8 , �=9〉�� 6 2

382+8�ℓ1.58+1

= .

Proof. Note that��〈�8 , �=9〉�� = ������E�
[∑
�⊆�

5=9(�)�8[�]
] ������ =

(
ℓ

9

) ����E
�

[
5=9(�)��(�8)

] ���� 6 (
ℓ

9

)√
E
�

[
5=9(�)2

]√
E
�

[
��(�8)2

]
.

Using Claims A.3 and A.7 we get that |〈�8 , �=8〉| 6 2
382+8�ℓ 8+0.59+1

= . �
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Note that

〈�8 , �=8〉 = 〈�, �=8〉 − 〈�≈8 , �=8〉 = ‖�=8 ‖2
2
− 〈�≈8 , �=8〉,

so we get that ��‖�=8 ‖2
2
− 〈�≈8 , �=8〉

�� 6 2
382+8�ℓ 1.58+1

=
. (A.1)

Claim A.5. Let 9 6 8. If = > 2
382+8�ℓ 28+1, then

��〈�8 , �≈9〉�� 6 2
382+8�ℓ1.58+1

= .

Proof. Note that

〈�8 , �≈9〉 =

������E�
[∑
�⊆�

5≈9(�)�8[�]
] ������ =

(
ℓ

9

) ����E
�

[
5≈9(�)��(�8)

] ���� 6 (
ℓ

9

)√
E
�

[
5≈9(�)2

]√
E
�

[
��(�8)2

]
.

Using Fact 2.14 and Claim A.7 we get that |〈�8 , �=8〉| 6 2
482+8�ℓ 8+9+1

= . �

Claim A.6. There is an absolute constant � > 0 such that if If = > 2
382+8�ℓ 28+1, then��〈�=8 , �≈8〉 − ‖�≈8 ‖2

2

�� 6 2
482+8�ℓ 28

=
.

Proof. Note that

〈�8 , �≈8〉 = 〈�, �≈8〉 − 〈�≈8 , �≈8〉 −
∑
9<8

〈�≈9 , �≈8〉 = 〈�=8 , �≈8〉 − ‖�≈8 ‖2
2
+

∑
9<8

〈�=9 , �≈8〉 − 〈�≈9 , �≈8〉.

so ��〈�=8 , �≈8〉 − ‖�≈8 ‖2
2

�� 6 |〈�8 , �≈8〉|︸      ︷︷      ︸
(�)

+
∑
9<8

��〈�≈9 , �≈8〉��︸      ︷︷      ︸
(��)

+
��〈�=9 , �≈8〉��︸      ︷︷      ︸

(���)

6
2

482+8�ℓ 28

=
,

for some absolute constant � > 0. To justify the last inequality, we note that (�)may be bounded

using Claim A.2 by appealing to Claim A.3 to bound � and Fact 2.14 to bound ". Similarly, (��)
may be bounded using Claim A.2 by appealing to Corollary A.1 and Fact 2.14 to bound " and

�. Lastly, (���)may be bounded using Claim A.2 by appealing to Corollary A.1 and Claim A.7 to

bound " and �. �

We are now ready to prove Theorem 2.12.

Proof of Theorem 2.12. We have

‖�=8 − �≈8 ‖2
2
= ‖�=8 ‖2

2
− 〈�=8 , �≈8〉 + ‖�≈8 ‖2

2
− 〈�=8 , �≈8〉.

Using (A.1) and Claim A.6 gives the desired bound. �
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A.3 Auxiliary claims

Claim A.7. There is an absolute constant � > 0 such that for all � :

([=]
ℓ

)
→ ℝ, if = > 2

8+�ℓ 28+1, then

E
�

[
5=8(�)2

]
6

2‖�‖2
2√(ℓ

8

) .
Proof. By orthogonality of �=8 we have

‖�‖2
2
> ‖�=8 ‖2

2
= E

�


(∑
�⊆�

5=8(�)
)

2 = E
�


∑
�⊆�

5=8(�)2 +
∑
� ,�′⊆�
�≠�′

5=8(�) 5=8(�′)
 .

Thus,

‖�‖2
2
>

(
ℓ

8

)
E
�

[
5=8(�)2

]
+

8−1∑
A=0

0A,8,ℓ E
|' |=A

 E
� ,�′

�∩�′='

[ 5=8(�) 5=8(�′)]
 ,

where 0A,8,ℓ counts the number of � , �′ ⊆ � that intersect in a set of size A; we will only use the

obvious bound 0A,8,ℓ 6 ℓ 28
. Thus,

‖ 5=8 ‖2
2
6
‖�‖2

2(ℓ
8

) + 8ℓ 28
max

A68−1,|' |=A

������ E
� ,�′

�∩�′='

[ 5=8(�) 5=8(�′)]

������ . (A.2)

Fix A and ' that maximize this. Then

E
� ,�′

�∩�′='

[ 5=8(�) 5=8(�′)] =
1

Pr� ,�′ [� ∩ �′ = ']
E
�′

[
E
�
[ 5=8(�) 5=8(�′)1�∩�′=']

]
=

1

Pr� ,�′ [� ∩ �′ = ']
E
�′

[
5=8(�′)

∑
'⊆'′⊆�′

(−1)|'′\' |E
�
[ 5=8(�)1�⊇'′]

]
,

where we used Claim 2.7. Thus, in absolute value this is at most

1

Pr� ,�′ [� ∩ �′ = ']
E
�′

[
| 5=8(�′)|

∑
'⊆'′⊆�′

Pr

�
[� ⊇ '′] |�'′( 5=8)|

]
,

and using Cauchy–Schwarz this is at most

1

Pr� ,�′ [� ∩ �′ = ']

√
E
�′
[ 5=8(�′)2]

√√√
E
�′

[
2
8

∑
'⊆'′⊆�′

Pr

�
[� ⊇ '′]2 |�'′( 5=8)|2

]
=

√
E
�′
[ 5=8(�′)2]

√√√√√√√√√E
�′

[
2
8

∑
'⊆'′⊆�′

Pr� [� ⊇ '′]2

Pr� ,�′ [� ∩ �′ = ']2
|�'′( 5=8)|2

]
︸                                                  ︷︷                                                  ︸

(�)

.
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We inspect (�). As before, we have

Pr� [� ⊇ '′]2

Pr� ,�′ [� ∩ �′ = ']2
= $

((
ℓ

=

)
2(|'′ |−|' |)

)
.

The contribution from a single '′ such that |'′ | < 8 is 0 by Lemma 2.8. Otherwise, '′ = �′ and
as |' | < 8 the contribution is at most

$(28)ℓ 2

=2
E
�′

[
5=8(�′)2

]
.

Overall, we get that √
(�) 6 $

(
2
8ℓ

=

)
‖ 5=8 ‖2.

Plugging everything into (A.2) gives that

‖ 5=8 ‖2
2
6
‖�‖2

2(ℓ
8

) + 2
8+�ℓ 28+1

=
‖ 5=8 ‖2

2
,

and as
2
8+�ℓ28+1

= 6 1/2, we get that

‖ 5=8 ‖2
2
6

2‖�‖2
2(ℓ

8

) . �
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